Global Strong Solutions of the Density Dependent Incompressible MHD System with Zero Resistivity in a Bounded Domain

Jishan Fan ${ }^{a}$, Bessem Samet ${ }^{b}$ and Yong Zhou ${ }^{c}$
${ }^{a}$ Department of Applied Mathematics, Nanjing Forestry University Nanjing 210037, China
${ }^{b}$ Department of Mathematics, College of Science, King Saud University P.O. Box 2455, Riyadh 11451, Saudi Arabia
${ }^{c}$ School of Mathematics (Zhuhai), Sun Yat-Sen University
Zhuhai, Guangdong 519082, China
E-mail(corresp.): zhouyong3@mail.sysu.edu.cn
E-mail: fanjishan@njfu.edu.cn

Received March 13, 2018; revised November 19, 2018; accepted November 20, 2018

Abstract

In this paper, we first establish a regularity criterion for the strong solutions to the density-dependent incompressible MHD system with zero resistivity in a bounded domain. Then we use it and the bootstrap argument to prove the global well-posedness provided that the initial data u_{0} and b_{0} satisfy that $(d-2)\left\|\nabla u_{0}\right\|_{L^{2}}+$ $\left\|b_{0}\right\|_{W^{1, p}}$ are sufficiently small with $d<p<\frac{2 d}{d-2}(d=2,3)$. We do not assume the positivity of initial density, it may vanish in an open subset (vacuum) of Ω.

Keywords: MHD, zero resistivity, bounded domain.

AMS Subject Classification: 35Q30; 35Q35; 76D03.

1 Introduction

Magnetohydrodynamics (MHD) studies the interaction of electromagnetic fields and conducting fluids. In this paper, we consider the following density-depen-

[^0]dent incompressible MHD system:
\[

$$
\begin{align*}
& \partial_{t} \rho+\operatorname{div}(\rho u)=0, \tag{1.1}\\
& \partial_{t}(\rho u)+\operatorname{div}(\rho u \otimes u)+\nabla\left(\pi+\frac{1}{2}|b|^{2}\right)-\mu \Delta u=(b \cdot \nabla) b, \tag{1.2}\\
& \partial_{t} b+u \cdot \nabla b-b \cdot \nabla u=\eta \Delta b, \tag{1.3}\\
& \operatorname{div} u=\operatorname{div} b=0 \text { in } \Omega \times(0, \infty), \tag{1.4}\\
& u=0, \eta b \cdot n=0, \eta \operatorname{rot} b \times n=0 \text { on } \partial \Omega \times(0, \infty), \\
& (\rho, u, b)(\cdot, 0)=\left(\rho_{0}, u_{0}, b_{0}\right)(\cdot) \text { in } \Omega \subset \mathrm{R}^{d}(d=2,3) . \tag{1.5}
\end{align*}
$$
\]

Here ρ denotes the density, u the velocity field, π the pressure, and b the magnetic field, respectively. μ is the viscosity coefficient and η is the resistivity coefficient. Ω is a bounded domain in R^{d} with smooth boundary $\partial \Omega, n$ is the unit outward normal vector to the boundary $\partial \Omega$. We will assume that the initial data satisfy the following compatibility condition:

$$
\begin{equation*}
-\mu \Delta u_{0}+\nabla\left(\pi_{0}+\frac{1}{2}\left|b_{0}\right|^{2}\right)-b_{0} \cdot \nabla b_{0}=\sqrt{\rho_{0}} g \tag{1.6}
\end{equation*}
$$

with $g \in L^{2}(\Omega)$.
Wu [1] shows the local well-posedness of strong solutions to the problem (1.1)-(1.5) under the condition (1.6). When $\eta>0$ and $d=2$, Huang and Wang [5] (also see [6]) prove the global well-posedness of the strong solutions. Fan-Li-Nakamura [2] showed a regularity criterion. Fan-Zhou [3] proved the uniform-in- $\mu(\eta)$ local well-posedness of smooth solutions when $\Omega:=\mathrm{R}^{d}$. The aim of this paper is to prove some similar results when $\eta=0$. We will prove
Theorem 1. Let $d=2, \mu=1, \eta=0, u_{0} \in H_{0}^{1} \cap H^{2}, 0 \leq \rho_{0} \in W^{1, q}, b_{0} \in W^{1, p}$ with $2<q, p<\infty$ and divu $0_{0}=\operatorname{divb}_{0}=0$ in Ω. If b satisfies
$b \in L^{\infty}\left(0, T ; W^{1, p}\right)$ for some $2<p<\infty$, then

