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Abstract. In this paper we study the diffusion and convection filtration problem of
one substance through the pores of a porous material which may absorb and immo-
bilize some of the diffusing substances. As an example we consider a round cylinder
with filtration process in the axial direction. The cylinder is filled with a sorbent.
We derive the system of two partial differential equations (PDEs), one expressing the
rate of change of concentration of water in the pores of the sorbent and the other - the
rate of change of concentration in the sorbent or kinetical equation for absorption.
The approximation of corresponding initial boundary value problem of the system of
PDEs is based on the conservative averaging method (CAM). This procedure allows
us to reduce the 2-D axisymmetrical mass transfer problem described by a system
of PDEs to the initial value problem for a system of ordinary differential equations
(ODEs) of the first order. We consider also a 1–D model problem and investigate the
dependence of the concentration of water and sorbent on the time.

Keywords: absorption, averaging method, analytical and numerical solution, diffusion

problem, sorbents, special splines.

AMS Subject Classification: 76S05; 97N80; 97M50; 65N25; 65M70; 65M99.

�
Copyright c© 2018 The Author(s). Published by VGTU Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are credited.

ISSN: 1392-6292
https://doi.org/10.3846/mma.2018.033
mailto:ilmars.kangro@rta.lv
mailto:kalis@lanet.lv
http://creativecommons.org/licenses/by/4.0/


Modelling of the Solid-Liquid Mixtures Transport with Sorption Kinetics 555

1 Introduction

The study of hydrodynamic flow and heat transfer through a porous media
becomes much more interesting due to its wide and diverse applications [1],
[7]. The numerical algorithms for modelling of liquid polymer injection are
considered in the article [14], so that the liquid polymer is flowing through a
porous medium. Many mathematical models are developed for the analysis
of such processes, for example mathematical models of moisture movement in
wood, when the wood is considered as porous media [6].

For the necessary engineering accuracy to solve above mentioned problems
the conservative averaging method (CAM) with special integral hyperbolic and
exponential type splines is used. The method was proposed by A. Buikis, and
it was further developed in several papers [3], [13]. In CAM by applying the
special splines with two different functions of the hyperbolic or exponential
type the problems of mathematical physics in 3-D with piece-wise coefficients
with respect to one coordinate are reduced to problems for system of PDEs in
2-D and 1-D [4]. In this paper we study the linear heat and moisture transfer
processes in the porous multilayered media layer by using CAM with special in-
tegral hyperbolic type splines. For one layer case a similar process was analysed
in [7], [9].

Filtration is the separation process of removing solid particles, microor-
ganisms or droplets from a liquid or a gas by depositing them on a filter
medium [15]. In order to evaluate the solute concentration in the solid, sev-
eral isotherms can be taken into account. In the article [16] the Langmuir
expression was considered, correlating it with the saturation concentration and
a Langmuir adsorption parameter p (see Langmuir isotherm, Section 2 with
a = ũ

γ(1+pũ) ).

This paper deals only with filtration processes of solid-liquid mixtures (sus-
pensions, slurries, sludges) [10]. For adsorption kinetics we use the linear Henry
([8]) and the nonlinear Langmuir ([2], [11], [12]) sorptions isotherms. A contam-
inant transport model with Langmuir sorption under nonequilibrium conditions
which is described by two coupled equations – advective-dispersion equation
and nonequilibrium sorption equations is considered in [2].

2 The mathematical model

In this paper we study the filtration process with diffusion and convection
transport in the domain

Ω = {(r, z, φ) : 0 ≤ r ≤ R, 0 ≤ z ≤ L, 0 ≤ φ ≤ 2π}.

Ω consists of porous material, where incompressible liquid pollutants move in
z-direction through the pores of filter.

