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Abstract. We study the existence of solutions for nonlinear first order impulsive
systems with nonlocal initial conditions. Our approach relies in the fixed point prin-
ciples of Schauder and Perov, combined with a vector approach that uses matrices
that converge to zero. We prove existence and uniqueness results for these systems.
Some examples are presented to illustrate the theory.
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1 Introduction

Differential equations with impulses are often used when modelling a variety of
phenomena in engineering, physics and life sciences. In the field of population
dynamics the impulsive terms model a sudden change in the population size, for
example due to stocking or harvesting, for some recent papers in this direction
see for example [1,12,14]. An introduction to the theory of impulsive differential
equations can be found in the books [3, 13, 23], that contain also a variety of
examples.

Here we deal with a system of first order differential equations with impul-
sive terms subject to nonlocal initial value conditions, namely

x′ (t) = f1

(
t, x (t) , y(t)

)
, y′ (t) = f2

(
t, x (t) , y(t)

)
, t ∈ (0, 1), t 6= τ,

∆x|t=τ = I1
(
x(τ)

)
, ∆y|t=τ = I2

(
y(τ)

)
, τ ∈ (0, 1),

x (0) = α1[x], y (0) = α2[y].
(1.1)
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Here ∆v|t=τ denotes the “jump” of the function v in t = τ, that is

∆v|t=τ = v(τ+)− v(τ−),

where v(τ−), v(τ+) are the left and the right limits of v in t = τ and αi
(i = 1, 2) are linear functionals given by Stieltjes integrals

αi[v] =

∫ t0

0

v(s) dAi(s), (1.2)

where t0 ∈ (0, τ) is fixed. The nonlocal conditions (1.2) are fairly general and
include, as special cases, m-point and integral conditions, when

αi[v] =

m∑
j=1

αijv(tij) and αi[v] =

∫ t0

0

αi(s)v(s) ds

with 0 ≤ tij ≤ t0. These are widely studied objects, see for example [2, 5, 7, 8,
11,15,16,18,19,22,24,25], and references therein.

Recently Nica [17] studied the system (1.1) without impulsive terms and
α1, α2 suitable linear bounded functionals on C[0, 1]. The methodology in [17]
is to rewrite the system as an integral system of the type

x(t) =
1

1− α1[1]
α1[g1] + g1(x, y)(t),

y(t) =
1

1− α2[1]
α2[g2] + g2(x, y)(t),

(1.3)

where 1 6= αi[1] and

gi(x, y)(t) :=

∫ t

0

fi
(
s, x (s) , y(s)

)
ds, i = 1, 2,

and to make use of some fixed point theorems combined with matrices that
converge to zero and vector-valued norms.

Our idea, similar to the one utilized in [9, 10] in the context of second-
order impulsive equations, is to rewrite the system (1.1) as a system of integral
equations that can be seen as a perturbation of (1.3), that is

x(t) =
1

1− α1[1]
α1[g1] + g1(x, y)(t) +G1(x)(t),

y(t) =
1

1− α2[1]
α2[g2] + g2(x, y)(t) +G2(y)(t),

where the terms Gi take into account the impulsive effect.
Here, we benefit also of a careful decomposition similar to the one proposed

in [6] and later used in [17, 18], namely to rewrite the integral operator asso-
ciated to the non-impulsive terms as a sum of two operators; one of Fredholm
type, whose values depend only on the restrictions to the subinterval [0, t0],
and another one of Volterra type depending on the restrictions to the interval
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[t0, 1]. This allows us to split the growth conditions on the nonlinear terms
f1 and f2 into two parts, one for t ∈ [0, t0] and the other one for [t0, 1]. The
corresponding conditions in the existence theorems are different in the two in-
tervals, being more relaxed in the last interval. This is the first time that this
approach is used in the context of nonlocal impulsive systems.

We present two examples that illustrate the applicability of our results; this
is done in the last Section.

2 Preliminaries

We now give some notations, definitions and basic results which are used
throughout this paper. We make use of the fixed point theorems of Perov and
Schauder; in order to apply these theorems we require the notion of convergent
to zero matrices (see for example [20,21]).

Definition 1. A square matrix M with non-negative elements is said to be
convergent to zero if

Mk → 0 as k →∞.