$$
\begin{align*}
& u \in L^{\infty}\left(0, T ; H^{2}\right) \cap L^{2}\left(0, T ; W^{2, p}\right), u_{t} \in L^{2}\left(0, T ; H^{1}\right), \sqrt{\rho} u_{t} \in L^{\infty}\left(0, T ; L^{2}\right) \\
& \rho \in L^{\infty}\left(0, T ; W^{1, q}\right), \rho_{t} \in L^{\infty}\left(0, T ; L^{q}\right), \\
& b \in L^{\infty}\left(0, T ; W^{1, p}\right), b_{t} \in L^{\infty}\left(0, T ; L^{p}\right) \tag{1.7}
\end{align*}
$$

for any given $T>0$.
Theorem 2. Let $d=2, \mu=1, \eta=0, u_{0} \in H_{0}^{1} \cap H^{2}, 0 \leq \rho_{0} \in W^{1, q}, b_{0} \in W^{1, p}$ with $2<q, p<\infty$ and divu $_{0}=$ divb $_{0}=0$ in Ω. If $\left\|b_{0}\right\|_{W^{1, p}}$ is sufficiently small, then the problem (1.1)-(1.5) has a unique strong solution (ρ, u, b) satisfying (1.7).

Remark 1. Here we do not assume smallness of the initial velocity u_{0}.
Remark 2. We denote $C_{1}:=\int_{0}^{T}\|u\|_{W^{2, p}} \mathrm{~d} t$, then we can take

$$
\left\|b_{0}\right\|_{W^{1, p}}=\frac{\delta}{2} \exp \left(-C_{1}\right)=: \delta_{1}
$$

We need not assume that C_{1} is uniformly bounded as $\delta \rightarrow 0$, say, we take $C_{1}=\frac{1}{\delta}$, then we have $\delta_{1} \rightarrow 0$ as $\delta \rightarrow 0$. Although it is not difficult to prove that C_{1} is uniformly bounded as $\delta \rightarrow 0$ and we omit the details here.

Theorem 3. Let $d=3, \mu=1, \eta=0, u_{0} \in H_{0}^{1} \cap H^{2}, 0 \leq \rho_{0} \in W^{1, q}, b_{0} \in W^{1, p}$ with $3<q, p<6$ and divu $_{0}=\operatorname{divb}_{0}=0$ in Ω. If u and b satisfy

$$
\nabla u \in L^{\infty}\left(0, T ; L^{2}\right), b \in L^{\infty}\left(0, T ; W^{1, p}\right)
$$

with $3<p<6$, then (1.7) holds true.
Theorem 4. Let $d=3, \mu=1, \eta=0, u_{0} \in H_{0}^{1} \cap H^{2}, 0 \leq \rho_{0} \in W^{1, q}, b_{0} \in W^{1, p}$ with $3<q, p<6$ and divu $=\operatorname{divb}_{0}=0$ in Ω. If $\left\|\nabla u_{0}\right\|_{L^{2}}+\left\|b_{0}\right\|_{W^{1, p}}$ is sufficiently small, then the problem (1.1)-(1.5) has a unique strong solution (ρ, u, b) satisfying (1.7).

Remark 3. Our results also hold true when $\Omega:=\mathbb{R}^{d} \quad(d=2,3)$ without any difference and difficulty. Concerning regularity criteria for the MHD system, we refer to $[4,7,8]$ and references therein.

Remark 4. Our results also hold true for compressible MHD flows without resistivity and thus we omit the details here.

Remark 5. In [3], they proved the following regularity criterion $\nabla u \in L^{1}\left(0, T ; L^{\infty}(\Omega)\right)$, or $u \in L^{2}\left(0, T ; L^{\infty}\left(\mathbb{R}^{d}\right)\right)$ and $\nabla u \in L^{1}\left(0, T ; L^{\infty}\left(\mathbb{R}^{d}\right)\right)$, which is different from ours. We are unable to use it to prove a global small result. The novelty of this paper is that we can use our regularity criterion to show a global small result by a bootstrap argument.

To prove Theorems 2 and 4, we will use the following abstract bootstrap argument or continuity argument [9, Page 20] (see also [10,12]).

Lemma 1. ([9]). Let $T>0$. Assume that two statements $C(t)$ and $H(t)$ with $t \in[0, T]$ satisfy the following conditions:
(a) If $H(t)$ holds for some $t \in[0, T]$, then $C(t)$ holds for the same t;
(b) If $C(t)$ holds for some $t_{0} \in[0, T]$, then $H(t)$ holds for t in a neighborhood of t_{0};
(c) If $C(t)$ holds for $t_{m} \in[0, T]$ and $t_{m} \rightarrow t$, then $C(t)$ holds;
(d) $C(t)$ holds for at least one $t_{1} \in[0, T]$.

