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Abstract. Reduced-order models (ROM) are developed using the proper orthogo-
nal decomposition (POD) for one dimensional linear and nonlinear Schrödinger equa-
tions. The main aim of this paper is to study the accuracy and robustness of the ROM
approximations. The sensitivity of generated optimal basis functions on various pa-
rameters of the algorithms is discussed. Errors between POD approximate solutions
and exact problem solutions are calculated. Results of numerical experiments are
presented.
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1 Introduction

Physical processes described by partial differential equations (PDE’s) are usu-
ally simulated by discretizing the spatial and the temporal domain of the vari-
ables. In this way, numerical approximations of the dynamic behavior of these
processes are obtained. As a rule, the finer the discretization, the more ac-
curate the numerical solution of the given PDE are obtained. However, a fine
discretization leads to a very large number of equations which need to be solved
simultaneously at every time step. Hence, the model complexity increases with
increasing requirements on model accuracy. In many problems, specifically
when real-time solutions or full stability bifurcation diagrams are required, the
need to accelerate the calculations is vital. We note a big progress achieved
recently in the acceleration of solution procedures for nonlinear Schrödinger
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problems, for example, simplification of the model, high-order accuracy of ap-
proximations, parallelization, multigrid iterative solvers, domain decomposition
techniques are used to solve these problems faster.

There exist many ways how to derive a simple model from a complex one.
Derivation of simple models in general means derivation of models which com-
prise less number of equations or variables and which are numerically fast for
computations or simulations. Such simple models can be derived based on
physical insights or based on data collected from simulations or experiments.
Hence there are two main approaches for the derivation of simpler models [4]:

• Physical-insight based approach. Using physical insight, an initially com-
plex model can be transformed into a simpler one by considering its phys-
ical phenomena.

• Black-box modeling approach. With the advent of system identification
techniques, such as subspace identification and neural networks, empirical
models can be derived from the input output data.

Model order reduction (MOR) techniques try to reduce the computational
complexity and computational time of large scale dynamical systems. The idea
is to approximate the given large problem by a problem of much lower dimen-
sion that can produce nearly the same response characteristics. Reduced-order
modeling is a powerful and ubiquitous tool and it have been given significant
attention in recent years. Research in the area of reduced-order modeling has
followed two approaches:

• non projection based methods,

• projection based methods.

The vast majority of research is concerned with projection based methods,
such as the balanced truncation and POD. There are many papers, where
such methods are analyzed and applied for problems in heat transfer [9], fluid
mechanics, lithium-ion battery [6], reactor system [13]. The POD method is
described in details e.g in [5, 17].

A new technique for efficiently solving parametric nonlinear reduced order
models in the Proper Generalized Decomposition (PGD) framework is pre-
sented in [1]. We also note a new approach to construct efficient reduced-order
models for nonlinear PDEs by using the proper orthogonal decomposition com-
bined with the discrete empirical interpolation method, see [7, 14]. The algo-
rithm constructs specially selected interpolation indices that specify an inter-
polation based projection that gives a nearly optimal subspace approximation
to the nonlinear term without the expense of orthogonal projection.

The growing interest in the laser technology in many areas of physics, biolo-
gy and engineering, requires to solve complicated models of quantum mechan-
ics. In the quantum mechanics the basic equation of motion is the Schrödinger
equation. The time-dependent Schrödinger equation is a partial differential
equation with a form similar to the parabolic heat equation. But this equation
describes the motion of the particles by using the wave properties, i.e. the
motion of the particle is presented using the wave function.

Math. Model. Anal., 18(5):694–707, 2013.
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There exist many efficient numerical methods for solving the Schrödinger
equation. They are based on finite-difference schemes (see, e.g., [8, 15, 18]),
finite-element and Galerkin approaches (see, [2, 3]), or spectral and pseudo-
spectral methods ([19], see also references given therein).

As it is mentioned above, it is important to solve such problems with the
low computational costs. In the article [16] (see also references given therein)
the POD method is applied for some nonlinear Schrödinger problems, includ-
ing the simulation of soliton dynamics and the analysis of the sequence of
bifurcations that are responsible for the multipulsing instability in the master
mode-locking and the waveguide array mode-locking models. The obtained re-
sults are proving that the POD method is a very efficient tool for solving such
kind of problems. We note that the accuracy of constructed ROMs is directly
connected to the fact that the solution space of these problems is embedded
into a very low dimensional manifold. Thus it is important to solve examples
of linear and nonlinear Schrödinger problems with more general solutions.