The next Lemma provides a characterization of matrices converging to zero
(see [4, pp. 9, 10], [20, 21]).

Lemma 1. Let M be a square matrix of nonnegative numbers. The following
statements are equivalent :

(i) M is a matrix that is convergent to zero;

(ii) I−M is nonsingular and (I−M)−1 = I+M+M2 + · · · (where I stands
for the unit matrix of the same order as M);

(iii) the eigenvalues of M are located inside the unit disc of the complex plane;

(iv) I −M is nonsingular and (I −M)−1 has nonnegative elements.

The following lemma is a consequence of the previous characterizations.

Lemma 2. Let A be a matrix that is convergent to zero. Then for each ma-
trix B of the same order whose elements are nonnegative and sufficiently small,
matrix A+B is also convergent to zero.

Definition 2. By a vector-valued metric on a set X we mean a mapping
d : X ×X → Rn+ such that

(i) d(u, v) ≥ 0 for all u, v ∈ X and if d(u, v) = 0 then u = v;

(ii) d(u, v) = d(v, u) for all u, v ∈ X;

(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X;

where, for x, y ∈ Rn, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), by x ≤ y we
mean xi ≤ yi for i = 1, 2, . . . , n. We call the pair (X, d) a generalized metric
space. For such spaces convergence and completeness are similar to those in
usual metric spaces.

Math. Model. Anal., 18(5):599–611, 2013.
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An operator T : X → X is said to be contractive with respect to a vector-
valued metric d on X, if there exists a matrix M, called Lipschitz matrix, that
is convergent to zero such that

d
(
T (u), T (v)

)
≤Md(u, v), for every u, v ∈ X.

The following theorem, can be found for example in [20, Theorem 10.1].

Theorem 1 [Perov]. Let (X, d) be a complete generalized metric space and
T : X → X a contractive operator with Lipschitz matrix M. Then T has a
unique fixed point u∗ and for each u0 ∈ X we have

d
(
T k(u0), u∗

)
≤Mk(I −M)−1d

(
u0, T (u0)

)
, for every k ∈ N.

Theorem 2 [Schauder]. Let X be a Banach space, B ⊂ X a nonempty closed
bounded convex set and T : B → B a completely continuous operator (i.e., T
is continuous and T (B) is relatively compact). Then T has at least one fixed
point.

We recall some earlier results of [17] valid for the non-impulsive problem{
x′ (t) = f1

(
t, x (t) , y(t)

)
, y′ (t) = f2

(
t, x (t) , y(t)

)
, t ∈ (0, 1),

x (0) = α1[x], y (0) = α2[y].
(2.1)

The approach in [17] is to rewrite the problem (2.1) as an integral system
of the type (1.3). The solutions of the system (1.3) are sought as fixed points
for the operator

TB(x, y)(t) =

(
TB1

(x, y)(t)

TB2(x, y)(t)

)
:=

(
1

1−α1[1]α1[g1] + g1(x, y)(t)
1

1−α2[1]α2[g2] + g2(x, y)(t)

)
,

and the operator TB is decomposed as a sum of two operators, one of Fredholm
type and another one of Volterra type, namely

TB = TF + TV , (2.2)

where

TF (x, y)(t) =

(
TF1

(x, y)(t)

TF2(x, y)(t)

)
, TV (x, y)(t) =

(
TV1

(x, y)(t)

TV2
(x, y)(t)

)
,

with for i = 1, 2

TFi(x, y)(t) =


1

1−αi[1]αi[gi] +
∫ t

0
fi(s, x (s) , y(s)) ds, if t < t0,

1
1−αi[1]αi[gi] +

∫ t0
0
fi(s, x (s) , y(s)) ds, if t ≥ t0

and

TVi(x, y)(t) =

{
0, if t < t0,∫ t
t0
fi(s, x (s) , y(s)) ds, if t ≥ t0.
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A key assumption utilized in the paper [17] is that the matrix

M := t0

a1( ‖α1‖
|1−α1[1]| + 1) b1( ‖α1‖

|1−α1[1]| + 1)

A1( ‖α2‖
|1−α2[1]| + 1) B1( ‖α2‖

|1−α2[1]| + 1)


is converging to zero. This is used in order to apply the theorems of Schauder
and Perov for the existence of at least one and for the existence of a unique
solution. The matrix M can be written as

M = MN +MV ,

where

MN := t0

a1
‖α1‖
|1−α1[1]| b1

‖α1‖
|1−α1[1]|

A1
‖α2‖
|1−α2[1]| B1

‖α2‖
|1−α2[1]|

 and MV := t0

[
a1 b1
A1 B1

]
.

