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Abstract. We study, in the setting of a real Hilbert space H, the asymptotic be-
havior of trajectories of the second-order dissipative dynamical system with linear
and gradient-driven nonlinear damping

ẍ(t) + λẋ(t) + ∇f
(
ẋ(t)

)
+ ∇Φ

(
x(t)

)
= 0,

where λ > 0 and f, Φ : H → R are two convex differentiable functions. It is proved
that if Φ is coercive and bounded from below, then the trajectory converges weakly
towards a minimizer of Φ. In particular, we state that under suitable conditions, the
trajectory strongly converges to the minimizer of Φ exponentially or polynomially.

Keywords: dissipative dynamical systems, nonlinear damping, asymptotic behavior, convex

minimization.

AMS Subject Classification: 37L05; 37N05; 37N40; 35B40.

1 Introduction

Let H be a real Hilbert space, with scalar product and corresponding norm
respectively denoted by 〈·,·〉 and | · |. The gradient-like system to be considered
in this paper is the following second order evolution equation

(GD) ẍ(t) + λẋ(t) +∇f
(
ẋ(t)

)
+∇Φ

(
x(t)

)
= 0,

where λ > 0 is a constant and f, Φ : H → R are two convex differentiable
continuous maps. The above dynamical system can be regarded as a nonlin-
ear oscillator involving a linear damping λẋ(t) with a nonlinear perturbation
∇f(ẋ(t)), which is a gradient driven damping.
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Asymptotics for a Dissipative Dynamical System 655

In [21], Polyak introduced the heavy ball with friction (HBF ) dynamical
system

(HBF ) ẍ(t) + λẋ(t) +∇Φ
(
x(t)

)
= 0.

It can be studied in the classical framework of the theory of dissipative dynami-
cal system (Hale [16], Haraux [18]). In 2000, Attouch, Guodou and Rendont [6]
employed it to deal with optimization problem. The generalized (HBF ) system
with nonsmooth potential Φ has been studied in the differential inclusion frame-
work (Cabot and Paoli [14]). Recently, Attouch and Mainge [7] investigated
asymptotic behavior of second-order dissipative evolution equations combining
potential with non-potential effects. Moreover, Bhaya et al. [9] designed (HBF )
network to solve the global nonconvex minimization problem.

It is well known that the steepest descent method is a classical optimization
algorithm, which is a first-order system

(SD) ẋ(t) +∇Φ
(
x(t)

)
= 0.

From the optimization point of view, the main feature of the (HBF ) system
departing from the (SD) systems lies in the fact that, it is no more a descent
method: its trajectory is allowed to go up and down along the graph of Φ. See
also [1, 4, 5, 8, 13,15] for related results in this connection.

In this paper, based on the dynamic analysis of the motion of heavy ball
with a propulsive force (see Section 2), we derived the (GD) system, which
is a rational extension of (HBF ) system. It is worth to mention that there
are many real physical and economics models, which can be described by (GD)
system [12,23]. For example, seismic wave with strong nonlinearities [3] is given
by

(SW ) ẍ+ λẋ+ µẋ3 + n2x+ k2x3 = 0.

It includes a nonlinear cubic term in damping. If k = 0, it becomes the well-
known Rayleigh nonlinear ODE (see [22]). If we set f(ẋ) = 1

4µẋ
4 and Φ(x) =

1
2n

2x2 + 1
4k

2x4, then equation (SW ) can be considered in the framework of
system (GD).

This paper will be dedicated to investigate the asymptotical behavior of
(GD) system. We first state that each trajectory will weakly converge to a
minima point of Φ, if Φ is coercive, convex and bounded from below. This
optimization result has been established in the case of (HBF ) system by Alvarez
[1] (also see [4, 6]), while in case of (SD) system it is the well known Bruck’s
theorem [11].

A more realistic problem is whether the trajectory strongly converge to a
minima point of Φ and how fast does it converge. We first state a “relaxed”
version of strongly convex condition for Φ:

∃α > 0, m > 1 s.t.
〈
∇Φ(x)−∇Φ(y), x− y

〉
≥ α|x− y|m, ∀x, y ∈ H.

If Φ is strongly convex (which means there exists 〈∇Φ(x) − ∇Φ(y), x − y〉 ≥
α|x − y|2, ∀x, y ∈ H), the trajectories of both (SD) and (HBF ) systems are
known to exponentially converge [5,10]. However, as far as our knowledge goes,
there is no work dealing with the case of m 6= 2.

Math. Model. Anal., 18(5):654–674, 2013.
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We will treat the general case m > 1, which was not covered in the previous
literatures. It is proved that the trajectory of (GD) will exponentially converge
if 2 ≥ m > 1 and polynomially converge if m > 2. This shows that the case
m > 2 is indeed different from the case 2 ≥ m > 1, the system does possess a
trajectory which is not exponentially convergent (see Example 1). A reflection
of difference between the case m > 2 and the case 2 ≥ m > 1 is that, in the
proof process, the two cases need different method to be solved.

The rest of the paper is organized as follows. In Section 2, we give the me-
chanical interpretation of the (GD) system. Section 3 will be devoted to study
optimization property and asymptotic weak convergence of the trajectory. In
Section 4, we state the strongly convergent results and present some illustrative
examples.

2 The Mechanical Interpretation

Suppose H is a Hilbert space and Φ is a continuous differentiable function on H.
Consider a material point M of mass m with a propulsive force, which moves
on the manifold defined by Σ := Graph(Φ) ⊂ H ×R. We use p(t) ∈ H ×R to
denote the position of M at time t:

p(t) =

(
x(t)

Φ(x(t))

)
if x(t) ∈ H.

Figure 1. Force diagram of the material point M .

According to the Newton’s second law, the motion of M is governed by the
equation:

(NSL) mp̈ =
−→
G +

−→
F +

−→
R +

−→
C , (2.1)

where p̈ denotes the acceleration of M and the right hand side of this equality
is the sum of the forces which are exerted on M (see Figure 1 for the force
diagram):

• The gravity force
−→
G = (0,−mg)

T
.

• The viscous friction force, is opposed to the movement of the particle

(friction) and proportional to the speed (viscous friction):
−→
F = −λṗ(t),

where λ > 0 is the friction coefficient.
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• The reaction force
−→
R of the surface Σ, which expresses that the particle

does not penetrate into Σ :
−→
R = R−→n , where R > 0 and −→n is the outwards

unitary normal to Σ at M. Classically,

−→n =
1√

1 + |∇Φ(x)|2
(
−∇Φ(x), 1

)T
.