Then $C(t)$ holds for all $t \in[0, T]$.

2 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Since the local strong solutions to the problem (1.1)-(1.5) was established in [1], we only need to show a priori estimates (1.7).

First, it follows from (1.1) and (1.4) that

$$
\begin{equation*}
0 \leq \rho \leq M<\infty \tag{2.1}
\end{equation*}
$$

Testing (1.2) by u and using (1.1) and (1.4), we see that

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int \rho|u|^{2} \mathrm{~d} x+\int|\nabla u|^{2} \mathrm{~d} x=\int(b \cdot \nabla) b \cdot u \mathrm{~d} x \tag{2.2}
\end{equation*}
$$

Testing (1.3) by b and using (1.4), we find that

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|b|^{2} \mathrm{~d} x=\int(b \cdot \nabla) u \cdot b \mathrm{~d} x \tag{2.3}
\end{equation*}
$$

Summing up (2.2) and (2.3), we get

$$
\begin{equation*}
\frac{1}{2} \int\left(\rho|u|^{2}+|b|^{2}\right) \mathrm{d} x+\int_{0}^{T} \int|\nabla u|^{2} \mathrm{~d} x \mathrm{~d} t \leq \frac{1}{2} \int\left(\rho_{0}\left|u_{0}\right|^{2}+\left|b_{0}\right|^{2}\right) \mathrm{d} x \tag{2.4}
\end{equation*}
$$

Testing (1.2) by u_{t}, using (1.1), (1.4) and (2.1), we derive that

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|\nabla u|^{2} \mathrm{~d} x+\int \rho\left|u_{t}\right|^{2} \mathrm{~d} x-\frac{\mathrm{d}}{\mathrm{~d} t} \int b \otimes b: \nabla u \mathrm{~d} x \\
= & -\int \rho u \cdot \nabla u \cdot u_{t} \mathrm{~d} x-\int \partial_{t}(b \otimes b): \nabla u \mathrm{~d} x \\
\leq & \left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}\|\sqrt{\rho}\|_{L^{\infty}}\|u\|_{L^{\infty}}\|\nabla u\|_{L^{2}}+C\|b\|_{L^{\infty}}\left\|b_{t}\right\|_{L^{2}}\|\nabla u\|_{L^{2}} \\
\leq & C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}\|u\|_{L^{\infty}}\|\nabla u\|_{L^{2}}+C\|u \cdot \nabla b-b \cdot \nabla u\|_{L^{2}}\|\nabla u\|_{L^{2}} \\
\leq & C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}\|u\|_{L^{\infty}}\|\nabla u\|_{L^{2}}+C\left(\|u\|_{L^{\infty}}+\|\nabla u\|_{L^{2}}\right)\|\nabla u\|_{L^{2}} \\
\leq & \frac{1}{2}\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2}+C\|u\|_{L^{\infty}}^{2}\|\nabla u\|_{L^{2}}^{2}+C\|\nabla u\|_{L^{2}}^{2}+C . \tag{2.5}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int|b \otimes b|^{2} \mathrm{~d} x & \leq C\|b\|_{L^{\infty}}^{3}\left\|b_{t}\right\|_{L^{1}} \leq C\|u \cdot \nabla b-b \cdot \nabla u\|_{L^{1}} \\
& \leq C\|\nabla u\|_{L^{2}} \leq C\|\nabla u\|_{L^{2}}^{2}+C \tag{2.6}
\end{align*}
$$

We will use the following logarithmic Sobolev inequality [11]:

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq C\left(1+\|\nabla u\|_{L^{2}} \log ^{\frac{1}{2}}\left(e+\|u\|_{H^{2}}\right)\right) \tag{2.7}
\end{equation*}
$$

Doing (2.5) $+(2.6) C_{1}$ with C_{1} suitably large and using (2.7), we have

$$
\begin{equation*}
\int|\nabla u|^{2} \mathrm{~d} x+\int_{t_{0}}^{t} \int \rho\left|u_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} s \leq C(e+y(t))^{C_{0} \epsilon} \tag{2.8}
\end{equation*}
$$

provided that

$$
\int_{t_{0}}^{T}\|\nabla u\|_{L^{2}}^{2} \mathrm{~d} t \leq \epsilon \ll 1
$$

with $y(t):=\sup _{\left[t_{0}, t\right]}\|u(s)\|_{H^{2}}$ and C_{0} is an absolute constant.
On the other hand, (1.2) can be rewritten as

$$
\begin{equation*}
-\Delta u+\nabla\left(\pi+\frac{1}{2}|b|^{2}\right)=f:=b \cdot \nabla b-\rho u_{t}-\rho u \cdot \nabla u \tag{2.9}
\end{equation*}
$$