Note that the matrix MN takes into account the nonlocal conditions. The
nonnegative coefficients ai, bi, Ai, Bi are provided by the Lipschitz conditions
given by the nonlinearities, namely∣∣f1(t, x, y)− f1(t, x, y)

∣∣ ≤ {a1|x− x|+ b1|y − y|, if t ∈ [0, t0] ,
a2|x− x|+ b2|y − y|, if t ∈ [t0, 1] ,∣∣f2(t, x, y)− f2(t, x, y)

∣∣ ≤ {A1|x− x|+B1|y − y|, if t ∈ [0, t0] ,
A2|x− x|+B2|y − y|, if t ∈ [t0, 1]

for all x, y, x, y ∈ R.

3 An existence result

We now consider the system
x′ (t) = f1

(
t, x (t) , y(t)

)
, y′ (t) = f2

(
t, x (t) , y(t)

)
, t ∈ (0, 1), t 6= τ,

∆x|t=τ = I1
(
x(τ)

)
, ∆y|t=τ = I2

(
y(τ)

)
, τ ∈ (0, 1),

x (0) = α1[x], y (0) = α2[y].
(3.1)

Throughout the paper we assume the following:

(H1) For i = 1, 2, fi : [0, 1]× R2 → R is such that fi(., x, y) is measurable for
each (x, y) ∈ R2 and fi(t, ., .) is continuous for almost all t ∈ [0, 1], and
for each r > 0 there exists φi,r ∈ L1(0, 1) such that

|fi(t, u, v)| ≤ φi,r(t) for u, v ∈ [−r, r] and a. e. t ∈ [0, 1].

(H2) For i = 1, 2, the function Ai is of bounded variation on [0, t0] with

αi[1] =

∫ t0

0

1 dAi(s) 6= 1.

Math. Model. Anal., 18(5):599–611, 2013.
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(H3) For i = 1, 2, the function Ii : R→ R is continuous.

We work in the Banach space PC τ [0, 1]× PC τ [0, 1], where

PC τ [0, 1] := {u : [0, 1]→ R|, u is continuous in t ∈ [0, 1]\{τ},
there exist u(τ−) = u(τ) and

∣∣u(τ+)
∣∣ <∞}.

The classical Ascoli–Arzelà compactness criterion cannot be applied directly
to the space PC τ [0, 1], here we make use of the following extension of this
criterion, see for example [13].

We recall that a set S ⊂ PC τ [0, 1] is said to be quasi-equicontinuous if for
every u ∈ S and for every ε > 0 there exists δ > 0 such that t1, t2 ∈ [0, τ ] (or
t1, t2 ∈ (τ, 1]) and |t1 − t2| < δ implies |u(t1)− u(t2)| < ε.

Lemma 1. A set S ⊆ PC τ [0, 1] is relatively compact in PC τ [0, 1] if and only
if S is bounded and quasi-equicontinuous.

We use in PC τ [0, 1]× PC τ [0, 1] the vector norm∥∥(x, y)
∥∥
PCτ [0,1]×PCτ [0,1]

:=
(
‖x‖, ‖y‖

)
,

where
‖v‖ := max

{
|v|[0,t0], ‖v‖[t0,1]

}
and the notation |v|[0,t0] stands for the sup-norm on [0, t0]:

|v|[0,t0] = supt∈[0,t0]

∣∣v(t)
∣∣,

while ‖v‖[t0,1] denotes a Bielecki-type norm on [t0, 1]:

‖v‖[t0,1] = supt∈[t0,1]

∣∣v(t)
∣∣e−θ(t−t0)

for some suitable θ > 0.
The norm of the functional αi : PC τ [0, 1]→ R, is given by

‖αi‖ = sup
‖v‖=1

∣∣∣∫ t0

0

v(s) dAi(s)
∣∣∣.