This problem has practical applications and also the theoretical interest
in mathematical physics since several small parameters appear in the model.
These parameters are connected with some geometrical dimensions in the prob-
lem and also with the relations between the coefficients of the given equations.
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We derive two equations, the first one describes the adsorbed phase of con-
centration a(r, z, t) for the pollutants which are absorbed per unit volume and
per unit time. The second equation defines the aqueous phase of pollutants con-
centration u(r, z, t) in sorbent pores. The following non-stationary convection
– diffusion PDEs in the cylindrical coordinates are given [5], [17]:

1

r

∂

∂r

(
Drr

∂u

∂r

)
+Dz

∂2u

∂z2
+ V0

∂u

∂z
= m

∂u

∂t
+
∂a

∂t
,

∂a

∂t
= β(u− ũ), r ∈ [0, R], z ∈ [0, L], t > 0,

where a = ũ/γ is the expression for the linear isotherm of Henry, Dr, Dz are the
transversal and tangential diffusion coefficients or the dispersion coefficients,
V0 = const is the pore water velocity in z-direction, m is the fraction of the
total volume of the material occupied by pores, ũ is concentration of pollutants,
which is in local equilibrium conditions ∂a

∂t = 0 with the amount of liquid
sorbent, t is the time, β is the kinetical coefficients or the sorption rate constant,
1/γ is the Henry coefficient for the sorbent characteristic. We assume that all
coefficients in the PDEs are constant and independent of concentration.

For nonlinear sorption we use a = ũ/(γ(1 + pũ)), referred as the Langmuir
isotherm, where p is positive parameter (for p = 0 we have Henry isotherm).

Initial conditions for t = 0 are defined as a(r, z, 0) = 0, u(r, z, 0) = 0 or
u(r, z, 0) = U0, where U0 is the initial concentration of liquid solutions. We use
following boundary conditions:

∂u(0, z, t)

∂r
=
∂a(0, z, t)

∂r
= 0, u(R, z, t) = a(R, z, t) = 0,

u(r, L, t) = u0(t) = U0(1− tanh(αt)),
∂u(r, 0, t)

∂z
= 0,

∂a(r, 0, t)

∂z
= 0,

where α = const > 1, U0 = const > 0. The concentration u on the inlet is
decreasing with respect to t.

For the normed parameters u1 = u/U0, a1 = aγ/U0, ũ1 = ũ/U0, t1 = tγβ
we have the following system:

mγβ
∂u1
∂t1

+ β
∂a1
∂t1

=
1
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∂

∂r

(
Drr

∂u1
∂r

)
+Dz

∂2u1
∂z2

+ V0
∂u1
∂z

,

∂a1
∂t1

= u1 − f(a1), r ∈ [0, R], z ∈ [0, L], t1 > 0,
(2.1)

where f(a1) = a1
1−p̃a1 , p̃ = p U0, u1(r, L, t1) = u0(t1) = 1− tanh(α1t1), α1 = α

γβ .
For p̃ = 0 we have the linear Henry isotherm.

3 The conservative averaging method in z-direction

We consider conservative averaging method (CAM) of the special integral
splines with hyperbolic trigonometrical functions for solving the initial bounda-
ry-value problem in z-direction [3]. This procedure allows us to reduce the 2-D



Modelling of the Solid-Liquid Mixtures Transport with Sorption Kinetics 557

problem in r, z-directions to a 1–D problem in r-direction. Using CAM in
z-direction with parameter az we have

u1(r, z, t1) = uv(r, t1) +mz(r, t1)0.5L sinh(az(z − L/2))/sinh(0.5azL)

+ ez(r, t1)
(cosh(az(z − L/2))−Az

8 sinh2(azL/4)

)
,

where uv(r, t1) = 1
L

∫ L
0
u1(r, z, t1)dz, Az = sinh(azL/2)/(azL/2). The param-

eter az can be selected for minimizing the maximal error. We can see if the
parameters az > 0 tend to zero then in the limit we get the integral parabolic
spline [13]:

A0 → 1 : u1(r, z, t1) = uv +mz(z − L/2) + ez
(
(z − L/2)/L2 − 1/12

)
.