By the H^{2}-theory of Stokes system, we observe that

$$
\begin{aligned}
\|u\|_{H^{2}} & \leq C\|f\|_{L^{2}} \leq C\left\|b \cdot \nabla b-\rho u_{t}-\rho u \cdot \nabla u\right\|_{L^{2}} \\
& \leq C+C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}+C\|u\|_{L^{4}}\|\nabla u\|_{L^{4}} \\
& \leq C+C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}+C\|u\|_{L^{2}}^{\frac{1}{2}} \cdot\|\nabla u\|_{L^{2}} \cdot\|u\|_{H^{2}}^{\frac{1}{2}},
\end{aligned}
$$

which gives

$$
\begin{equation*}
\|u\|_{H^{2}} \leq C+C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}+C\|u\|_{L^{2}}\|\nabla u\|_{L^{2}}^{2} \tag{2.10}
\end{equation*}
$$

whence

$$
\begin{equation*}
\int_{t_{0}}^{t}\|u\|_{H^{2}}^{2} \mathrm{~d} s \leq C(e+y(t))^{C_{0} \epsilon} \tag{2.11}
\end{equation*}
$$

Taking the operator ∂_{t} to (1.2), testing by u_{t}, using (1.1) and (1.4), we have

$$
\begin{gather*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int \rho\left|u_{t}\right|^{2} \mathrm{~d} x+\int\left|\nabla u_{t}\right|^{2} \mathrm{~d} t=-\int \rho_{t}\left|u_{t}\right|^{2} \mathrm{~d} x-\int \rho_{t} u \cdot \nabla u \cdot u_{t} \mathrm{~d} x \\
\quad-\int \rho u_{t} \cdot \nabla u \cdot u_{t} \mathrm{~d} x-\int \partial_{t}(b \otimes b): \nabla u_{t} \mathrm{~d} x=: \sum_{i=1}^{4} I_{i} . \tag{2.12}
\end{gather*}
$$

We use (2.1), Gagliardo-Nirenberg inequality and the Hölder inequality to bound $I_{i}(i=1, \ldots, 4)$ as follows:

$$
\begin{align*}
I_{1}= & -\int \rho u \cdot \nabla\left|u_{t}\right|^{2} \mathrm{~d} x \leq C\|u\|_{L^{6}}\left\|\sqrt{\rho} u_{t}\right\|_{L^{3}}\left\|\nabla u_{t}\right\|_{L^{2}} \\
\leq & C\|u\|_{L^{6}}\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{\frac{1}{2}}\left\|\sqrt{\rho} u_{t}\right\|_{L^{6}}^{\frac{1}{2}}\left\|\nabla u_{t}\right\|_{L^{2}} \leq C\|u\|_{L^{6}}\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{\frac{1}{2}}\left\|\nabla u_{t}\right\|_{L^{2}}^{\frac{3}{2}} \\
\leq & \frac{1}{16}\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+C\|u\|_{L^{6}}^{4}\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2}, \tag{2.13}\\
I_{2}= & -\int \rho u \cdot \nabla\left(u \cdot \nabla u \cdot u_{t}\right) \mathrm{d} x \leq C\left\|\sqrt{\rho} u_{t}\right\|_{L^{6}}\|u\|_{L^{6}}\|\nabla u\|_{L^{3}}^{2} \\
& +C\left\|\sqrt{\rho} u_{t}\right\|_{L^{6}}\|\Delta u\|_{L^{2}}\|u\|_{L^{6}}^{2}+C\left\|\nabla u_{t}\right\|_{L^{2}}\|\nabla u\|_{L^{6}}\|u\|_{L^{6}}^{2} \\
\leq & C\left\|\nabla u_{t}\right\|_{L^{2}}\|u\|_{H^{1}}^{2}\|u\|_{H^{2}} \leq \frac{1}{16}\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+C\|u\|_{H^{1}}^{4}\|u\|_{H^{2}}^{2}, \tag{2.14}\\
I_{3} \leq & C\left\|\sqrt{\rho} u_{t}\right\|_{L^{4}}^{2}\|\nabla u\|_{L^{2}} \\
\leq & C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{\frac{2}{3}}\left\|\sqrt{\rho} u_{t}\right\|_{L^{8}}^{\frac{4}{3}}\|\nabla u\|_{L^{2}} \leq C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{\frac{2}{3}}\left\|u_{t}\right\|_{L^{8}}^{\frac{4}{3}}\|\nabla u\|_{L^{2}} \\
\leq & C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{\frac{2}{3}}\left\|\nabla u_{t}\right\|_{L^{2}}^{\frac{3}{3}}\|\nabla u\|_{L^{2}} \leq \frac{1}{16}\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+C\|\nabla u\|_{L^{2}}^{3}\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2}, \\
I_{4} \leq & 2\|b\|_{L^{\infty}}\left\|b_{t}\right\|_{L^{2}}\left\|\nabla u_{t}\right\|_{L^{2}} \leq C\|u \cdot \nabla b-b \cdot \nabla u\|_{L^{2}}\left\|\nabla u_{t}\right\|_{L^{2}} \\
\leq & C\left(\|u\|_{L^{\frac{2 p}{p-2}}}\|\nabla b\|_{L^{p}}+\|b\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\right)\left\|\nabla u_{t}\right\| \leq C\|\nabla u\|_{L^{2}}\left\|\nabla u_{t}\right\|_{L^{2}} \\
\leq & \frac{1}{16}\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+C\|\nabla u\|_{L^{2}}^{2} . \tag{2.15}
\end{align*}
$$