Our idea is to seek a solution of the problem (3.1) as a fixed point of a
perturbation of the operator (2.2), namely

T = TF + TV +G, (3.2)

where

G(x, y)(t) =

(
G1(x)(t)

G2(y)(t)

)
and Gi(v)(t) =

{
0, if t ≤ τ,
Ii(v(τ)), if t > τ.

We now show that the existence of solutions for the problem (3.1) follows from
Schauder’s fixed point theorem when f1, f2 satisfy some growth conditions of
the type: there exists nonnegative coefficients ai, bi, ci, Ai, Bi, Ci such that
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∣∣f1(t, x, y)
∣∣ ≤ {a1|x|+ b1|y|+ c1, if t ∈ [0, t0] ,

a2|x|+ b2|y|+ c2, if t ∈ [t0, 1] ,
(3.3)

∣∣f2(t, x, y)
∣∣ ≤ {A1|x|+B1|y|+ C1, if t ∈ [0, t0] ,

A2|x|+B2|y|+ C2, if t ∈ [t0, 1]
(3.4)

for all x, y ∈ R.
We also assume that there exist di, ei ∈ [0,∞) such that for every v ∈ R we

have ∣∣Ii(v)
∣∣ ≤ di|v|+ ei, for i = 1, 2. (3.5)

In what follows we denote by

MI :=

[
d1 0
0 d2

]
and Aαi :=

1

|1− αi[1]|
‖αi‖+ 1, i = 1, 2.

The matrix MI is essential for our arguments as it takes care of the impulsive
effect. This enables us to bridge the methodology employed in [17] to the
context of impulsive problems.

Theorem 3. If the conditions (3.3), (3.4), (3.5) are satisfied and the matrix

M0 := M +MI (3.6)

converges to zero, then the problem (3.1) has at least one solution.

Proof. In order to apply the Schauder fixed point theorem, we look for a non-
empty, bounded, closed and convex subset B of PC τ [0, 1] × PC τ [0, 1] so that
T (B) ⊂ B. Let x, y be any elements of PC τ [0, 1] .
For t ∈ [0, t0] , following the proof of Theorem 3.1 of [17], we obtain that

∣∣T1(x, y)
∣∣
[0,t0]

≤
(

‖α1‖
|1− α1[1]|

+ 1

)(
a1t0|x|[0,t0] + b1t0|y|[0,t0]

)
+ c1t0Aα1

= a1t0Aα1
|x|[0,t0] + b1t0Aα1

|y|[0,t0] + c1t0Aα1
. (3.7)

For t ∈ [t0, 1] and any θ > 0, we have∣∣T1(x, y)(t)
∣∣ ≤ a1t0Aα1

|x|[0,t0] + b1t0Aα1
|y|[0,t0] + c1t0Aα1

+ d1

∣∣x(τ)
∣∣+ e1 +

∫ t

t0

(
a2

∣∣x(s)
∣∣+ b2

∣∣y(s)
∣∣+ c2

)
ds

≤ a1t0Aα1 |x|[0,t0] + b1t0Aα1 |y|[0,t0] + c1t0Aα1 + (1− t0)c2 + e1

+ d1

∣∣x(τ)
∣∣e−θ(t−t0)eθ(t−t0) + a2

∫ t

t0

∣∣x(s)
∣∣e−θ(s−t0)eθ(s−t0)ds

+ b2

∫ t

t0

∣∣y(s)
∣∣e−θ(s−t0)eθ(s−t0)ds

≤ a1t0Aα1 |x|[0,t0] + b1t0Aα1 |y|[0,t0] + c0

+ d1e
θ(t−t0)‖x‖[t0,1] +

a2

θ
eθ(t−t0)‖x‖[t0,1] +

b2
θ
eθ(t−t0)‖y‖[t0,1],

Math. Model. Anal., 18(5):599–611, 2013.
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where c0 := c1t0Aα1
+ (1 − t0)c2 + e1. Dividing by eθ(t−t0) and taking the

supremum, it follows that∥∥T1(x, y)
∥∥

[t0,1]
≤ a1t0Aα1

|x|[0,t0] + b1t0Aα1
|y|[0,t0] (3.8)

+

(
a2

θ
+ d1

)
‖x‖[t0,1] +

b2
θ
‖y‖[t0,1] + c0.