• Propulsive force supplied by a thruster, which is determined by its hori-

zontal velocity, expressed as
−→
C = (−∇f(ẋ(t)), 0)T .

Since p(t) = (x(t), Φ(x(t)))T , we have

ṗ(t) =

(
ẋ(t)

∇Φ(x(t))ẋ(t)

)
, p̈(t) =

(
ẍ(t)

〈ẋ(t),∇2Φ(x(t))ẋ(t)〉+∇Φ(x(t))ẍ(t)

)
,

where ∇2 is the Hessian operator. Then equation (NSL) gives us{
mẍ = −λẋ(t)−RΛ(t)∇Φ(x)−∇f

(
ẋ(t)

)
,

m
(〈
ẋ,∇2Φ(x)ẋ

〉
+∇Φ

(
x(t)

)
ẍ(t)

)
= −mg − λ∇Φ

(
x(t)

)
ẋ(t) +RΛ(t),

(2.2)

where Λ(t) = 1√
1+|∇Φ(x)|2

. We can rewrite (NSL) as

mp̈−
−→
G −

−→
F −

−→
C = R−→n , (2.3)

and project (2.3) on −→n , then we have that 〈mp̈−
−→
G −

−→
F −

−→
C ,−→n 〉 = R, i.e.(

mẍ+ λẋ+∇f(ẋ)
m(〈ẋ,∇2Φ(x)ẋ〉+∇Φ(x)ẍ+ g) + λ∇Φ(x)ẋ

)T (−Λ(t)∇Φ(x)
Λ(t)

)
= R.

This leads to

R = Λ(t)
(
−
〈
∇Φ(x),∇f(ẋ)

〉
+mẋ∇2Φ(x)ẋ+mg

)
.

Together with the first equation of (2.2), we obtain

mẍ+ λẋ+ Λ2m
(〈
ẋ,∇2Φ(x)ẋ

〉
+ g
)
∇Φ(x)

− Λ2
〈
∇Φ(x),∇f(ẋ)

〉
∇Φ(x) +∇f(ẋ) = 0. (2.4)

Being interested in the asymptotic behavior of x(t), we may assume that

(H)


• |∇Φ(x)| is negligible with respect to 1,

• 〈ẋ,∇2Φ(x)ẋ〉 is negligible with respect to g,

• ∇f(ẋ) is bounded,

which give us the following system:

mẍ+ λẋ+mg∇Φ(x) +∇f(ẋ) = 0.

Now, let us define m = 1 and g = 1, then the final (GD) system can be
obtained:

ẍ+ λẋ+∇Φ(x) +∇f(ẋ) = 0.

Math. Model. Anal., 18(5):654–674, 2013.
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Remark 1. Indeed, the mechanical model of (GD) system is a development of

(HBF ) model. In fact, if the Propulsive force
−→
C is not valid, then the resulting

force acting on the material point become sum of three forces (
−→
G ,
−→
F and

−→
R ).

So from (NSL) we can reduce the (HBF ) model. For more details, we refer
readers to [5] and [6].

Looking into the assumption (H), we know that the equation only possesses
a mechanical sense when velocity term ẋ is small. Despite this, the mechanical
interpretation of (GD) system will help to intuitively understand its asymptotic
behavior.

3 Weak Convergence Results

Let H be a real Hilbert space. Let us consider two maps f : H → R and
Φ : H → R satisfying the following assumptions respectively:

(AΦ)

{
(AΦ − i) Φ is of class C1 and Φ is bounded from below;
(AΦ−ii) ∇Φ is Lipschitz continuous on the bounded subsets of H.

(Af )

{
(Af − i) f is convex, of class C2 on H and min

x∈H
f(x) = f(0) = 0;

(Af−ii) ∇f is Lipschitz continuous on the bounded subsets of H.

Define the mechanical energy along trajectory x(t) of (GD) by

E(t) =
1

2

∣∣ẋ(t)
∣∣2 + Φ

(
x(t)

)
.

By differentiation of the energy function we obtain

Ė(t) =
〈
ẋ(t), ẍ(t)

〉
+
〈
ẋ(t),∇Φ

(
x(t)

)〉
.

In view of ẍ(t) +λẋ(t) +∇f(ẋ(t)) +∇Φ(x(t)) = 0 and hypothesis (Af − i), we
deduce that

Ė(t) = −λ
∣∣ẋ(t)

∣∣2 − 〈∇f(ẋ(t)
)
, ẋ(t)

〉
= −λ

∣∣ẋ(t)
∣∣2 − 〈∇f(ẋ(t)

)
−∇f(0), ẋ(t)− 0

〉
≤ −λ

∣∣ẋ(t)
∣∣2. (3.1)

Thus, the function E(·) is decreasing.
Now, using classical Cauchy–Lipschitz theorem we state the global existence

result.

Theorem 1 [Existence and Uniqueness]. Assume hypotheses AΦ and Af
hold. Then, the following properties hold :

(i) for each (x0, ẋ0) ∈ H × H, there exists a unique global solution x(t) of
(GD), which is of class C2 on [0,+∞) and satisfies the initial conditions
x(0) = x0 and ẋ(0) = ẋ0;

(ii) for every trajectory x(·) of (GD), the corresponding energy E(t) is de-
creasing on [0,+∞) and bounded from below, and hence converges to some
real value E∞. Moreover,

ẋ ∈ L∞(0,+∞;H) ∩ L2(0,+∞;H).
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Proof. (i) First we note that the system (GD) can be written as a first order
autonomous system in H ×H : Ẏ = G(Y ) with

Y (t) =

(
x(t)
ẋ(t)

)
, G(u, v) =

(
v
−λv(t)−∇f(v(t))−∇Φ(u(t))

)
.

For Y0 = (x0, ẋ0)T given in H × H, since the maps ∇Φ and ∇f are locally
Lipschitzian, the Cauchy–Lipschitz theorem ensures the existence of a unique
local solution to the problem: {

Ẏ (t) = G(Y ),

Y (0) = Y0.