Inserting the above estimates into (2.12) and integrating it over $\left(t_{0}, t\right)$ and using (2.8), (2.10), and (2.11), we arrive at

$$
\int \rho\left|u_{t}\right|^{2} \mathrm{~d} x+\int_{t_{0}}^{t} \int\left|\nabla u_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} s \leq C(e+y(t))^{C_{0} \epsilon}
$$

whence

$$
\|u\|_{H^{2}} \leq C(e+y(t))^{C_{0} \epsilon}
$$

and thus

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(0, T ; H^{2}\right)} \leq C, \quad\left\|\sqrt{\rho} u_{t}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|u_{t}\right\|_{L^{2}\left(0, T ; H^{1}\right)} \leq C \tag{2.16}
\end{equation*}
$$

by taking $C_{0} \epsilon \leq \frac{1}{2}$. On the other hand, it follows from (2.9) that

$$
\begin{aligned}
& \|u\|_{W^{2, p}} \leq C\|f\|_{L^{p}} \leq C\left\|b \cdot \nabla b-\rho u_{t}-\rho u \cdot \nabla u\right\|_{L^{p}} \\
& \quad \leq C+C\left\|\rho u_{t}\right\|_{L^{p}}+C\|u\|_{L^{\infty}}\|\nabla u\|_{L^{p}} \leq C+C\left\|\nabla u_{t}\right\|_{L^{2}},
\end{aligned}
$$

and thus

$$
\begin{equation*}
\|u\|_{L^{2}\left(0, T ; W^{2, p}\right)} \leq C . \tag{2.17}
\end{equation*}
$$

Now it is easy to show that

$$
\begin{align*}
& \rho \in L^{\infty}\left(0, T ; W^{1, q}\right), \rho_{t} \in L^{\infty}\left(0, T ; L^{q}\right), \\
& b \in L^{\infty}\left(0, T ; W^{1, p}\right), b_{t} \in L^{\infty}\left(0, T ; L^{p}\right) . \tag{2.18}
\end{align*}
$$

This completes the proof.

3 Proof of Theorem 2

This section is devoted to the proof of Theorem 2. Since it is easy to prove the existence and uniqueness of local smooth solutions to the problem (1.1)-(1.5), we only need to prove a priori estimates (1.7). To this end, we shall use the bootstrap argument.

Let $\delta>0$ be a fixed number, say $\left\|b_{0}\right\|_{W^{1, p}} \leq \delta$. Denote by $H(t)$ the statement that, for $t \in[0, T]$,

$$
\begin{equation*}
\|b\|_{L^{\infty}\left(0, t ; W^{1, p}\right)} \leq \delta \tag{3.1}
\end{equation*}
$$

and $C(t)$ the statement that

$$
\begin{equation*}
\|b\|_{L^{\infty}\left(0, t ; W^{1, p}\right)} \leq \delta / 2 \tag{3.2}
\end{equation*}
$$

The conditions (b)-(d) in Lemma 1 are clearly true and it remains to verify (a) under the condition that $\left\|b_{0}\right\|_{W^{1, p}}$ is small. Once this is verified then the bootstrap argument would imply that $C(t)$, or (3.2) actually holds for any $t \in[0, T]$ and then we can prove (1.7) hold true.

