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Abstract. In this paper, two hybrid difference schemes on the Shishkin mesh are
constructed for solving a weakly coupled system of two singularly perturbed convec-
tion - diffusion second order ordinary differential equations subject to the mixed type
boundary conditions. We prove that the method has almost second order convergence
in the supremum norm independent of the diffusion parameter. Error bounds for the
numerical solution and also the numerical derivative are established. Numerical re-
sults are provided to illustrate the theoretical results.
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1 Introduction

Singular perturbation problems may arise from viscous flow, edge effects in
certain shell problems and the concentration or thermal layers in mass and
heat transfer problems. Singularly perturbed Initial Value Problems (IVPs)/
Boundary Value Problems (BVPs) in Ordinary Differential Equations (ODEs)
are characterized by the presence of a small parameter (0 < ε � 1) that mul-
tiplies the highest derivative term. Solution of such problems exhibits sharp
boundary and/or interior layers when the small parameter ε is much smaller
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than 1. The numerical solution of such problems exhibits significant difficul-
ties, particularly when the diffusion coefficient is small. Therefore, the interest
in developing and analyzing efficient numerical methods for singularly per-
turbed problems has increased enormously (see [3,5,6,12,17] and the references
therein). Most of this work has concentrated on problems involving a single
differential equation. Only a few authors have developed robust parameter-
uniform numerical methods for system of singularly perturbed ordinary differ-
ential equations (see [2, 4, 8, 9, 10, 11, 15, 16, 19] and references therein). While
many finite difference methods have been proposed to approximate such so-
lutions, there has been much less research into the finite difference approxi-
mations of their derivatives, even though such approximations are desirable in
certain applications (flux or drag). As far as author’s knowledge goes only few
works are reported in the literature (see [7, 13, 14] and references therein) for
finding approximations to scaled derivatives of the solution for problems in-
volving singularly perturbed second order ordinary differential equations with
smooth/non-smooth data.

For a singularly perturbed convection–diffusion problem, M. Stynes and
H.-G. Roos [18] have established that a numerical method composed of the
central difference operator in the layer region (1 − τ, 1) combined with the
midpoint scheme outside the layer (0, 1 − τ ] on the Shishkin mesh with τ =
min{0.5, 2ε

α lnN} is a monotone numerical method and when τ < 0.5, it satisfies
a parameter-uniform error bound of the form

‖Y − y‖ ≤

{
CN−1(ε+N−1), if xi ∈ [0, 1− τ ],

C(N−1 lnN)2, if xi ∈ (1− τ, 1].

In [16], the authors have analyzed a robust computational method that uses
a cubic spline scheme in the fine mesh region and a classical central differ-
ence scheme in the coarse mesh region for singularly perturbed coupled sys-
tem of reaction-diffusion boundary value problems. In [6], for singularly per-
turbed convection–diffusion problems with a continuous convection coefficient
and source term for a single differential equation estimates for numerical deriva-
tives have been derived. Here the scaled derivative is taken on the whole domain
whereas Natalia Kopteva and Martin Stynes [7] have obtained approximations
of derivatives with scaling in the boundary layer region and without scaling in
the outer region. It may be noted that the source term and convection coef-
ficient are smooth for the problem considered in [7]. Mythili Priyadharshini
et al. [14], have determined an estimate for the scaled derivative in the bound-
ary layer region and non-scaled derivative in the outer region for the system
of singularly perturbed convection–diffusion equations with Dirichlet boundary
conditions. In [13], the authors have estimated the scaled derivative for a singu-
larly perturbed second order ordinary differential equation with a discontinuous
convection coefficient using a hybrid difference scheme.

Motivated by the above works, in this paper two hybrid difference schemes
are proposed to approximate the solution and its scaled first derivative of a
weakly coupled system of two singularly perturbed convection–diffusion equa-
tions. Here, bounds on the errors in approximating the first derivative of the
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solution with a weight in the fine mesh and without a weight in the coarse mesh
are also obtained.