The unknown functions mz = mz(r, t1), ez = ez(r, t1), can be determined from
the following conditions:

1. for z = 0 : mzd− ezk = 0, mz = ezp1, p1 = k/d,
u1(r, 0, t) = uv −mzL/2 + ezb,

2. for z = L : u0z = uv + mzL/2 + ezb, ez = (u0z − uv)/g0, where d =
0.5Laz coth(0.5azL), k = 0.25az coth(0.25azL), b = ((cosh(azL/2) −
Az)/(8 sinh2(azL/4)), g0 = b+ 0.5Lp1.

Now the 1–D initial-value problem (2.1) is given in the following form

mγβ
∂uv
∂t1

+ β
∂av
∂t1

=
1

r

∂

∂r

(
Drr

∂uv
∂r

)
+ a20(u0z − uv),

∂av
∂t1

= uv − f(av), r ∈ [0, R], t1 > 0,

∂uv(0, t1)

∂r
= 0,

∂av(0, t1)

∂r
= 0, uv(R, t1) = av(R, t1) = 0,

uv(r, 0) = av(r, 0) = 0,

(3.1)

where av(r, t1) = 1
L

∫ L
0
a1(r, z, t1)dz, a20 = (2Dz

k
L+V0p1)/g0, f(av) = av

1−p̃av ,
here we use the averaging of the nonlinear term with the remaining form.

4 CAM in r-direction

Using averaged method in r-direction with parameters ar we have

uv(r, t1) = uvv(t1) +mr(t1)fm(r) + er(t1)fe(r),

where fm(r) = (0.25R2(ar)
2 sinh(ar(r−0.5R))

sinh(0.5arR)(d1−1) − 1), fe(r) = ( cosh(ar(r−0.5R))−Ar

8 sinh2(arR/4)
),

uvv(t1) = 2
R2

∫ R
0
ruv(r, t1)dr, 2

R2

∫ R
0
rfm(r)dr = 2

R2

∫ R
0
rfe(r)dr = 0, Ar =

sinh(arR/2)
arR/2

, d1 = 0.5Rar coth(0.5arR). We use the following values of param-

eters ar = a0
√

1/Dr. If the parameters ar > 0 tend to zero, then in the limit
we get the integral parabolic spline:

uv(r, t1) = uvv +mr

( 6

R
(r − 0.5R)− 1

)
+ er

( (r − 0.5R)2

R2
− 1

12

)
.

From boundary conditions (3.1) the unknown coefficients-functions are ob-
tained:
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1. for r = 0, mrdr − erkr = 0 or mr = erpr,
2. for r = R, 0 = uvv +mrbm + erbe or er = −uvv/gr, where

dr=
0.5d1R(ar)

2

d1−1 , kr = 0.25ar coth(0.25arR), pr = kr/dr,

be=((cosh(arR/2)−Ar)/(8 sinh2(arR/4)), bm = 0.25R2(ar)
2

d1−1 − 1,
gr = be + prbm.

Now the 1–D initial-value problem (3.1) is defined as the ODEs system:
mγβ

∂uvv
∂t1

+ β
∂avv
∂t1

= −b20uvv(t1) + a20
(
u0z(t1)− uvv(t1)

)
,

∂avv(t1)

∂t1
= uvv(t1)− f(avv), t1 > 0,

uvv(0) = 0, avv(0) = 0,

(4.1)

where f(avv) = avv(t1)
1−p̃avv(t1)

, avv(t1) = 2
R2

∫ R
0
rav(r, t1)dr, b20 = 4Drkr/Rgr.