Clearly (3.7), (3.8) give

∥∥T1(x, y)
∥∥ ≤ (a1t0Aα1 + d1 +

a2

θ

)
‖x‖+

(
b1t0Aα1 +

b2
θ

)
‖y‖+ c0. (3.9)

Similarly∥∥T2(x, y)
∥∥ ≤ (A1t0Aα2

+
A2

θ

)
‖x‖+

(
B1t0Aα2

+ d2 +
B2

θ

)
‖y‖+ C0 (3.10)

with C0 := C1t0Aα2
+ (1− t0)C2 + e2.

Now (3.9), (3.10) can be put together as[
‖T1(x, y)‖
‖T2(x, y)‖

]
≤Mθ

[
‖x‖
‖y‖

]
+

[
c0

C0

]
,

where the matrix Mθ is given by

Mθ =

[
Aα1

a1t0 + d1 + a2
θ Aα1

b1t0 + b2
θ

Aα2
A1t0 + A2

θ Aα2
B1t0 + d2 + B2

θ

]
. (3.11)

Clearly the matrix Mθ can be represented as Mθ = M0 +M1, where

M1 =

[
a2
θ

b2
θ

A2

θ
B2

θ

]
.

Since M0 is assumed to be convergent to zero, from Lemma 1.2 we have that
Mθ also converges to zero for large enough θ > 0. Next we look for two positive
numbers R1, R2, such that if ‖x‖ ≤ R1, ‖y‖ ≤ R2, then ‖T1(x, y)‖ ≤ R1,
‖T2(x, y)‖ ≤ R2. To this end it is sufficient that

(
a1t0Aα1

+ d1 +
a2

θ

)
R1 +

(
b1t0Aα1

+
b2
θ

)
R2 + c0 ≤ R1,(

A1t0Aα2
+
A2

θ

)
R1 +

(
B1t0Aα2

+ d2 +
B2

θ

)
R2 + C0 ≤ R2

or equivalently

Mθ

[
R1

R2

]
+

[
c0
C0

]
≤
[
R1

R2

]
,

and therefore [
R1

R2

]
≥ (I −Mθ)

−1

[
c0
C0

]
.
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Notice that I −Mθ is invertible and its inverse (I −Mθ)
−1

has nonnegative
elements since Mθ converges to zero. Thus, if

B =
{

(x, y) ∈ PC τ [0, 1]× PC τ [0, 1] : ‖x‖ ≤ R1, ‖y‖ ≤ R2

}
,

then T (B) ⊂ B. The fact that T is completely continuous follows by Lemma 1,
combined with the useful decomposition (3.2), in a similar way as in the proof
of the Theorem 3.3 of [10].

The result now follows from Schauder’s fixed point theorem. ut

Remark 1. From the proof of the Theorem 3 it follows that there exists θ̄ such
that the obtained fixed point (x, y) of the operator T satisfies the relation

‖x‖ = max
{
|x|[0,t0], ‖x‖[t0,1]

}
≤ R1, ‖y‖ = max

{
|y|[0,t0], ‖y‖[t0,1]

}
≤ R2.

This implies that, in the interval [0, t0], we have that

|x(t)| ≤ R1, |y(t)| ≤ R2

and in [t0, 1], we have that

|x(t)| ≤ R1e
θ̄(t−t0), |y(t)| ≤ R2e

θ̄(t−t0). (3.12)

We note that a choice of θ > θ̄ provides a worse estimate in (3.12).

4 An existence and uniqueness result

Here, by means of the fixed point theorem of Perov, we prove an existence and
uniqueness result, provided that f1, f2 satisfy the Lipschitz conditions

∣∣f1(t, x, y)− f1(t, x, y)
∣∣ ≤ {a1|x− x|+ b1|y − y|, if t ∈ [0, t0] ,

a2|x− x|+ b2|y − y|, if t ∈ [t0, 1] ,
(4.1)

∣∣f2(t, x, y)− f2(t, x, y)
∣∣ ≤ {A1|x− x|+B1|y − y|, if t ∈ [0, t0] ,

A2|x− x|+B2|y − y|, if t ∈ [t0, 1]
(4.2)

and also ∣∣Ii(v)− Ii(v)
∣∣ ≤ di|v − v| for i = 1, 2, (4.3)

for all x, y, x, y, v, v ∈ R.