Now we assume that (3.1) holds true for some $t \in[0, T]$. By Theorem 1, we have

$$
\begin{equation*}
u \in L^{2}\left(0, T ; W^{2, p}\right) \tag{3.3}
\end{equation*}
$$

Testing (1.3) by $|b|^{p-2} b$ and using (1.4), we infer that

$$
\frac{1}{p} \frac{\mathrm{~d}}{\mathrm{~d} t}\|b\|_{L^{p}}^{p} \leq C\|\nabla u\|_{L^{\infty}}\|b\|_{L^{p}}^{p}
$$

whence

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\|b\|_{L^{p}} \leq C\|\nabla u\|_{L^{\infty}}\|b\|_{L^{p}} \tag{3.4}
\end{equation*}
$$

Taking ∇ to (1.3), testing by $|\nabla b|^{p-2} \nabla b$ and using (1.4), we observe that

$$
\begin{aligned}
\frac{1}{p} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\nabla b\|_{L^{p}}^{p} & \leq C\|\nabla u\|_{L^{\infty}}\|\nabla b\|_{L^{p}}^{p}+C\|b\|_{L^{\infty}}\|\Delta u\|_{L^{p}}\|\nabla b\|_{L^{p}}^{p-1} \\
& \leq C\|\nabla u\|_{L^{\infty}}\|\nabla b\|_{L^{p}}^{p}+C\left(\|b\|_{L^{p}}+\|\nabla b\|_{L^{p}}\right)\|\Delta u\|_{L^{p}}\|\nabla b\|_{L^{p}}^{p-1}
\end{aligned}
$$

which implies

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\|\nabla b\|_{L^{p}} & \leq C\|\nabla u\|_{L^{\infty}}\|\nabla b\|_{L^{p}}+C\left(\|b\|_{L^{p}}+\|\nabla b\|_{L^{p}}\right)\|\Delta u\|_{L^{p}} \\
& \leq C\|u\|_{W^{2, p}}\|b\|_{W^{1, p}} \tag{3.5}
\end{align*}
$$

Summing up (3.4) and (3.5), we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|b\|_{W^{1, p}} \leq C\|u\|_{W^{2, p}}\|b\|_{W^{1, p}}
$$

which yields

$$
\begin{equation*}
\|b\|_{W^{1, p}} \leq\left\|b_{0}\right\|_{W^{1, p}} \exp \left(\int_{0}^{t}\|u\|_{W^{2, p}} \mathrm{~d} s\right) \leq C\left\|b_{0}\right\|_{W^{1, p}} \leq \frac{\delta}{2} \tag{3.6}
\end{equation*}
$$

This proves that (3.2) holds true for any $t \in[0, T]$. Thus, we arrive at

$$
\begin{equation*}
\|b\|_{L^{\infty}\left(0, T ; W^{1, p}\right)} \leq \frac{\delta}{2} . \tag{3.7}
\end{equation*}
$$

This completes the proof.

4 Proof of Theorem 3

We only need to show a priori estimates (1.7). First, we still have (2.1) and (2.4). Similarly to (2.5), we observe that

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|\nabla u|^{2} \mathrm{~d} x+\int \rho\left|u_{t}\right|^{2} \mathrm{~d} x-\frac{\mathrm{d}}{\mathrm{~d} t} \int b \otimes b: \nabla u \mathrm{~d} x \\
= & -\int \rho u \cdot \nabla u \cdot u_{t} \mathrm{~d} x-\int \partial_{t}(b \otimes b): \nabla u \mathrm{~d} x \\
\leq & \left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}\|\sqrt{\rho}\|_{L^{\infty}}\|u\|_{L^{6}}\|\nabla u\|_{L^{3}}+2\|b\|_{L^{\infty}}\left\|b_{t}\right\|_{L^{2}}\|\nabla u\|_{L^{2}} \\
\leq & C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}\|\nabla u\|_{L^{2}}^{\frac{1}{2}}\|u\|_{H^{2}}^{\frac{1}{2}}+C\|u \cdot \nabla b-b \cdot \nabla u\|_{L^{2}} \\
\leq & C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}\|u\|_{H^{2}}^{\frac{1}{2}}+C\left(\|u\|_{L^{\frac{2 p}{p-2}}}\|\nabla b\|_{L^{p}}+\|b\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\right) \\
\leq & C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}\|u\|_{H^{2}}^{\frac{1}{2}}+C . \tag{4.1}
\end{align*}
$$