We rewrite the 1–D initial-value problem for system ODEs (4.1) in the
following normal form:

u̇vv(t1) = b11uvv(t1) + b12f(avv) + f1U0z(t1),

ȧvv(t1) = b21uvv(t1) + b22f(avv), t1 > 0,

uvv(0) = 0, avv(0) = 0,

where b11 = −β+b
2
0+a

2
0

mγβ , b12 = 1/mγ, b21 = 1, b22 = −1, f1 = − a20
mγβ . If p̃ = 0

then we have the following vector form of linear ODEs system:

Ẇ (t1) = AW (t1) + F, W (0) = 0,

where W (t1), F (t1) are the 2-order vector-column with elements (uvv(t1),
avv(t1)), (f1U0z(t1), 0). A is the 2-order matrix

A =

(
b11 b12
b21 b22

)
.

The averaged linear and nonlinear (p̃ 6= 0) solutions are obtained with the
Matlab solver “ode15s”.

5 Backward orientation for CAM

To estimate the parameters az, ar we use the backward version of CAM: first the
CAM is used in r-direction and then in z-direction. Then we get in r-direction
the solution

u1(r, z, t1) = uv(z, t1) +mr(z, t1)fm(r) + er(z, t1)fe(r),

where uv(z, t1) = 2
R2

∫ R
0
ru1(r, z, t1)dr, and ar is a fixed parameter. For bound-

ary conditions we get er = −uv/gr, mr = erpr and the problem (2.1) is reduced
to 

mγβ
∂uv
∂t1

+ β
∂av
∂t1

= Dz
∂2uv
∂z2

+ V0
∂uv
∂z
− b20uv,

∂av
∂t1

= uv − f(av), z ∈ [0, L], t1 > 0,
(5.1)
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∂uv(0, t1)

∂z
= 0,

∂av(0, t1)

∂z
= 0, uv(L, t1) = av(L, t1) = u0z,

uv(z, 0) = av(z, 0) = 0,

where av(z, t1) = 2
R2

∫ R
0
ra1(r, z, t1)dr, b20 = 4Drkr

Rgr
, f(av) = av

1−p̃av .
Next we use CAM in z-direction

uv(z, t1) = uvv(t1) +mz(t1)
0.5L sinh(az(z − L/2))

sinh(0.5azL)

+ ez(t1)
(cosh(az(z − L/2))−Az

8 sinh2(azL/4)

)
,

where uvv(t1) = 1
L

∫ L
0
uv(z, t1)dz, az = b0

√
1/Dz. We get from boundary con-

ditions that ez = (u0z − uvv)/g0, mz = ezp1 and then problem (5.1) is given

in the form of (4.1), where avv(t1) = 1
L

∫ L
0
av(z, t1)dz, a20 = (2Dz

k
L +V0p1)/g0.

Therefore in every CAM orientation we have obtained two algebraic equations
to determine the spline parameters ar = f1(az) = a0

√
1/Dr, az = f2(ar) =

b0
√

1/Dz.
The optimal parameters can be obtained by solution of these equations with

the method of iteration. For V0 6= 0, for CAM of equations (5.1) we also can
use the exponential type spline [4].

6 CAM for model equations

For approbation of CAM in r-direction and estimate of the parameter ar we
consider a model – stationary 1-D boundary-value problem:{

D 1
r

(
ru′(r)

)′ − a20u(r) = F0, r ∈ [0, R],

u′(0) = 0, u(R) = u0,

where u0, F0, a0 > 0, D > 0 are given constants. The analytical solution is
defined as u(r) = C1I0(a1r) − f1, C1 = (u0 + f1)/I0(a1R), where I ′0(0) =
I1(0) = 0, I0, I1 are the modified Bessel functions, f1 = F0/a

2
0, a1 = a0/

√
D.

Using averaging method in r-direction with parameter ar, we get u(r) = uv +
mfm(r) + efe(r), where m = (u0 − uv)pr/gr, e = u0−uv

gr
, uv = 4Du0kr−F0grR

4Dkr+a20grR
.

For D1 = 1, F0 = −10, a0 = 2, ar = 2, u0 = 1, R = 5 we have the following
maximal errors: a) 1.278 for the parabolic spline, ar = 10−4, b) 0.0021 for the
hyperbolic spline, see Figure 1.