In this paper we study the accuracy and robustness of the POD method
for solving the linear and nonlinear Schrödinger equations. Our main aim is
to investigated the sensitivity of the method with respect to the total number
and proper time moments for the selection of data samples. The choice of
the snapshot ensemble is one of the most important factors in constructing an
accurate POD basis. This choice can greatly affect the approximation of the
original solution space.

We also compare two strategies for definition of the orthonormal basis, when
data samples are generated in two different regions of the solution. The first one
consists in combining both subsets into one big set and the orthonormal POD
modes are generated from the obtained SVD. The second approach consists
in generation of POD modes for each regime of the solution separately, and
the combined set of basis functions is orthogonalized by the Gram–Schmidt
algorithm.

The paper is outlined as follows. Section 2 describes the basic procedure
for obtaining the POD modes from a given set of data and for derivation of
the ROM model by using the Galerkin projection method. Section 3 describes
the construction of reduced order models for linear and nonlinear Schrödinger
equations. In the Section 4 investigations of the sensitive of the POD method
algorithm to the choice of a snapshot ensemble are presented.

2 Reduced Order Models with POD Method

The basic step of most numerical methods is to define a set of basis functions,
that are used to construct a numerical approximation of the solution. This
set of functions should be a complete set. In addition, for the stability of the
algorithm these functions should be linearly independent, an optimal choice is
orthonormal functions. Various types of basis functions are selected by different
numerical methods: splines, finite elements, sets of trigonometric functions or
polynomials are some popular examples.

In the POD method basis functions are generated by using an apriori-
information about the solution of PDE, thus the obtained set of functions
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is adapted to the specific behaviour of the solution. It is known that this set
of basis functions is optimal in some sense. Given a collection of functions
U = {ui(x)} on a domain Ω, the goal of the POD process is to produce an op-
timal orthogonal set of basis functions Φ = {φi(x)} (proper orthogonal modes –
POMs) for a space spanned by the given collection.

The following steps describe the POD process, see e.g. [6, 11]. We restrict
to the discrete case of functions. First, let us specify the input collection of
discrete functions U ∈ CN×K :

U =
[
U1, U2, . . . , UK

]
, Uk =

(
uk1 , u

k
2 , . . . , u

k
N

)T
, k = 1, 2, . . . ,K, (2.1)

where K is the number of samples, N is the number of points per sample.
Second, the singular value decomposition (SVD) of the matrix U is done

U = V ΣΨ∗,

where V ∈ CN×N is an N×N complex unitary matrix, Ψ∗ ∈ CK×K is a K×K
complex unitary matrix, which is the conjugate transpose of Ψ . The matrix
Σ ∈ CN×K is an N × K rectangular diagonal matrix with nonnegative real
elements (the singular values of U)

σ1 ≥ σ2 ≥ · · · ≥ σJ̃ ≥ 0, J̃ = min(K,N).

The singular values σi and eigenvalues λi of UU∗ are related by the equation:
σ2
i /K = λi. The columns of matrices V and Ψ are called the left-singular

and right-singular vectors of matrix U . The left-singular vectors of U are
eigenvectors of matrix UU∗.

We select the columns of matrix V as a system of orthonormal basis vectors
{Φj}, j = 1, . . . , J̃ . They are called the proper orthogonal modes (POMs).

This system is complete in the sense, that any column of matrix U can be
represented as a linear combination of these basis vectors

Uk =

J̃∑
j=1

ψkjσjΦ
j , k = 1, . . . ,K.

For most applications the singular values σj decay very quickly, therefore it
is sufficient to consider a small sized reduced system of basis functions. Thus the
ROM is obtained by considering a subspace of functions generated by M � J̃
modes, retained in the projection operator

PMU
k =

M∑
j=1

ckjΦ
j , k = 1, . . . ,K. (2.2)

As it follows from the construction of POMs, the POD provides the optimal
basis because PMU is the maximal projection of the initial matrix U onto a
linear subspace of the size M [10].

In order to determine the size of the truncated system of basis vectors, let
us define the relative energy of the jth mode as

Math. Model. Anal., 18(5):694–707, 2013.
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Ej = σj/

J̃∑
`=1

σ`.

In all computations of this paper, the truncated basis is selected as a minimal
number of modes with energies that sum to

∑M
j=1Ej ≥ 0.9999 of the total

energy.
Next we present a general template of the POD method for solving some

nonstationary PDE.

• Compute the basis functions as the first POMs Φk, k = 1, . . . ,M .