Similarly to (2.10), it follows from (2.9) that

$$
\begin{equation*}
\|u\|_{H^{2}} \leq C+C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}} . \tag{4.2}
\end{equation*}
$$

Inserting (4.2) into (4.1) and integrating it over ($0, T$), we obtain

$$
\|u\|_{L^{2}\left(0, T ; H^{2}\right)}+\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}\left(0, T ; L^{2}\right)} \leq C .
$$

We still have (2.12). We bound I_{1}, I_{2}, and I_{4} by the same method as that in (2.13), (2.14) and (2.15). We bound I_{3} as follows.

$$
\begin{aligned}
I_{3} & \leq C\left\|\sqrt{\rho} u_{t}\right\|_{L^{3}}^{2}\|\nabla u\|_{L^{3}} \leq C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}\left\|\sqrt{\rho} u_{t}\right\|_{L^{6}}\|u\|_{H^{2}} \\
& \leq C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}\left\|\nabla u_{t}\right\|_{L^{2}}\|u\|_{H^{2}} \leq \frac{1}{16}\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+C\|u\|_{H^{2}}^{2}\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2}
\end{aligned}
$$

Inserting the above estimates into (2.12) and using the Gronwall inequality, we arrive at (2.16). We still have (2.17) and (2.18). This completes the proof.

5 Proof of Theorem 4

This section is devoted to the proof of Theorem 4, which is very similar to that in Section 3. Let $\delta>0$ be a fixed number, say

$$
2\left\|\nabla u_{0}\right\|_{L^{2}} \leq \delta, \quad 2\left\|b_{0}\right\|_{W^{1, p}} \leq \delta
$$

Denote by $H(t)$ the statement that, for $t \in[0, T]$,

$$
\begin{equation*}
\|\nabla u\|_{L^{\infty}\left(0, t ; L^{2}\right)} \leq \delta, \quad\|b\|_{L^{\infty}\left(0, t ; W^{1, p}\right)} \leq \delta \tag{5.1}
\end{equation*}
$$

and $C(t)$ the statement that

$$
\begin{equation*}
\|\nabla u\|_{L^{\infty}\left(0, t ; L^{2}\right)} \leq \delta / 2, \quad\|b\|_{L^{\infty}\left(0, t ; W^{1, p}\right)} \leq \delta / 2 \tag{5.2}
\end{equation*}
$$

The conditions (b)-(d) in Lemma 1 are clearly true and it remains to verify (a) under the condition that $\left\|\nabla u_{0}\right\|_{L^{2}}+\left\|b_{0}\right\|_{W^{1, p}}$ is small enough. Once this is verified then the bootstrap argument would imply that $C(t)$, or (5.2) actually holds for any $t \in[0, T]$ and then we can prove (1.7) hold true.

Now we assume that (5.1) holds true for some $t \in[0, T]$. We still have (3.3), (3.4), (3.5), (3.6) and (3.7). We still have (2.1) and (2.4). Similarly to (4.1), we have

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|\nabla u|^{2} \mathrm{~d} x+\int \rho\left|u_{t}\right|^{2} \mathrm{~d} x-\frac{\mathrm{d}}{\mathrm{dt}} \int b \otimes b: \nabla u \mathrm{~d} x \\
\leq & \left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}\|\sqrt{\rho}\|_{L^{\infty}}\|u\|_{L^{6}}\|\nabla u\|_{L^{3}}+2\|b\|_{L^{\infty}}\left\|b_{t}\right\|_{L^{2}}\|\nabla u\|_{L^{2}} \\
\leq & C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}} \delta^{\frac{3}{2}}\|u\|_{H^{2}}^{\frac{1}{2}}+C \delta^{2}\|u \cdot \nabla b-b \cdot \nabla u\|_{L^{2}} \\
\leq & C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}} \delta^{\frac{3}{2}}\|u\|_{H^{2}}^{\frac{1}{2}}+C \delta^{2}\left(\|u\|_{L^{\frac{2 p}{p-2}}}\|\nabla b\|_{L^{p}}+\|b\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\right) \\
\leq & C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}} \delta^{\frac{3}{2}}\|u\|_{H^{2}}^{\frac{1}{2}}+C \delta^{4} . \tag{5.3}
\end{align*}
$$

On the other hand, similarly to (4.2), we have

$$
\begin{aligned}
\|u\|_{H^{2}} & \leq C\|f\|_{L^{2}} \leq C\left\|b \cdot \nabla b-\rho u_{t}-\rho u \cdot \nabla u\right\|_{L^{2}} \\
& \leq C \delta^{2}+C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}+C\|u\|_{L^{6}}\|\nabla u\|_{L^{3}} \\
& \leq C \delta^{2}+C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}+C \delta^{\frac{3}{2}}\|u\|_{H^{2}}^{\frac{1}{2}},
\end{aligned}
$$

which gives

$$
\|u\|_{H^{2}} \leq C \delta^{2}+C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}} .
$$