Let x(·) be the corresponding maximal solution, defined on [0, Tmax) with 0 <
Tmax ≤ +∞. It is clear that the solution x(·) is of class C2 on [0, Tmax) by
the continuity of the map ∇Φ and ∇f . Suppose, contrary to our claim, that
Tmax < +∞. By (3.1), we have E(t) ≤ E(0), for all t ∈ [0, Tmax). That is,

1

2

∣∣ẋ(t)
∣∣2 + Φ

(
x(t)

)
≤ E(0). (3.2)

Since Φ is bounded from below, we obtain that∣∣ẋ(t)
∣∣
L∞

= sup
t∈[0,Tmax)

∣∣ẋ(t)
∣∣ < +∞. (3.3)

Then, according to |x(t1)−x(t2)| ≤ |ẋ(t)|L∞ |t1− t2| and Tmax < +∞, we know
that limt→Tmax

x(t) := x∞ exists. Hence, x(·) and ẋ(·) are bounded on [0, Tmax),
and by equation (GD), ẍ(·) is also bounded on this interval. It implies that
limt→Tmax

ẋ(t) := ẋ∞ exists. But, applying again the local existence theorem
with initial data (x∞, ẋ∞), we can extend the maximal solution to an interval
strictly larger than [0, Tmax), which contradicts the maximality of the solution.
So, Tmax = +∞. It completes the proof of (i).

(ii) It has been proved that E(·) is decreasing. Since E(t) ≥ Φ(x(t)) and
Φ is bounded from below, the energy E(·) is also bounded from below. As a
consequence, limt→+∞E(t) = E∞ exists, with E∞ ∈ R. According to (3.2)
and the fact that Φ is bounded from below, we get that,

1

2

∣∣ẋ(t)
∣∣2 ≤ E(0)− inf Φ, ∀t ≥ 0.

It means that ẋ ∈ L∞(0,+∞;H).
By the inequality (3.1), we obtain that, for all 0 ≤ t < +∞,∫ t

0

∣∣ẋ(s)
∣∣2ds ≤ 1

λ

(
E(0)− E(t)

)
.

Since E(t) decrease to E∞ as t tends to +∞, we know that∫ +∞

0

∣∣ẋ(s)
∣∣2ds ≤ 1

λ

(
E(0)− E∞

)
Math. Model. Anal., 18(5):654–674, 2013.
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and ẋ ∈ L2(0,+∞;H). It completes the proof of (ii). ut

After establishing the existence result of solution, we then focus our atten-
tion on the asymptotic behavior of the system and its optimization property.
We first give the following theorem.

Theorem 2. Under hypothesis AΦ and Af , let x(·) be the unique solution of
(GD) from a given initial state (x0, ẋ0) ∈ H × H. Assume moreover that
x ∈ L∞(0,+∞;H), then we have:

• ẋ, ẍ and ∇Φ(x) belong to L∞(0,+∞;H);

• limt→+∞ ẋ(t) = 0 and limt→+∞ Φ(x(t)) = E∞;

• if Φ is of class C2, then limt→+∞ ẍ(t) = limt→+∞∇Φ(x(t)) = 0.

Proof. We already stated in Theorem 1 that ẋ ∈ L∞(0,+∞;H). The equation
(GD), and the fact that ∇Φ and ∇f are bounded on the bounded subsets of H,
imply that ẍ ∈ L∞(0,+∞;H). Let u(t) = ẋ(t), then we have

u ∈ L2(0,+∞;H) and u̇ ∈ L∞(0,+∞;H),

which imply that

lim
t→+∞

u(t) = lim
t→+∞

ẋ(t) = 0.

By Φ(x(t)) = E(t)− 1
2 |ẋ(t)|2, it is clear that

lim
t→+∞

Φ
(
x(t)

)
= lim
t→+∞

E(t) = E∞.

It follows from (GD) and ∇f(0) = 0 that

lim
t→+∞

[
ẍ(t) +∇Φ

(
x(t)

)]
= 0.

If we are able to prove that limt→+∞ ẍ(t) = 0, then we automatically infer that
limt→+∞∇Φ(x(t)) = 0.

Let us now prove that limt→+∞ ẍ(t) = 0. Returning to equation (GD), since
Φ is of class C2, we have that the solution x in of class C3. By differentiating
equation (GD), we obtain

...
x (t) + λẍ(t) +∇2f

(
ẋ(t)

)
ẍ(t) +∇2Φ

(
x(t)

)
ẋ(t) = 0.

Let y(t) := ẍ(t) , then we rewrite above equation as

ẏ(t) = −
[
λ+∇2f

(
ẋ(t)

)]
y(t)− ϕ(t) (3.4)

with ϕ(t) = ∇2Φ(x(t))ẋ(t).
By f is of C2 and convex, we easily deduce that the Hessian operator ∇2f

is bilinear and positive semidefinite, that is 〈∇2f(x)y, y〉 ≥ 0, for all x, y ∈ H.
Now set z(t) = 1

2 |y(t)|2, then equation (3.4) implies

ż(t) =
〈
ẏ(t), y(t)

〉
= −λ

∣∣y(t)
∣∣2 − 〈∇2f

(
ẋ(t)

)
y(t), y(t)

〉
−
〈
ϕ(t), y(t)

〉
≤ −2λz(t) +

∣∣ϕ(t)
∣∣∣∣y(t)

∣∣. (3.5)
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Since ∇Φ is Lipschitz continuous on the bounded subsets of H and x(t) ∈
L∞(0,∞;H), we have ∇2Φ(x(t)) is bounded, that is, there exists d1 > 0 such
that |∇2Φ(x(t))| < d1, for t > 0. Hence∣∣ϕ(t)

∣∣ =
∣∣∇2Φ

(
x(t)

)
ẋ(t)

∣∣ ≤ d1∣∣ẋ(t)
∣∣, t > 0.

Moreover, according to ẍ(t) ∈ L∞(0,+∞;H), there exists d2 > 0 such that,
for all t > 0, |y(t)| = |ẍ(t)| < d2. Hence, equation (3.5) becomes

ż(t) ≤ −2λz(t) + d1d2
∣∣ẋ(t)

∣∣. (3.6)

By comparison principle, for all t > 0

0 ≤ z(t) ≤ z(0)e−2λt + d1d2

∫ t

0

e2λ(ρ−t)
∣∣ẋ(ρ)

∣∣ dρ. (3.7)

Now we prove that

lim
t→+∞

∫ t

0

e2λ(ρ−t)
∣∣ẋ(ρ)

∣∣ dρ = 0. (3.8)

Any given ε > 0, since ẋ ∈ L2(0,+∞;H), there exists T1 ≥ 0 such that, for
t > T1 ∫ t

T1

∣∣ẋ(ρ)
∣∣2 dρ ≤ (2λε)

2
. (3.9)

On the other hand, there exists T2 ≥ 0, such that, for t ≥ T2

e−2λt < λε/|ẋ|∞. (3.10)

Let T3 = max{T1, T2}. Then, for t > 2T3∫ t

0

e2λ(ρ−t)
∣∣ẋ(ρ)

∣∣ dρ =

∫ T3

0

e2λ(ρ−t)
∣∣ẋ(ρ)

∣∣ dρ+

∫ t

T3

e2λ(ρ−t)
∣∣ẋ(ρ)

∣∣ dρ
≤ |ẋ|∞

e2λ(T3−t) − e−2λt

2λ
+
[ ∫ t

T3

∣∣ẋ(ρ)
∣∣2 dρ] 1

2
[ ∫ t

T3

e4λ(ρ−t) dρ
] 1

2

≤ |ẋ|∞
e−2λT3

2λ
+
ε(1− eλ(T3−t))

2
< ε, (3.11)

by equation (3.9), (3.10) and Hölder inequality. By arbitrariness of ε, we prove
that (3.8).