• Construct the approximation of the exact solution as a linear decompo-
sition

Ũk(xn) =

M∑
j=1

cj(t
k)Φj(xn), k = 1, . . . ,K, n = 1, . . . , N, (2.3)

where xn is a point of the discrete space grid, and tk is a point of the
discrete time grid.

• Substitute the approximation (2.3) of the state variables into the discrete
model (some finite difference, finite element or finite volume scheme), and
project the resulting system onto the low order subspace of M modes to
obtain the reduced order model (ROM).

• Solve the obtained ROM for the reduced variables. Reconstruct the orig-
inal discrete field variables.

3 POD Method for Schrödinger Problems

In this section we construct reduced order models for linear and nonlinear one-
dimensional Schrödinger problems.

3.1 Linear Schrödinger equation

We consider the linear Schrödinger equation:
i
∂u

∂t
+Df

∂2u

∂x2
= 0, xL 6 x 6 xR, t > 0, i =

√
−1,

u(xL, t) = 0, u(xR, t) = 0, 0 < t 6 T,

u(x, 0) = u0(x), xL 6 x 6 xR,

(3.1)

where u = u(x, t) is a complex-valued function of two real variables x, t, Df is
a real constant. We define a uniform grid: ωh = ωhx

× ωht
:

ωhx =
{
xj : xj = jhx, j = 0, 1, . . . , N, x0 = xL, xN = xR

}
,

ωht
=
{
tk: tk = kht, k = 0, 1, . . . , K̃, K̃ht = T

}
.
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Let ukj be a discrete function, which approximates the exact solution u(xj , t
k)

of the given differential problem.
We define the following discrete operators:(
ukj
)
x

=
ukj+1 − ukj

hx
,

(
ukj
)
x̄

=
ukj − ukj−1

hx
,

(
ukj
)
t

=
uk+1
j − ukj
ht

. (3.2)

By using the finite-difference method we approximate (3.1) by the classical
Crank–Nicolson scheme [15,18]:

iut +Df

(
uk+1 + uk

2

)
x̄x

= 0, (3.3)

uk0 = 0, ukN = 0, k = 1, . . . , K̃,

u0
j = u0(xj), j = 0, . . . , N.

It is well-known, that this scheme is unconditionally stable and the error esti-
mate of order O(h2

t + h2
x) is valid [8, 15].

We write equation (3.3) in the matrix form

i(Uk+1 − Uk) +AUk+1 +AUk = 0, (3.4)

where the vector Uk = (uk1 , ..., u
k
N−1)T , and A is the following (N−1)×(N−1)

matrix

A =



htDf

h2
x

−htDf

2h2
x

0 0 · · · 0

−htDf

2h2
x

htDf

h2
x

−htDf

2h2
x

0 · · · 0

· · · · · · · · · · · · · · · · · ·

0 · · · 0 0
−htDf

2h2
x

htDf

h2
x


. (3.5)

The dynamics of the discrete solution Uk is simulated by using the M mode
expansion

Ũk =

M∑
j=1

ckjΦ
j , (3.6)

where Φj are the POD modes obtained by using the solution of discrete prob-
lem (3.3) and coefficients ckj are the reduced variables. Substituting this linear
combination into equation (3.4) yields the following equation

M∑
j=1

[
i
(
cj
k+1 − cjk

)
Φj +

(
ck+1
j + ckj

)
AΦj

]
= 0.

The inner product is taken with respect to Φ`, which gives the reduced order
model

i
(
ck+1
` − ck`

)
+

M∑
j=1

(
ck+1
j + ckj

)(
AΦj , Φ`

)
= 0, ` = 1, . . . ,M, (3.7)

c0` =
(
U0, Φ`

)
.

Math. Model. Anal., 18(5):694–707, 2013.
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Coefficients (AΦj , Φ`) are precomputed only once, thus the complexity of the
obtained reduced order model depends only on M , but not on total number of
grid points N . At each time level the obtained system of linear equations is
solved by using the standard Gauss method, thus the complexity of the POD
algorithm is O(KM3).

The error between ROM solution Ũk and the exact solution u(x, tk) of the
differential problem can be estimated as [11]∣∣Ũkj − u(xj , tk)∣∣ = O

(
max

{
σM+1e

K̃/K , h2
t , h

2
x

})
, (3.8)

σM+1 is the first rejected singular value, K̃ is the number of time steps, K is
the number of snapshots (the number of solutions which are used to extract
POMs).