7 1–D non-stationary model problem for a and u

The normed boundary-initial problem (2.1) not depending on r is given in the
following form: mγβ

∂u

∂t
+ β

∂a

∂t
= Dz

∂2u

∂z2
+ V0

∂u

∂z
,

∂a
∂t = u− f(a), z ∈ [0, 1], t > 0,

(7.1)
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Figure 1. Solution of the model equations

where u = u(z, t), a = a(z, t), f(a) = a/(1− ap), u(1, t) = 1 − tanh(0.2t),

u(z, 0) = 0 or u(z, 0) = 1, ∂u(0,t)
∂z = ∂a(0,t)

∂z = ∂a(L,t)
∂z = 0. Using MATLAB

program routine “pdepe” we can obtain the concentrations u(z, t), a(z, t).

8 Some numerical results

The results of calculations are obtained by MATLAB. We use the discrete grid
values tn = n

tf
Nt

, n = 0, . . . , Nt, zi = i LNz
, i = 0, . . . Nz, rj = j RNr

, j = 0, . . . Nr,
Nz = 10, Nt = 50, Nr = 30, tf = 5; 50, R = 0.15[m], L = 1[m], and parameters

U0 = 25g/l, β = 1; 3, γ = 1; 2, m = 0.4, Dr = 10−4[ m
2

min ], Dz = 5.10−4[ m
2

min ],
V0 = 0.1[ m

min ], α1 = 0.2, p̃ = 0; 0.1; 1; 5; 10, t1 ∈ [0, tf ].

8.1 2–D problem

Computations are done for u1(r, z, 0) = 0, β = 3, γ = 1, az = 10, tf = 50,

p̃ = 0, the final time is
tf
βγ = 50/3[min]. The results of calculations are shown

in Figures 2–7.
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With different CAM solvers the following results are obtained: direct CAM
orientation ar = 34.155, backward CAM orientation az = 11.53, direct CAM
orientation ar = 34.032, backward CAM orientation az = 11.5175, direct CAM
orientation ar = 34.0312, backward CAM orientation az = 11.5176, direct
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CAM orientation ar = 34.0312. In all cases we have a quickly converging
iteration process. The results of calculations are presented in Figures 8–11.
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The maximal values of u(r, z, tf ) = 0.0198, uvv(t1) = 0.0706, avv(t1) =
0.0698 and uvv(tf ) = 0.013 are equal for both CAM orientation.

The maximal dimensional value of concentration at the final time 0.50[ gl ]
agrees well with the experiment value 0.54[ gl ]. Experimental data have been ob-
tained studying the filtration process through hemp shives using the adsorption
column “Adsorption CE 583” at laboratory of Faculty of Engineering, RTA.

Matrix A has the following eigenvalues: λ1 = −3.61, λ2 = −0.042. We can
see, that at the outlet of the domain 0.5L ≤ z ≤ L the concentration u is small
and:

1. the averaging concentration of uv for r = 0 is decreasing in the time with
maximal value at t1 = 5 (Figure 2),

2. the concentration u for t1 = 50 is maximal for r = 0 and it increases in
z-direction (Figures 3–6),

3. the averaging concentrations of uvv and avv are equal for both CAM
orientation and depend on time, avv > uvv only for t1 > 10,

4. the averaging concentration for CAM in r-direction of uv(z, tf ) is maximal
at z = 0 and decreases in z-direction (Figure 11).
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Figure 9. Averaging concentration
uv(r, z, tf ) depending on r for tf = 50
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Figure 11. Averaging concentration
uv(z, tf ) depending on z for tf = 50

The maximal values of uv(r, tf ), uv(0, t), u(r, z, tf ), uvv(t), avv(t), uvv(tf )
for different p̃ are presented in Table 1.