Finally, returning to (3.7) and noticing that z(t) = 1
2 |y(t)|2, we obtain

lim
t→∞

ẍ(t) = lim
t→∞

y(t) = 0.

Consequently, we finish the proof of Theorem 2. ut

Under the additional assumption that the map Φ is coercive, we obtain that
the solution x is bounded.

Math. Model. Anal., 18(5):654–674, 2013.
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Corollary 1. Under assumptions AΦ and Af , additionally assume that:

(AΦ − iii) Φ is coercive, i.e. lim
|x|→+∞

Φ(x) = +∞,

then the solution x is in L∞([0,+∞;H), hence all conclusions of Theorem 2
hold.

Proof. Since the energy function E(·) is decreasing, so

1

2

∣∣ẋ(t)
∣∣2 + Φ

(
x(t)

)
= E(t) ≤ E(0), for all t ≥ 0,

which implies that Φ(x(t)) is bounded from above. Together with the co-
erciveness of Φ, we deduce that the trajectory x(t) remains bounded, i.e.
x ∈ L∞(0,+∞;H). ut

We are now able to present the optimization property of (GD) system,
under following local growth condition near origin for f.

(Af − iii) there exist c1 ≥ 0, r > 0 s.t.
∣∣∇f(x)

∣∣ ≤ c1|x|2, ∀x ∈ B(0, r).

Theorem 3. Under assumptions Af and AΦ, additionally assume that Φ is
coercive, convex and f satisfies condition (Af − iii). If x ∈ C2(0,+∞;H) is
the unique solution of (GD) from a given initial state (x0, ẋ0) ∈ H ×H, then

lim
t→∞

Φ
(
x(t)

)
= inf Φ. (3.12)

Proof. In order to prove the minimizing property (3.12), it is sufficient to
prove that for any x0 ∈ H,

lim sup
t→∞

Φ
(
x(t)

)
≤ Φ(x0).

Fix x0 ∈ H and define the auxiliary function g(t) := 1
2 |x(t)− x0|2. Since x(·)

is a solution of (GD), it follows that

g̈(t) + λġ(t) =
〈
∇Φ
(
x(t)

)
, x0 − x(t)

〉
+
〈
∇f
(
ẋ(t)

)
, x0 − x(t)

〉
+
∣∣ẋ(t)

∣∣2.
Noting that Φ is convex, the above equation yields

g̈(t) + λġ(t) ≤ Φ(x0)− Φ
(
x(t)

)
+
〈
∇f
(
ẋ(t)

)
, x0 − x(t)

〉
+
∣∣ẋ(t)

∣∣2. (3.13)

Since Φ is coercive, by Corollary 1, we know that x(t) ∈ L∞(0,+∞;H).
So there exists some constant M0 > 0 such that |x(t) − x0| ≤ M0, for all
t ∈ [0,+∞). Since limt→∞ ẋ(t) = 0, there exists T > 0, such that |ẋ(t)| ≤ r,
for t ≥ T. Then, by assumption (Af − iii), we get |∇f(ẋ(t))| ≤ c1|ẋ(t)|2, for
t ≥ T. Hence, we obtain

g̈(t) + λġ(t) ≤ Φ(x0)− Φ
(
x(t)

)
+ (c1M0 + 1)

∣∣ẋ(t)
∣∣2. (3.14)
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Furthermore, by E(t) = 1
2 |ẋ(t)|2 + Φ(x(t)), we rewrite (3.14) as

g̈(t) + λġ(t) ≤ Φ(x0)− E(t) +

(
c1M0 +

3

2

) ∣∣ẋ(t)
∣∣2. (3.15)

Given t > 0, since E(·) is nonincreasing, we get for all ρ ∈ [0, t]

g̈(ρ) + λġ(ρ) ≤ Φ(x0)− E(t) +

(
c1M0 +

3

2

) ∣∣ẋ(ρ)
∣∣2. (3.16)

After multiplying it by eλρ and integrating it over [0, t], we obtain

ġ(t) ≤ e−λtġ(0) +
1− e−λt

λ

(
Φ(x0)− E(t)

)
+

(
c1M0 +

3

2

)∫ t

0

e−λ(t−ρ)
∣∣ẋ(ρ)

∣∣2 dρ. (3.17)

Note again that E(t) is nonincreasing, for any σ ∈ [0, t], we have

ġ(σ) ≤ e−λσ ġ(0) +
1− e−λσ

λ

(
Φ(x0)− E(t)

)
+

(
c1M0 +

3

2

)∫ σ

0

e−λ(σ−ρ)
∣∣ẋ(ρ)

∣∣2 dρ.
Integrating it once more over [0, t],

g(t)−g(0)≤1−e−λt

λ
ġ(0) +

λt− 1 + e−λt

λ2
(
Φ(x0)−E(t)

)
+
(
c1M0+

3

2

)
a(t),

where

a(t) =

∫ t

0

∫ σ

0

e−λ(σ−ρ)
∣∣ẋ(ρ)

∣∣2 dρ dσ.
Since Φ(x(t)) ≤ E(t) and g(t) is non-negative, it follows that

Φ
(
x(t)

)
≤ λ2

λt− 1 + e−λt

(
g(0)+

[
c1M0 +

3

2

]
a(t)

)
+

λ(1− e−λt)
λt− 1 + e−λt

ġ(0)+Φ(x0).

(3.18)
On the other hand,

a(t) =

∫ t

0

∫ t

ρ

e−λ(σ−ρ)
∣∣ẋ(ρ)

∣∣2 dσ dρ =
1

λ

∫ t

0

(
1− e−λ(t−ρ)

)∣∣ẋ(ρ)
∣∣2 dρ.