3.2 Nonlinear Schrödinger equation

In this section we consider the cubic nonlinear Schrödinger (NLS) equation:
i
∂u

∂t
+Df

∂2u

∂x2
+ q|u|2u = 0, xL 6 x 6 xR, t > 0, i =

√
−1,

u(xL, t) = 0, u(xR, t) = 0, 0 < t 6 T,

u(x, 0) = u0(x), xL 6 x 6 xR,

(3.9)

where q is a non-zero real parameter. Such models of the NLS equation (3.9)
and various generalizations occur in various areas of physics such as nonlinear
optics, water waves, plasma physics, quantum mechanics, superconductivity
and Bose–Einstein condensate theory. In optics, the NLS equation models
many nonlinearity effects in a fiber, including but not limited to self-phase
modulation, four-wave mixing, second harmonic generation, stimulated Raman
scattering, etc. For water waves, the NLS equation describes the evolution of
the envelope of modulated nonlinear wave groups.

We approximate NLS equation (3.9) by the following Crank-Nicolson sche-
me:

iut +Df

(
uk+1 + uk

2

)
x̄x

+ q
(|uk+1|2 + |uk|2)

2

(uk+1 + uk)

2
= 0. (3.10)

The stability and convergence rate O(h2
t + h2

x) of the discrete algorithm is
proved in many papers, see [15,18].

The discrete problem (3.10) can be written in the operator form:

i
(
Uk+1−Uk

)
+AUk+1 +AUk+

qht
4

(∣∣Uk+1
∣∣2 +

∣∣Uk∣∣2)(Uk+1 +Uk
)

= 0, (3.11)

where Uk = (uk1 , . . . , u
k
N−1)T and matrix A is defined in (3.5). Substituting

the linear combination (3.6) of POD modes into equation (3.11) and computing
the inner product with respect to Φ`, we obtain the nonlinear reduced order
model
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i
(
Ũk+1 − Ũk

)
+AŨk+1 +AŨk +

qht
4

(∣∣Ũk+1
∣∣2 +

∣∣Ũk∣∣2)Ũk+1

+
qht
4

(∣∣Ũk+1
∣∣2 +

∣∣Ũk∣∣2)Ũk, Φ`) = 0, ` = 1, . . . ,M.

The derived nonlinear problem is solved by applying the following simple iter-
ative linearization technique, see also [20]:

i
( s
c` − ck`

)
+

M∑
j=1

( s
cj + ckj

)(
AΦj , Φ`

)
(3.12)

+
qht
4

((∣∣s−1

U
∣∣2 +

∣∣Ũk∣∣2)(s−1

U + Ũk
)
, Φ`
)

= 0, ` = 1, . . . ,M.

We begin from an initial condition
0

U = Ũk and conduct iterations until con-
vergence, when the following criterion is satisfied:

max
j

∣∣ sUj − s−1

Uj
∣∣ ≤ 10−8 max

j

∣∣ sUj∣∣.
The direct implementation of the reduced order model (3.12) computation-

ally is not efficient, see [7]. In order to compute the nonlinear term, values of
linear combination (3.6) must be computed at any iteration s. It requires NM
flops, therefore the algorithm has a computational complexity that depends
on N , the dimension of the original full-order system. As was noted above, a
new approach is proposed to construct efficient reduced-order models for non-
linear PDEs by using the proper orthogonal decomposition combined with the
discrete empirical interpolation method, see [7, 14].

For cubic nonlinearity it is possible to precompute coefficients(
ΦjΦ∗kΦn, Φ`

)
, 1 ≤ j, k, n, ` ≤M.

Then the computational complexity of the reduced order model does not de-
pend on N . Such an implementation of the POD algorithm is efficient if M is
small.

4 Numerical Experiments

In this section we present results of numerical experiments. Our main aim is
to investigate the sensitivity of the POD algorithm to the choice of a snapshot
ensemble. The goal is to present some simple rules and heuristics helping the
user in constructing an accurate POD basis.

In our experiments we will use a special algorithm to select the snap-
shot ensemble. Let assume that we have a set of data examples (snapshots)
D = {V 1, . . . , V P }. Then Algorithm 1 defines a snapshot ensemble S =

{U1, . . . , UK}, K ≤ P , which is used to construct a POD basis. Here S̃ denotes
a set of all elements

S̃ =

{
U : U =

K∑
j=1

cjU
j

}
,

Math. Model. Anal., 18(5):694–707, 2013.
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where cj are any real numbers. The main idea of this algorithm is at each step
to add a new snapshot which is most distant from the linear subspace generated
by all selected snapshots. The function ρ(V, S̃) measures this distance.