Table 1. The maximal values of uv(r, tf ), uv(0, t), u(r, z, tf ), uvv(t), avv(t) and uvv(tf )
depending on p̃

p̃ uv(r, tf ) uv(0, t) u(r, z, tf ) uvv(t) avv(t) uvv(tf )

0 .0180 .1025 .0198 .0706 .0698 .013
0.1 .0179 .1029 .0199 .0714 .0700 .013
1.0 .0172 .1067 .0191 .0740 .0683 .012
5.0 .0144 .1249 .0160 .0865 .0603 .010
10 .0118 .1474 .0131 .1022 .0505 .008
1.0∗ .0214 .0863 .0237 .0598 .0561 .015
1.0∗ .0012 .2400 .0013 .1604 .1405 .0008

We can see, that with increasing p̃ the filtration process goes faster (see
uv(r, tf ), uvv(t),avv(t),uvv(tf )), but the maximum value of concentration is
increasing (see uv(0, t), uvv(t)). For p̃ = 5 in Figure 12 we can see that the
averaging concentration uvv > avv for all t1 ∈ [0, tf ].

In the Table 1 by p̃ = 1.0∗ are the maximal values for β = 3, γ = 2
(λ1 = −2.29, λ2 = −0.033). We can see that the filtration process goes more
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slowly. For p̃ = 1.0∗ and β = 1, γ = 1 (λ1 = −3.84, λ2 = −0.119) the filtration
process goes more quickly.

Table 2. The values of uv(0, tf ), uvv(tf ), avv(tf ) and Ma− maximal value of avv(t)
depending on p̃

p̃ uv(0, tf ) uvv(tf ) avv(tf ) Ma

0 .0496 .0453 .0473 .2975
0.1 .0484 .0445 .0462 .2944
1.0 .0410 .0375 .0376 .2647
5.0 .0230 .0210 .0197 .1507
10 .0155 .0141 .0128 .0882
1.0∗ .0490 .0448 .0314 .0896
1.0∗ 4.1e-4 3.7e-4 4.2e− 4 .0875

For the initial condition by t = 0, u1 = 1 we have the following results (see
Table 2):

1. the filtration process for initial full container of pollutants concentration
goes slower compared with continues in time flow at the inlet (Table 1),

2. uvv(tf ) < avv(tf ) for p̃ ≤ 1.0,
3. similarly to Table 1 the nonlinear sorption process is faster,
4. for β = 1, p̃ = 1.0∗ we have the fast process with the maximal value of
a = 0.875.

8.2 1–D problem

For u(z, 0) = u0 = 0 and u(z, 0) = u0 = 1 the results of numerical calculations
of the problem (7.1) are represented in Table 3. We can see, that the filtration
process for u0 = 1 (full container at t=0) is slower compared to u0 = 0. In
linear case (p̃ = 0) and for p̃ = 0.1; 1 we have a > u, but for other p̃ we have
a < u.

In the Figures 13–16 we see detalized results of calculation for u0 = 0.
In the Figures 13, 14 the linear sorption process is represented, where

u(z, t), a(z, t) depend on z for fixed time moments: at the initial time t = 0 the
pollutants concentration at inlet z = 1 is u(1, 0) = 1, but u(z, 0) = 0 for z < 1.

Math. Model. Anal., 23(4):554–567, 2018.
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Table 3. The values of u(0, tf ), a(0, tf ) and Ma-maximal value of a(z, t) depending on p

p, u0 = 0 u(0, tf ) a(0, tf ) Ma p, u0 = 1 u(0, tf ) a(0, tf ) Ma

0 .1280 .1363 .6102 0 .1619 .1774 .6099
0.1 .1214 .1286 .5930 0.1 .1466 .1590 .5914
1.0 .0654 .0676 .4287 1.0 .0656 .0681 .4223
5.0 .0209 .0206 .1636 5.0 .0209 .0204 .1614
10 .0125 .0119 .0911 10 .0125 .0119 .0896
1.0∗ .1955 .1663 .4284 1.0∗ .2194 .1885 .4174
1.0∗ 1e− 6 1e− 6 .4308 1.0∗ 1e− 6 1e− 6 .4286