By ẋ ∈ L2(0,+∞;H), we get that

a(t) ≤ 1

λ

∫ t

0

∣∣ẋ(ρ)
∣∣2 dρ ≤ 1

λ

∫ +∞

0

∣∣ẋ(ρ)
∣∣2 dρ <∞. (3.19)
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Thus we can find some C > 0, such that a(t) < C for all t ∈ [0,+∞). Therefore,
it follows from (3.18) that

lim sup
t→∞

Φ(x(t)) ≤ lim sup
t→∞

λ

λt− 1

[
ġ(0) + λg(0) +

(3

2
+ LM0

)
λC
]

+ Φ(x0)

= Φ(x0). ut

ut

Next we deal with asymptotic weak convergence of the trajectory in the
convex case. The proof depends mainly on Opial Lemma. For the sake of
completeness, let us recall the Opial Lemma [20].

Lemma 1. Let H be a Hilbert space and x : [0,+∞) → H be a function such
that there exists a nonempty set S ⊂ H satisfying :

(1) ∀tn → +∞ with x(tn) ⇀ x̄ weakly in H, we have x̄ ∈ S;

(2) ∀z ∈ S, limt→+∞ |x(t)− z| exists.

Then, x(t) weakly converges to some element of S as t→ +∞.

Theorem 4. Under assumptions of Theorem 3, if x ∈ C2(0,+∞;H) is the
unique solution of (GD) from a given initial state (x0, ẋ0) ∈ H ×H, then x(t)
weakly converges to a minimum point of Φ as t→ +∞.

Proof. Let us apply the Opial Lemma with

S = Argmin Φ =
{
x ∈ H : ∇Φ(x) = 0

}
.

Suppose that there exists x̂ ∈ H such that x(tn) ⇀ x̂ for a suitable sequence
tn → +∞. Since Φ is convex and continuous, we get that Φ is weak lower-
semicontinuous. So

Φ(x̂) ≤ lim inf
n→∞

Φ
(
x(tn)

)
= lim
n→∞

Φ
(
x(tn)

)
= inf Φ

and therefore x̂ ∈ Argmin Φ = S, which implies that the first condition of
Lemma 1 is satisfied. So, we just need to prove that for any z ∈ S, the limit
limt→+∞ |x(t)− z| exists, or equivalently, limt→+∞ |x(t)− z|2 exists. Fix z ∈ S
and define g(t) := 1

2 |x(t) − z|2. Due to Φ(z) = inf Φ, it follows from inequity
(3.14) that

g̈(t) + λġ(t) ≤ (c1M0 + 1)
∣∣ẋ(t)

∣∣2. (3.20)

Multiplying (3.20) by eλt and integrating it over (0, t) we obtain

ġ(t) ≤ e−λtġ(0) + (c1M0 + 1)

∫ t

0

e−λ(t−σ)
∣∣ẋ(σ)

∣∣2 dσ. (3.21)

Define ġ(t)+ := max{ġ(t), 0}. From above inequality we easily get

ġ(t)+ ≤ e−λtġ(0)+ + (c1M0 + 1)

∫ t

0

e−λ(t−σ)
∣∣ẋ(σ)

∣∣2 dσ. (3.22)
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Integrating the above inequality again over (0,+∞), it follows from (3.19) that∫ +∞
0

ġ(t)+dt < +∞, i.e., ġ(t)+ ∈ L1(0,+∞;H). Now we set

k(t) := g(t)−
∫ t

0

ġ(σ)+ dσ.

For any 0 ≤ s < t < +∞ it is true that

g(t)− g(s) =

∫ t

s

ġ(σ) dσ ≤
∫ t

s

ġ(σ)+ dσ.

Then it follows that k(t) = g(t) −
∫ t
0
ġ(σ)+ dσ ≤ g(s) −

∫ s
0
ġ(σ)+ dσ = k(s).

Together with that k(t) is bounded from below, we get k(t) converges as t →
+∞. So, finally we obtain that limt→+∞ g(t) = limt→+∞ k(t) +

∫ +∞
0

ġ(t)+ dt
does exist. ut

4 Strong Convergence Results

In this section, we devote to establish strong convergence results. First we state
a simple fact.

Proposition 1. In addition to the assumptions AΦ, Af and Φ ∈ C2, let us
assume that Φ is strongly convex, that is, there exists M > 0, such that〈

∇Φ(x)−∇Φ(y), x− y
〉
≥M |x− y|2, ∀x, y ∈ H. (4.1)

Then each trajectory x(·) of the (GD) system is strongly convergent as t→ +∞
to the unique global minimizer x̄ of Φ.

Proof. Let us consider a trajectory x(·) of the (GD) system. Since Φ is
strongly convex, it has a unique minimizer x̄. Let us write the above strong
monotonicity property at x̄ and x(t):〈

∇Φ(x̄)−∇Φ
(
x(t)

)
, x̄− x(t)

〉
≥M

∣∣x̄− x(t)
∣∣2.

Since ∇Φ(x̄) = 0, it follows that

M
∣∣x̄− x(t)

∣∣2 ≤ ∣∣∇Φ(x(t)
)∣∣∣∣x(t)− x̄

∣∣.
From Theorem 2, we have that limt→+∞∇Φ(x(t)) = 0. So, it is easy to see
that x(t)→ x̄ strongly as t→ +∞. ut

In fact, the result of Proposition 1 still holds, under the following “relaxed”
version of strongly convex condition:

(AΦ − iv)
there exist α > 0 and m > 1 such that〈
∇Φ(x)−∇Φ(y), x− y

〉
≥ α|x− y|m, ∀x, y ∈ H.

(4.2)

Also, the conclusion can be improved, and an explicit decay rate for trajec-
tory of (GD) system is obtained for m > 1.
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Theorem 5. Assume the assumptions AΦ, Af , (AΦ − iv) and Φ ∈ C2. If
m > 2, we also assume that there exists some constant β ≥ 0 such that

lim
x→0

|∇f(x)|
|x|l

= β, with l = 2− 2

m
. (4.3)

Then, for any given initial state (x0, ẋ0) ∈ H × H, there exist K, r > 0 and
t0 ≥ 0 such that, for all t ≥ t0, the unique solution x of (GD) from (x0, ẋ0)
satisfies

E(t)−minΦ ≤ Ke−rt, 1 < m ≤ 2,

E(t)−minΦ ≤ (K + rt)−2/(m−2), m > 2. (4.4)

Proof. Without loss of generality, we can assume that the unique minimizer of
Φ is x̄ = 0 and Φ(0) = 0. By the argument similar to the proof of Proposition 1,
we deduce that x(t)→ 0 strongly as t→ +∞. The assumption (AΦ−iv) implies

Φ(x) ≥ α

m
|x|m, for all x ∈ X. (4.5)

Indeed, for any given x, y ∈ H, let φ(t) := Φ(y + t(x− y)). Then

φ′(t)− φ′(0) =
〈
∇Φ
(
y + t(x− y)

)
−∇Φ(y), (x− y)

〉
≥ αtm−1|x− y|m,

by assumption (AΦ − iv). Then

Φ(x)− Φ(y) = φ(1)− φ(0) =

∫ 1

0

φ′(t) dt

≥
∫ 1

0

(
φ′(0) + αtm−1|x− y|m

)
dt

=
〈
∇Φ(y), x− y

〉
+
α

m
|x− y|m.