Throughout this paper, C denotes a generic constant (sometimes subscrip-
ted) which is independent of the singular perturbation parameter ε and the
dimension N of the discrete problem. Let y : D = [a, b] −→ R. The appropriate
norm for studying the convergence of numerical solution to the exact solution of
a singular perturbation problem is the supremum norm ‖y‖D = supx∈D |y(x)|.
In case of vectors ȳ = (y1, y2)T , we define

|ȳ(x)| =
(
|y1(x)|, |y2(x)|

)T
, ‖ȳ‖D = max

{
‖y1‖D, ‖y2‖D

}
and ȳ ≥ 0̄ provided y1 ≥ 0 and y2 ≥ 0.

We shall assume that ε ≤ CN−1 throughout the paper as is generally the
case in practice for discretization of convection-dominated problem [18]. The
assumption ε ≤ CN−1 makes the proof of higher order convergence significantly
easier to complete. The higher order may reduce to first order in the case
1 ≥ ε ≥ CN−1 [1].

2 Continuous Problem

2.1 Statement of the problem

Find y1, y2 ∈ Y ≡ C0(Ω̄) ∩ C2(Ω) such that{
L1ȳ ≡ −εy′′1 − a1(x)y′1 + b11(x)y1 + b12(x)y2 = f1(x),

L2ȳ ≡ −εy′′2 − a2(x)y′2 + b21(x)y1 + b22(x)y2 = f2(x), x ∈ Ω
(2.1)

with the boundary conditions{
B10y1(0) ≡ β11y1(0)− εβ12y

′
1(0) = A1,

B20y2(0) ≡ β21y2(0)− εβ22y
′
2(0) = A2,

(2.2){
B11y1(1) ≡ γ11y1(1) + γ12y

′
1(1) = B1,

B21y2(1) ≡ γ21y2(1) + γ22y
′
2(1) = B2.

(2.3)

Assume that a1(x) ≥ α1 > 0, a2(x) ≥ α2 > 0, b12(x) ≤ 0, b21(x) ≤ 0,
{b11(x) + b12(x)} ≥ 0, {b22(x) + b21(x)} ≥ 0, where ȳ = (y1, y2)T and the
functions ai(x), fi(x), bij(x) are sufficiently smooth on Ω̄, Ω = (0, 1), 0 < ε ≤ 1,
βj2 > 0, 2βj1 + εβj2 ≥ 1, γj2 ≥ 0 and γj1 − γj2 ≥ 1, for i, j = 1, 2. Let
α = min{α1, α2}. The above system can be written in the matrix form as

Lȳ ≡
(
L1ȳ

L2ȳ

)
≡

(
−ε d

2

dx2 0

0 −ε d
2

dx2

)
ȳ −A(x)ȳ′ + B(x)ȳ = f̄(x), x ∈ Ω

with the boundary conditions(
B10y1(0)

B20y2(0)

)
=

(
A1

A2

)
,

(
B11y1(1)

B21y2(1)

)
=

(
B1

B2

)
,

where A(x) =
( a1(x) 0

0 a2(x)

)
, B(x) =

( b11(x) b12(x)
b21(x) b22(x)

)
and f̄(x) =

( f1(x)
f2(x)

)
.

Math. Model. Anal., 18(5):577–598, 2013.
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2.2 Analytical results

In the following, the maximum principle, stability result and derivative esti-
mates are established for BVP (2.1)–(2.3).

Theorem 1 [Maximum Principle]. Suppose that a function ȳ(x) = (y1(x),
y2(x))T , y1, y2 ∈ C0(Ω̄) ∩ C2(Ω) satisfies Bj0yj(0) ≥ 0, Bj1yj(1) ≥ 0, for
j = 1, 2 and Lȳ(x) ≥ 0̄, ∀x ∈ Ω. Then ȳ(x) ≥ 0̄, ∀x ∈ Ω̄.