0 0.5 1
0

0.2

0.4

0.6

0.8

1

u on z,u
max

=0.1280

z

u
/U

0

 

 

t=1.0

t=3.0

t=6.0

t=16.0

t=50.0

Figure 13. Concentration u(z, t)
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t = 1; 3; 6; 16; 50, u0 = 0, p̃ = 0
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Figure 14. Concentration a(z, t)
depending on z for

t = 1; 3; 6; 16; 50, u0 = 0, p̃ = 0

For t > 0 the concentration of pollutants is defined according the law at inlet
of cylinder u(1, t) = 1 − tanh(0.2t), we consider the flow from the inlet z = 1
inside cylinder z < 1 and filters with sorbent, where the maximal concentration
is amax = 0.6102 at t = 3. The pollutants concentration is decreasing for z > 0
and at the final time moment t = 50 the concentration in the outlet z = 0 is
u = 0.128.

In the Figures 15–16 the corresponding nonlinear sorption process is repre-
sented with p̃ = 10, where u(z, t), a(z, t) depends on t for fixed z = 0 (outlet),
z = 0.5, z = 1 (inlet): at the inlet pollutants concentration decreases in time
as u(1, t) = 1 − tanh(0.2t), but inside of the cylinder z = 0.5 and at outlet
corresponding to t = 8, t = 15 the strong maximal value (peak) of u is formed,
it is decreasing in time and at the final time moment t = 50 in the outlet z = 0
is u = 0.0125. This is 10 times smaller value comparing with p̃ = 0, and the
filtration process is faster. A similar behaviour is obtained for sorbent with
maximal value at inlet amax = 0.0911 (amax = 0.6102 in the linear case).

In the Figures 17–18 we can see results of calculation for u(z, t) depending
on t for fixed z = 0 (outlet), z = 0.5, z = 1 (inlet) and u0 = 1, p̃ = 1; 10.
Comparing Figure 17 (p̃ = 1, u0 = 1) with Figure 15 (p̃ = 10, u0 = 0) we see
that the maxima for p̃ = 1 are smaller (no peaks) and u(0, 50) = 0.0656 >
0.0125 (for p̃ = 10). Comparing the Figure 17 with Figure 18 (p̃ = 10, u0 = 1)
we can see that the maxima are greater and in the final time u(1, 50) = 0.0125
are equal to values in Figure 15.
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u0 = 0, p̃ = 10, z = 0; 0.5; 1
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depending on t for

u0 = 0, p̃ = 10, z = 0; 0.5; 1
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Figure 17. Concentration u(z, t)
depending on t for

u0 = 1, p̃ = 1, z = 0; 0.5; 1
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Figure 18. Concentration u(z, t)
depending on t for

u0 = 1, p̃ = 10, z = 0; 0.5; 1

9 Conclusions

The approximation of corresponding initial boundary value problem of the
system of PDEs is based on the conservative averaging method (CAM), where
the new hyperbolic type splines are used. For these splines the best parameter
for minimal error is calculated using the direct and backward orientation for
CAM. Numerical experiments confirmed the correctness of the best parameter
calculation using a convergent iteration process. The problem of the system of
3D PDEs with constant coefficients is approximated by the initial value problem
of a system of the first order ODEs. The 1-D differential and discrete problems
are solved analytically. The maximal calculated dimensional value of liquid
concentration at the final time was compared with experimentally obtained
concentration. It was observed that both the results are in good agreement.
Such a mathematical model allows us to obtain analytical solution with a simple
engineering algorithm for mass transfer equations for modelling the filtration
process. The mathematical model can be used under consideration filtration
process modelling to determine the impurity concentration in the solution of
filtration depending on the time.
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