When y = 0, we obtain (4.5). We are going to analyze the asymptotic behavior
of system (GD) by distinguishing two cases: Case (I) 1 < m ≤ 2; Case (II)
m > 2. The two case need different technique.

Step 1. First we deal with Case (I). Since limt→+∞ x(t) = 0, there exists
t0 ≥ 0, such that |x(t)| < 1, for t ≥ t0. Then (4.5) become that

Φ
(
x(t)

)
≥ α

2

∣∣x(t)
∣∣2 for t ≥ t0. (4.6)

Similar to the proof of Theorem 3, we define g(t) := 1
2 |x(t)|2, and set w(t) =

ġ(t) + λg(t), i.e.,

w(t) = ġ(t) + λg(t) =
〈
ẋ(t), x(t)

〉
+
λ

2

∣∣x(t)
∣∣2. (4.7)

According to inequity (3.13), and ∇f is Lipschitz continuous on the bounded
set of H, we get that

ẇ(t) + E(t) ≤ L
∣∣ẋ(t)

∣∣∣∣x(t)
∣∣+

3

2

∣∣ẋ(t)
∣∣2, (4.8)
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where L is the Lipschitz constant for ∇f(ẋ) on B(0, |ẋ|L∞). We recall that the
energy function satisfies the following decay law

Ė(t) ≤ −λ
∣∣ẋ(t)

∣∣2. (4.9)

Let us multiply the inequality (4.8) by η = 2λ
3 and add to last inequality, we

obtain
ηẇ(t) + Ė(t) + ηE(t) ≤ ηL

∣∣ẋ(t)
∣∣∣∣x(t)

∣∣. (4.10)

On the other hand, by Young’s Inequality, for all θ > 0,∣∣ẋ(t)
∣∣∣∣x(t)

∣∣ ≤ 1

2θ

∣∣ẋ(t)
∣∣2 +

θ

2

∣∣x(t)
∣∣2. (4.11)

For t ≥ t0, noting that α
2 |x(t)|2 ≤ Φ(x(t)), we deduce that, by putting θ =

√
α

in above equation ∣∣ẋ(t)
∣∣∣∣x(t)

∣∣ ≤√ 1

α
E(t). (4.12)

According to (4.11), for all θ > 0, it is true that

w(t) =
〈
ẋ(t), x(t)

〉
+
λ

2

∣∣x(t)
∣∣2 ≤ 1

2θ

∣∣ẋ(t)
∣∣2 +

θ

2

∣∣x(t)
∣∣2 +

λ

2

∣∣x(t)
∣∣2. (4.13)

Together with (4.6) and E(t) = 1
2 |ẋ(t)|2 + Φ(x(t)), we have that

w(t) ≤ θ + λ

α
E(t)−

(
θ + λ

2α
− 1

2θ

)∣∣ẋ(t)
∣∣2, t ≥ t0.

Choose θ0 sufficiently large to satisfies θ0+λ
2α ≥ 1

θ0
. Then if C1 ≥ θ0+λ

α , the last
inequality reduces to

w(t) ≤ C1E(t), t ≥ t0. (4.14)

For the convenience of analysis, take θ1 = max{
√

1
α ,

1
η}. Then by virtue of

(4.12) and (4.14), we obtain that

w(t) ≤ (C1 + C1θ1)E(t)− C1

∣∣ẋ(t)
∣∣∣∣x(t)

∣∣, t ≥ t0.

Dividing this inequality by C1(θ1 + 1), we get

E(t) ≥ 1

C1(θ1 + 1)
w(t) +

1

(θ1 + 1)

∣∣ẋ(t)
∣∣∣∣x(t)

∣∣, t ≥ t0. (4.15)

Moreover, for all s ∈ (0, 1), multiplying the inequality (4.15) by (1 − s), we
have that, for all t ≥ t0,

E(t) ≥ sE(t) +
1− s

C1(θ1 + 1)
w(t) +

(1− s)
θ1 + 1

∣∣ẋ(t)
∣∣∣∣x(t)

∣∣.
Now, we fix s = 1

2 and choose K0 = 2
η , η0 = min{ 1

2(θ1+1)LK0
, η2}, and η1 =

η − η0. Then, the above inequality becomes

E(t) ≥ 1

2

(
E(t) +

1

C1(θ1 + 1)
w(t)

)
+K0η0L

∣∣ẋ(t)
∣∣∣∣x(t)

∣∣. (4.16)
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By virtue of (4.6), (4.9) and (4.11), for any θ2 > 0,

η1L
∣∣ẋ(t)

∣∣∣∣x(t)
∣∣ ≤ η1L

2θ2

∣∣ẋ(t)
∣∣2 +

θ2η1L

2

∣∣x(t)
∣∣2 ≤ − η1L

2θ2λ
Ė(t) +

θ2η1L

α
E(t).

Combining (4.10) and the above inequality,

ηẇ(t) +

[
1 +

η1L

2θ2λ

]
Ė(t) +

[
η − θ2η1L

α

]
E(t) ≤ η0L

∣∣ẋ(t)
∣∣∣∣x(t)

∣∣. (4.17)

Fix C1 = max{1, θ0+λα ,
η21L

2

λαη2θ1
, 1
λ}, and θ2 = η1L

2λ[η(θ1+1)C1−1] > 0. By choosing

of θ2, we get η = [1 + η1L
2θ2λ

] 1
C1(θ1+1) . Hence, by virtue of (4.16) and (4.17), we

obtain for all t ≥ t0

E(t) ≥ 1

2

(
E(t) +

1

C1(θ1 + 1)
w(t)

)
(4.18)

+K0

[
1 +

η1L

2θ2λ

](
Ė(t) +

1

C1(θ1 + 1)
ẇ(t)

)
+K0

[
η − θ2η1L

α

]
E(t).