Inserting the above estimates into (5.3) and integrating over ($0, t$), we conclude that

$$
\begin{aligned}
& \int|\nabla u|^{2} \mathrm{~d} x \leq \int\left|\nabla u_{0}\right|^{2} \mathrm{~d} x+2 \int b \otimes b: \nabla u \mathrm{~d} x-2 \int b_{0} \otimes b_{0}: \nabla u_{0} \mathrm{~d} x+C \delta^{4} T \\
& \quad \leq \int\left|\nabla u_{0}\right|^{2} \mathrm{~d} x+\frac{1}{2}\|\nabla u\|_{L^{2}}^{2}+C \delta^{4}-2 \int b_{0} \otimes b_{0}: \nabla u_{0} \mathrm{~d} x
\end{aligned}
$$

which gives

$$
\int|\nabla u|^{2} \mathrm{~d} x \leq 2 \int\left|\nabla u_{0}\right|^{2} \mathrm{~d} x-4 \int b_{0} \otimes b_{0}: \nabla u_{0} \mathrm{~d} x+C \delta^{4} \leq \frac{\delta^{2}}{4} \quad(\delta \leq 1)
$$

This completes the proof.

Acknowledgements

The authors are indebted to the referees for adding Remarks 2-5. This paper is partially supported by NSFC (No. 11171154). The second author extends his appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).

References

[1] J. Fan and F. Li. Global strong solutions to the 3D full compressible NavierStokes system with vacuum in a bounded domain. Appl. Math. Letters, 78:31-35, 2018. https://doi.org/10.1016/j.aml.2017.11.001.
[2] J. Fan, F. Li and G. Nakamura. Global strong solution to the 2D densitydependent liquid crystal flows with vacuum. Nonlinear Anal., 97:185-190, 2014. https://doi.org/10.1016/j.na.2013.11.024.
[3] J. Fan, F. Li and G. Nakamura. Regularity criteria for the incompressible magnetohydrodynamic equations with partial viscosity. Anal. Appl. (Singap.), 14(2):321-339, 2016. https://doi.org/10.1142/S0219530515500074.
[4] J. Fan, H. Malaikah, S. Monaquel, G. Nakamura and Y. Zhou. Global Cauchy problem of 2D generalized MHD equations. Monatsh. Math., 175(1):127-131, 2014. https://doi.org/10.1007/s00605-014-0652-0.
[5] J. Fan and Y. Zhou. Uniform local well-posedness for the density-dependent magnetohydrodynamic equations. Appl. Math. Letters, 24(11):1945-1949, 2011. https://doi.org/10.1016/j.aml.2011.05.027.
[6] X. Huang and Y. Wang. Global strong solution to the 2D nonhomogeneous incompressible MHD system. J. Differential Equations, 254(2):331-341, 2013. https://doi.org/10.1016/j.jde.2012.08.029.
[7] X. Jia and Y. Zhou. Regularity criteria for the 3D MHD equations involving partial components. Nonlinear Anal. Real World Appl., 13(1):410-418, 2012. https://doi.org/10.1016/j.nonrwa.2011.07.055.
[8] Z. Jiang, Y. Wang and Y. Zhou. On regularity criteria for the 2D generalized MHD system. J. Math. Fluid Mech., 18(2):331-341, 2016. https://doi.org/10.1007/s00021-015-0235-4.
[9] T. Ozawa. On critical cases of Sobolev's inequalities. J. Funct. Anal., 127(2):259-269, 1995. https://doi.org/10.1006/jfan.1995.1012.
[10] T. Tao. Nonlinear Dispersive Equations: Local and Global Analysis. American Mathematical Society, Provindence, RI, 2006. https://doi.org/10.1090/cbms/106.
[11] H. Wu. Strong solution to the incompressible magnetohydrodynamic equations with vacuum. Comput. Math. Appl., 61(9):2742-2753, 2011. https://doi.org/10.1016/j.camwa.2011.03.033.
[12] J. Wu, X. Xu, Q. Jiu, D. Niu and H. Yu. The 2D magnetohydrodynamic equations with magnetic diffusion. Nonlinearity, 78(11):3935-3955, 2015.

[^0]: Copyright © 2019 The Author(s). Published by VGTU Press
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