Algorithm 1 Selection of the snapshot ensemble

1: select U1 = V j ;
2: initialize k = 1, S = {U1}, D = D \ {U1};
3: while ( k < K ) do
4: k = k + 1;
5: find Uk = argmaxV ∈D ρ(V, S̃);
6: update S = S ∪ {Uk}, D = D \ {Uk};
7: end while

Next we consider a case when a solution of the given PDE defines a traveling
wave (or soliton) which moves with a constant velocity. Then we can use the
following distance function

ρ(V k, S̃) = min
V j∈S

|k − j|. (4.1)

This algorithm generates the set of snapshots in blocks. First, the data is taken
on a coarse time grid {t0 = 0, t1 = TF/2, t2 = TF}. At the second step the
additional snapshots are taken on the time grid ht = TF/4 and this process is
continued iteratively.

The Algorithm 1 is stopped when the number of selected POMs is not
changing in two consequent steps.

4.1 Linear problem

In this section we investigate the POD method for the linear Schrödinger equa-
tion (3.1).

We consider the case when Df = 1/2 and the exact solution of this problem
is defined by

u(x, t) =

√
i

−2t+ i
exp

(
ix2 + vx− gt

2t− i

)
.

Problem (3.1) is solved in the interval [−10, 50] for traveling Gaussian wave
when v = 4, g = 8, the final time T = 6.4. We note that about 150 Fourier
modes are required to obtain the accurate approximation of the exact solution.

First, we have investigated the dependence of POD basis on the selection
of snapshots. The snapshots are generated by using the exact solution with
uniform time steps T/K̃ and sufficiently small space step, such that the ac-
curacy of basis functions is not depending on space mesh. Then a solution
of the reduced order model (3.7) is computed. The following uniform meshes
were used to solve the reduced order model: hx = 0.05, ht = 0.01. Figure 1
demonstrates the distribution of singular values σj on log scale.

In Table 1 we list the number of POMs M and the error ε of the approximate
solution for various numbers of uniformly distributed snapshots K. The error
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Figure 1. Singular values σj of the linear Schrödinger equation (3.1) for a travelling wave
solution

Table 1. Numerical results for linear problem (3.1) at time T = 6.4: a uniform distribution
of snapshots.

K 11 21 41 81 161 321 641

ε 0.79847 0.23995 0.02501 0.02305 0.02295 0.02281 0.02269
M 10 20 37 38 38 38 38

ε is computed as

ε = max
0≤k≤K̃

(
max

0≤j≤N

∣∣Ũkj − u(xj , tk)∣∣),
where Ũkj is a solution of the reduced order model.

The results listed in Table 1 show that K = 81 snapshots are sufficient to
construct an accurate POD basis and the number of POD modes is essentially
smaller than the number Fourier modes required to approximate the same
travelling wave solution with the given accuracy.

Next we have investigated the assumption that for travelling wave solutions
the accuracy of POD basis set depends on the maximum time step among two
neighbour snapshots. A uniform set of snapshots S81 with K = 81 is used as
a starting set, and some particular cases of data S = {U `, ` = 1, . . . , L} are
excluded from this set. The results are listed in Table 2, where

S1 =
{
U42

}
, S2 =

{
U42, U48

}
, S3 =

{
U40, U41, U42, U48

}
,

S4 =
{
U39, U40, U41, U42, U48

}
, S5 =

{
U36, U37, U38, U40, U41, U42

}
.

The presented results show that the accuracy of POD approximations de-
pends on the time step among two neighbor snapshots in some integral norm,
which is still close to the maximum norm.

Similar conclusions can be done from results of computational experiments
when time moments of snapshots are distributed in random in the interval
[0, T ]. The results are listed in Table 3, where d denotes the maximum distance
between neighbor snapshots.

Math. Model. Anal., 18(5):694–707, 2013.
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Table 2. Numerical results for linear problem (3.1) at time T = 6.4: snapshots S` are
excluded from the set of uniformly distributed snapshots S81.

S81\S S1 S2 S3 S4 S5

ε 0.0230 0.0230 0.0230 0.02707 0.03619
M 38 38 38 38 38

Table 3. Numerical results for linear problem (3.1) at time T = 6.4: a non-uniform
distribution of snapshots.