Noticing C1 ≥ max{1, η21L
2

λαη2θ1
} and θ1 ≥ 1

η , it is true that

η

2
≥ η21L

2

2λαηθ1C1
>

η21L
2

2λ[η(θ1 + 1)C1 − 1]α
=
θ2η1L

α
,

which implies K0[η − θ2η1L
α ] > K0

η
2 = 1. Hence, by setting r = K0[2 + η1L

θ2λ
]

and C2 = 1
C1(θ1+1) , we deduce from (4.18) that(

E(t) + C2w(t)
)

+ r
(
Ė(t) + C2ẇ(t)

)
≤ 0, t ≥ t0.

Consequently, we deduce that

E(t) + C2w(t) ≤ K1e
−rt, t ≥ t0 (4.19)

with K1 = E(t0) + C2w(t0). By Young’s Inequality, it is true that, for t ≥ t0

w(t) =
〈
ẋ(t), x(t)

〉
+
λ

2

∣∣x(t)
∣∣2 ≥ − 1

2λ

∣∣ẋ(t)
∣∣2 ≥ − 1

λ
E(t).

Then it follows that, for t ≥ t0

E(t) + C2w(t) ≥
(

1− C2

λ

)
E(t)

and 1− C2

λ = 1− 1
C1(θ1+1)λ > 0, by recalling C1 ≥ 1

λ . Therefore, finally we get,

for t ≥ t0

0 ≤ E(t)−minΦ ≤ Ke−rt, with K =
λ

λ− C2
K1. (4.20)
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Step 2. Based on the perturbed energy method, we deal with Case (II). We
have established that limt→+∞ ẋ(t) = 0 (Theorem 2). Together with assump-
tion (4.3), we can find t0 ≥ 0 such that, for all t ≥ t0, the following property
holds: ∣∣∇f(ẋ(t)

)∣∣ ≤ (β + 1)
∣∣ẋ(t)

∣∣l. (4.21)

Define for ε > 0

Eε(t) = E(t) + ε

(〈
x(t), ẋ(t)

〉
+
λ

2

∣∣x(t)
∣∣2). (4.22)

We recall that E(t) = 1
2 |ẋ(t)|2 +Φ(x(t)). Then, from (4.5) and Hölder inequal-

ity, for all t ≥ t0

Eε(t) =
1

2

∣∣ẋ(t)
∣∣2 + Φ

(
x(t)

)
+ ε

(〈
x(t), ẋ(t)

〉
+
λ

2

∣∣x(t)
∣∣2)

≤ 1

2

∣∣ẋ(t)
∣∣2 + Φ

(
x(t)

)
+
ε

2

∣∣ẋ(t)
∣∣2 +

ε(λ+ 1)

2

∣∣x(t)
∣∣2

≤ (1 + ε)E(t) +
ε(λ+ 1)

2

(∣∣x(t)
∣∣m) 2

m

≤ (1 + ε)E(0)
m−2
m E(t)

2
m +

ε(λ+ 1)

2

(
m

α
Φ
(
x(t)

)) 2
m

≤ BεE(t)
2
m , (4.23)

where Bε = (1 + ε)E(0)
m−2
m + ε(λ+1)

2

(
m
α

) 2
m .

On the other hand, take a constant δ = λ
4 , then

Eε(t) ≥ E(t)− ε
(

1

4δ

∣∣ẋ(t)
∣∣2 + δ

∣∣x(t)
∣∣2)+

ελ

2

∣∣x(t)
∣∣2

= E(t)− ε

4δ

∣∣ẋ(t)
∣∣2 + ε

(
λ

2
− δ
)∣∣x(t)

∣∣2
≥ E(t)− ε

λ

∣∣ẋ(t)
∣∣2. (4.24)

By choosing ε so small that 1− 2ε
λ > 0, then(

1− 2ε

λ

)
E(t) ≤ Eε(t). (4.25)

Computing the derivative of (4.22), and using inequality (3.1) and convexity
of Φ and f , we have

Ėε(t) = Ė(t) + ε
(∣∣ẋ(t)

∣∣2 +
〈
ẍ(t), x(t)

〉
+ λ

〈
ẋ(t), x(t)

〉)
≤ −λ

∣∣ẋ(t)
∣∣2 + ε

∣∣ẋ(t)
∣∣2 − ε〈∇f(ẋ(t), x(t)

〉
− ε
〈
∇Φ(x(t), x(t)

〉
≤ (ε− λ)

∣∣ẋ(t)
∣∣2 − ε〈∇f(ẋ(t), x(t)

〉
− εΦ

(
x(t)

)
. (4.26)
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From Young inequality, it follows that, for all µ > 0, t ≥ t0∣∣〈∇f(ẋ(t)
)
, x(t)

〉∣∣ ≤ µ

m

∣∣x(t)
∣∣m +

m− 1

m
µ−

m′
m

∣∣∇f(ẋ(t)
)∣∣m′

≤ µ

αm
Φ
(
x(t)

)
+
m− 1

m
µ−

m′
m

∣∣∇f(ẋ(t)
)∣∣m′ (4.27)

with m′ = m
m−1 . Returning to (4.26), and using inequality (4.21) and condition

(4.3), we get, for all t ≥ t0

Ėε(t) ≤ (ε− λ)
∣∣ẋ(t)

∣∣2 + ε

(
µ

αm
− 1

)
Φ
(
x(t)

)
+ ε

m− 1

m
µ−

m′
m

∣∣∇f(ẋ(t)
)∣∣m′ (4.28)

≤
[
ε

(
1 +

m− 1

m
(β + 1)m

′
µ−

m′
m

)
− λ

]∣∣ẋ(t)
∣∣2 + ε

(
µ

αm
− 1

)
Φ
(
x(t)

)
.

Now we choose µ small sufficiently such that µ
αm − 1 < 0. Once µ is chosen we

then take ε small sufficiently such that ε(1 + m−1
m (β+ 1)m

′
µ−

m′
m )−λ < 0, and

inequality (4.25) remains valid. Consequently, (4.23) and (4.28) yields, for all
t ≥ t0

Ėε(t) ≤ −k1E(t) ≤ −k1B
−m

2
ε Eε(t)

m
2 (4.29)

with

k1 = min

{
2

[
λ− ε

(
1 +

m− 1

m
(β + 1)m

′
µ−

m′
m

)]
, ε

(
1− µ

αm

)}
.