Theorem 4. If the conditions (4.1), (4.2), (4.3) and the matrix (3.6) converges
to zero, then the problem (3.1) has a unique solution.

Proof. We have to prove that T is contractive, that is∥∥T (u)− T (u)
∥∥
PCτ [0,1]×PCτ [0,1]

≤Mθ‖u− u‖PCτ [0,1]×PCτ [0,1]

for all u, u ∈ PC τ [0, 1]×PC τ [0, 1] and some matrix Mθ converging to zero. To
this end, let u = (x, y), u = (x, y) be any elements of PC τ [0, 1]× PC τ [0, 1].

Math. Model. Anal., 18(5):599–611, 2013.
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For t ∈ [0, t0] , following the proof of Theorem 2.1 of [17], we have∣∣T1(x, y)− T1(x, y)
∣∣
[0,t0]

≤
(

‖α1‖
|1− α1[1]|

+ 1

)(
a1t0|x− x|[0,t0] + b1t0|y − y|[0,t0]

)
= Aα1

a1t0|x− x|[0,t0] +Aα1
b1t0|y − y|[0,t0]. (4.4)

For t ∈ [t0, 1] and any θ > 0, we have∣∣T1(x, y)(t)− T1(x, y)(t)
∣∣ ≤ Aα1

a1t0|x− x|[0,t0] +Aα1
b1t0|y − y|[0,t0]

+
∣∣I1(x)(τ)− I1(x)(τ)

∣∣+

∫ t

t0

∣∣f1

(
s, x (s) , y(s)

)
− f1

(
s, x (s) , y(s)

)∣∣ ds
≤ Aα1

a1t0|x− x|[0,t0] +Aα1
b1t0|y − y|[0,t0]

+ d1

∣∣x(τ)− x (τ)
∣∣+

∫ t

t0

(
a2

∣∣x(s)− x(s)
∣∣+ b2

∣∣y(s)− y(s)
∣∣) ds

= Aα1
a1t0|x− x|[0,t0]+Aα1

b1t0|y − y|[0,t0]+d1

∣∣x(τ)−x (τ)
∣∣e−θ(t−t0)eθ(t−t0)

+ a2

∫ t

t0

∣∣x(s)− x(s)
∣∣ · e−θ(s−t0) · eθ(s−t0)ds

+ b2

∫ t

t0

∣∣y(s)− y(s)
∣∣ · e−θ(s−t0) · eθ(s−t0)ds

≤ Aα1
a1t0|x− x|[0,t0] +Aα1

b1t0|y − y|[0,t0]

+ d1e
θ(t−t0)‖x− x‖[t0,1]+

a2

θ
eθ(t−t0)‖x− x‖[t0,1]+

b2
θ
eθ(t−t0)‖y − y‖[t0,1].

Dividing by eθ(t−t0) and taking the supremum when t ∈ [t0, 1], we obtain∥∥T1(x, y)− T1(x, y)
∥∥

[t0,1]
≤ Aα1a1t0|x− x|[0,t0] +Aα1b1t0|y − y|[0,t0]

+

(
a2

θ
+ d1

)
‖x− x‖[t0,1] +

b2
θ
‖y − y‖[t0,1]. (4.5)

Now (4.4) and (4.5) imply that∥∥T1(x, y)−T1(x, y)
∥∥ ≤ (Aα1

a1t0 +d1 +
a2

θ

)
‖x−x‖+

(
Aα1

b1t0 +
b2
θ

)
‖y−y‖.

(4.6)
Similarly we have∥∥T2(x, y)−T2(x, y)

∥∥ ≤ (Aα2
A1t0+

A2

θ

)
‖x−x‖+

(
Aα2

B1t0+d2+
B2

θ

)
‖y−y‖.

(4.7)
Using the vector norm we can put the inequalities (4.6), (4.7) in the form∥∥T (u)− T (u)

∥∥
PCτ [0,1]×PCτ [0,1]

≤Mθ‖u− u‖PCτ [0,1]×PCτ [0,1],

where Mθ is given by (3.11) and converges to zero for large enough θ > 0.
The result follows now from Perov’s fixed point theorem. ut
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5 Numerical examples

In what follows, we give some numerical examples to illustrate our theory.