K 11 21 41 81 161 321 641

ε 0.6586 0.16366 0.02897 0.02915 0.02891 0.02886 0.02882
M 10 20 36 38 38 38 38
d 0.75142 0.38106 0.20306 0.11079 0.06361 0.03879 0.01983

Table 4. Numerical results for linear problem (3.1) at time T = 6.4: the complete basis
set is obtained by combining dominating POD modes in each subdomain.

M̃ 2 3 4 5

[0, 2.5](2.5, 6.4] [0, 2.5](2.5, 3.5] [0, 1.25](1.25, 2.5] [0, 1](1, 2](2, 3]
(3.5, 6.4] (2.5, 3.75](3.75, 6.4] (3, 4](4, 5](5, 6.4]

ε 0.02188 0.02163 0.02143 0.02159

M 21 + 21 15 + 15 + 15 10 + 10 + 10 + 17 8 + 8 + 8 + 8 + 16

The presented results and results given in Table 1 are very similar if d is
related to the time step T/K̃.

The union of the POD modes from different regions. An interesting
modification of the classical POD method is obtained if the reduced order model
is derived by using the dominating modes from different regions. The full set of
POD modes is constructed by combining all subsets into one set of basic POD
modes. For example this approach was applied in [16], where the multipulsing
transition of the cubic-quintic Ginzburg–Landau problem was investigated.

We have constructed reduced order models, when the interval [0, T ] is cov-
ered by non-overlapping subintervals, and dominating POD modes are com-
puted in each subdomain. Then the obtained modes are combined into one
set. The combined basis functions are orthogonalized by the Gram–Schmidt
algorithm. The results are listed in Table 4, where M̃ denotes the number of
subintervals in the decomposition of the full time interval

[0, 6.4] =
[
t1s, t

1
f

]
∪ . . . ∪

(
tM̃s , t

M̃
f

]
.

It follows from the presented results that the combined basis set of POD
modes preserves the global accuracy of the reduced order model. The size of
the obtained basis set is increased for the increased number of subintervals,
thus redundant modes are included into the combined basis set.
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Figure 2. Singular values σj of the nonlinear Schrödinger equation (3.9) for a traveling
soliton solution

Table 5. Numerical results for nonlinear problem (3.9): a uniform distribution of snapshots,
traveling soliton α = 0.5.

K 11 21 41 81 161 321 641

ε 0.00693 0.00631 0.00675 0.00709 0.007279 0.00737 0.00742
M 6 6 6 6 6 6 6

4.2 Nonlinear problem

In this section we investigate the POD method for the nonlinear Schrödinger
(NLS) equation (3.9). It is well known that the NLS equation with Df = 1
admits various soliton solutions, here we consider the soliton [12]:

u(x, t) = k

√
2

q
sech

(
k(x− 2αt)

)
ei(αx−(α2−k2)t), (4.2)

where α, k are arbitrary real constants, and q > 0 for the self-focusing case.
Let the problem is defined in the interval x ∈ [−10, 20], and parameters q = 2,
k = 0.5, α = 0.5 are used.

The snapshots are generated by using the exact solution with uniform time
steps T/K̃ with T = 6.4 and sufficiently small space step. Then a solution
of the reduced order model (3.12) is computed. Figure 2 demonstrates the
distribution of singular values σj on log scale.

In Table 5 we list the number of POMs M and the error ε of the approximate
solution for various numbers of uniformly distributed snapshots K.

The results listed in Table 5 show that K ≈ 15 snapshots are sufficient to
construct an accurate POD basis, and the size of the POD basis set M = 6
is very small. Thus the reduced order model (3.12) can be implemented very
efficiently by using the precomputed coefficients for the nonlinear interaction
term. A similar result is obtained in [16] for the case of standing N sech(x)
type solitons, when it is sufficient to use one or two dominant POD modes.

Next we have extended this analysis for the case, when the velocity of a
soliton is increased. In Table 6 we list the number of POMs M and the error
ε of the approximate solution for various numbers of uniformly distributed

Math. Model. Anal., 18(5):694–707, 2013.
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Table 6. Numerical results for nonlinear problem (3.9): a uniform distribution of snapshots,
traveling soliton α = 1.

K 11 21 41 81 161 321 641

ε 0.10195 0.00698 0.00467 0.00438 0.00468 0.00494 0.00508
M 11 18 18 18 18 18 18

snapshots K, when α = 1. The problem is solved in the domain [−10, 30] ×
(0, 12.8]. The remaining parameters are the same as in previous experiments.

From the given results we see that the number of required modes M is
increased, when the soliton is moving faster. These results agree well with
conclusions done in the case of a traveling wave for a linear problem.
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