Thus, a simple integration of (4.29) leads to, for all t ≥ t0,

Eε(t) ≤
(
Eε(0)−

m−2
2 + r0t

)− 2
m−2 , (4.30)

where r0 = m−2
2 B

−m
2

ε k1. According to inequality (4.25), we get that

E(t) ≤ (K + rt)−
2

m−2 , (4.31)

with

K =

[(
1− ε

2δ

)
E−1ε (0)

]m−2
2

, r =

(
1− ε

2δ

)m−2
2

r0.

Finally, by virtue of (4.20) and (4.31), we completes the proof. ut

Remark 2. Under the assumption of above theorem, one easily deduces that the
trajectory x(t) of (GD) strongly converges to minimum point x̄. More precisely,
for all t ≥ t0, the trajectory x(t) satisfies∣∣x(t)− x̄

∣∣ ≤ √Ke− r
2 t, 1 < m ≤ 2,∣∣x(t)− x̄

∣∣ ≤ (K + rt)−
2

m(m−2) , m > 2. (4.32)
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Now, we present some examples to illustrate the previous results. As far
as we know, the polynomial decay result is very rare in this field. Firstly, we
give an example to show that the polynomial decay, in case of m > 2, cannot
improve to exponential decay in general.

Example 1. We consider a second order ODE in one dimensional case H = R1

as following ẍ(t) + ẋ(t) +∇f
(
ẋ(t)

)
+∇Φ

(
x(t)

)
= 0,

f(x) =
4

5
|x| 52 , Φ(x) =

1

3
|x|3.

(4.33)

Let x̄ = 0. Obviously the above equation satisfies condition (4.2) with α = 1

and m = 3. Moreover l = 2 − 2
m = 4

3 , and |∇f(x)|
|x|l = 2|x| 16 , which implies

that the equation (4.33) satisfies condition (4.3) with β = 0. Hence, applying
Theorem 5, for any initial condition (x(0), ẋ(0)) ∈ R2, we obtain that the
decay rate of energy E(t) is − 2

m−2 = −2. Indeed, if we choose initial condition
x(0) = 1 and ẋ(0) = −1, the unique global solution of (4.33) is given by

x(t) = (1 + t)−1

and the associated energy function is

E(t) =
1

2

∣∣ẋ(t)
∣∣2 + Φ

(
x(t)

)
=

1

2
(1 + t)−4 +

1

3
(1 + t)−3.

It coincides with our estimation.

Example 2. Consider the following nonlinear strongly coupled oscillator system
with two degrees of freedom (see [19] and [23] for the model of this kind):{

utt + λut + 2
(
u4t + v2t

)2
u3t + 2su+ 8

(
u4 + |v|q

)
u3 = 0,

vtt + λvt +
(
u4t + v2t

)2
vt + 2sv + 2q sgn(v)

(
u4 + |v|q

)
|v|q−1 = 0,

(4.34)

where λ > 0, s > 0, q > 1, and

sgn(v) =

1 if v > 0,
0 if v = 0,
−1 if v < 0.

The differential system (4.34) can be rewritten as

Ẍ(t) + λẊ(t) +∇f
(
Ẋ(t)

)
+∇Φ

(
X(t)

)
= 0,

where

X(t) =

(
u(t)
v(t)

)
, and

f(u, v) =
1

6

(
u4 + v2

)3
,

Φ(u, v) = s
(
u2 + v2

)
+
(
u4 + |v|q

)2
.

Obviously, f and Φ satisfy assumption (Af ) and (AΦ), so all solutions are global
from Theorem 1. Since s > 0 and q > 1, one easily check that Φ(u, v) : R2 →

Math. Model. Anal., 18(5):654–674, 2013.
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R+ is coercive and convex. Moreover, since, for any (u, v) ∈ R2, ∇Φ(u, v) =
2(su + 4(u4 + |v|q)u3, sv + q(u4 + |v|q)|v|q−2v)T , so Φ is strongly convex and
(0, 0) is the strong minimum of Φ. Hence, by Theorem 5, we know that the
energy

E(t) :=
1

2

(
u2t + v2t

)
+ Φ(u, v)

associated to the system (4.34) exponentially decay to zero, and the trajectory
(u(t), v(t)) exponentially converges to the minimum point (0, 0).

Remark 3. Let w = u̇, y = v̇ and Z = (w, u, y, v)T , then the differential system
(4.34) can be expressed as an “abstract form” first order system:

Ż = CZ +H(Z) (4.35)

with

C =


−λ −2s 0 0
1 0 0 0
0 0 −λ −2s
0 0 1 0


and

H(Z) =


−2(w4 + y2)2w3 − 8(u4 + |v|q)u3
0
−(w4 + y2)2y − 2q sgn(v)(v4 + |v|q)|v|q−1
0

 .

Denote by E the set of equilibrium points of the equation (4.35), then it is
obvious that E is a single point set {(0, 0, 0, 0)T }. If q > 2, from the general
result of Hale and Raugel [17, Th2.4], one can also deduce the convergence
(but not exponential convergence) of trajectory. If 2 ≥ q > 1, because the
differentiability of H(Z) is not valid, so the result of [17] cannot be applied
to deduce the convergence of trajectory. However, as mentioned above, one
obtain the exponential convergence for any q > 1 via the results in this work.

Finally, let us emphasize that, combine the asymptotic techniques developed
in this paper with appropriate evolution triple V ↪→ H ↪→ V ′, one can analyze
the convergence of global solutions of some hyperbolic systems. For example,
let us consider nonlinear Klein-Gordon equation

utt + ut + α|ut|2ut −∆u = −Cup − βu in Ω × [0,+∞),

u(·, 0) = u0, ut(·, 0) = v0 in Ω,

u(x, t) = 0 on ∂Ω × [0,+∞),

(4.36)

where p is an odd integer, C > 0, α ≥ 0, β ≥ 0, and Ω ⊂ Rn be an open
bounded domain with boundary ∂Ω sufficiently regular. By Poincaré inequality
and Theorem 5, we obtain the following convergence result for the evolution
problem (4.36). The detailed proof is omitted here. For related work, we refer
to [2], [24].
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Proposition 2. For any u0 ∈ H1(Ω) and v0 ∈ L2(Ω), there exists a unique
weak solution of to hyperbolic problem (4.36) such that :

(i) the map t 7−→ ut(·, t) belongs to L2(0,+∞;L2(Ω)) ∩ L∞(0,+∞;L2(Ω)).

(ii) the solution t 7−→ u(·, t) strongly exponential converges in H1
0 (Ω), as

t→ +∞, toward a solution of the degenerate Logistic equation{
−∆u+ Cup + βu = 0 in Ω,
u = 0 on ∂Ω.
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