Example 1. Consider the initial value problem

x′ =
1

4
x sin

(
y

x

)
+

1

3
y sin

(
x

y

)
+ h1(t) ≡ f1(t, x, y),

y′ =
1

3
x sin

(
y

x

)
+

1

6
y sin

(
x

y

)
+ h2(t) ≡ f2(t, x, y),

∆x|t= 3
4

=
1

3
sin

(
x

(
3

4

))
, ∆y|t= 3

4
=

1

4
cos

(
y

(
3

4

))
,

x(0) =
1

2

∫ 1
2

0

x(s) ds, y(0) =
1

2

∫ 1
2

0

y (s) ds,

t ∈ [0, 1] , (5.1)

where h1, h2 ∈ C[0, 1]. We have that α1 [1] = α2 [1] = ‖α1‖ = ‖α2‖ = 1
4 . Since

|f1 (t, x, y)| ≤ 1

4
|x|+ 1

3
|y|+ |h1(t)| , |f2 (t, x, y)| ≤ 1

3
|x|+ 1

6
|y|+ |h2(t)|

and d1 = 1
3 , d2 = 1

4 , we obtain

M0 =
1

36

(
18 8
8 13

)
,

which is convergent to zero because its eigenvalues (rounded to the third deci-
mal place) are λ1 = 0.198 < 1, λ2 = 0.663 < 1. From Theorem 3, the problem
(5.1) has at least one solution.

Example 2. We present a modified version of Example 2.2 in [22] that takes
into account systems and impulsive effects. Consider the initial value problem

x′ =
1

2
y
[
1 + e−

4
5 (x−1)

]−1 ≡ f1(x, y),

y′ =
1

10
x
[
1 + e−

2
5 (y−1)

]−1 ≡ f2(x, y),

∆x|t= 3
4

=
1

3
cos

(
x

(
3

4

))
, ∆y|t= 3

4
=

1

5
sin

(
y

(
3

4

))
,

x(0) =
1

2

∫ 1
2

0

x(s) ds, y(0) =
1

2

∫ 1
2

0

y(s) ds.

t ∈ [0, 1] , (5.2)

Here we have that α1 [1] = α2 [1] = ‖α1‖ = ‖α2‖ = 1
4 . Furthermore we have

sup
x,y∈R

∣∣∣∣∂f1 (x, y)

∂x

∣∣∣∣ ≤ 1

10
= a1, sup

x,y∈R

∣∣∣∣∂f1 (x, y)

∂y

∣∣∣∣ ≤ 1

2
= b1,

sup
x,y∈R

∣∣∣∣∂f2 (x, y)

∂x

∣∣∣∣ ≤ 1

10
= A1, sup

x,y∈R

∣∣∣∣∂f2 (x, y)

∂y

∣∣∣∣ ≤ 1

10
= B1

and d1 = 1
3 , d2 = 1

5 . Therefore the matrix M0 = 1
15

(
6 5
1 4

)
converges to zero

since its eigenvalues are λ1 = 0.17 < 1, λ2 = 0.5 < 1. From Theorem 4, the
problem (5.2) has a unique solution.

Math. Model. Anal., 18(5):599–611, 2013.



610 O. Bolojan-Nica, G. Infante and P. Pietramala

Acknowledgments

The authors are indebted to the two anonymous referees for their valuable
suggestions. This paper was written during the research stage of the first
author at the University of Calabria, supported by the Sectorial Operational
Programme for Human Resources Development 2007–2013, co-financed by the
European Social Fund under project number POSDRU/107/1.5/ S/76841 and
title “Modern Doctoral Studies: Internationalization and Interdisciplinarity”.
The first author was also supported by a grant of the Romanian National
Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-
ID-PCE-2011-3-0094.

References

[1] S. Ahmad and I.M. Stamova. Asymptotic stability of an N -dimensional impulsive
competitive system. Nonlinear Anal. Real World Appl., 8(2):654–663, 2007.
http://dx.doi.org/10.1016/j.nonrwa.2006.02.004.
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