Proof. Define s̄(x) = (s1(x), s2(x))T as s1(x) = s2(x) = 2 − x. Then s1, s2 ∈
C0(Ω̄) ∩ C2(Ω), s̄(x) > 0̄, for all x ∈ Ω̄ and Ls̄(x) > 0̄, x ∈ Ω. So, we further
define

µ = max

{
max
x∈Ω̄

(
−y1

s1

)
,max
x∈Ω̄

(
−y2

s2

)}
.

Assume that the theorem is not true. Then µ > 0 and there exists a point
x0 ∈ Ω̄, such that either (−y1s1 )(x0) = µ or (−y2s2 )(x0) = µ or both. Also

(ȳ + µs̄)(x) ≥ 0̄, ∀x ∈ Ω̄.
Case (i): (y1 + µs1)(x0) = 0, for x0 = 0. It implies that (y1 + µs1) attains

its minimum at x0. Therefore,

0 < B10(y1 + µs1)(x0) = β11(y1 + µs1)(x0)− εβ12(y1 + µs1)′(x0) ≤ 0,

which is a contradiction.
Case (ii): (y1 +µs1)(x0) = 0, for x0 ∈ Ω. It implies that (y1 +µs1) attains

its minimum at x0. Therefore,

0 < L1ȳ(x) ≡ −ε(y1 + µs1)′′(x)− a1(x)(y1 + µs1)′(x) + b11(x)(y1 + µs1)(x)

+ b12(x)(y2 + µs2)(x) ≤ 0,

which is a contradiction.
Case (iii): (y1 +µs1)(x0) = 0, for x0 = 1. It implies that (y1 +µs1) attains

its minimum at x0. Therefore,

0 < B11(y1 + µs1)(x0) = γ11(y1 + µs1)(x0) + γ12(y1 + µs1)′(x0) ≤ 0,

which is a contradiction.
Case (iv): (y2 + µs2)(x0) = 0, for x0 = 0. Similar to Case (i), it leads to

a contradiction.
Case (v): (y2 + µs2)(x0) = 0, for x0 ∈ Ω. Similar to Case (ii), it leads to

a contradiction.
Case (vi): (y2 + µs2)(x0) = 0, for x0 = 1. Similar to Case (iii), it leads to

a contradiction.
Hence ȳ(x) ≥ 0̄,∀x ∈ Ω̄. ut

In the rest of the problem for continuous case the norm ‖ · ‖ means ‖ · ‖Ω .

Theorem 2 [Stability Result]. If y1, y2 ∈ C0(Ω̄) ∩ C2(Ω) then∣∣yj(x)
∣∣ ≤ C max

{∣∣B10y1(0)
∣∣, ∣∣B11y1(1)

∣∣, ∣∣B20y2(0)
∣∣, ∣∣B21y2(1)

∣∣,
‖L1ȳ‖Ω , ‖L2ȳ‖Ω

}
, x ∈ Ω̄, j = 1, 2.
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Proof. Set

M = C max
{∣∣B10y1(0)

∣∣, ∣∣B11y1(1)
∣∣, ∣∣B20y2(0)

∣∣, ∣∣B21y2(1)
∣∣, ‖L1ȳ‖Ω , ‖L2ȳ‖Ω

}
.

It is easy to see that M(2β11 + εβ12, 2β21 + εβ22)T ± (B10y1(0), B20y2(0))T and
M(γ11 − γ12, γ21 − γ22)T ± (B11y1(1), B21y2(1))T are non-negative. Further

L
(
M(2− x, 2− x)T ± ȳ(x)

)
= MA(x) +M(2− x)

(
b11(x) + b12(x)
b21(x) + b22(x)

)
± f̄(x)

≥
(
Mα1 ± f1(x)Mα2 ± f2(x)

)
≥ 0̄,

by a proper choice of C. Application of Theorem 1 yields that M(2 − x,
2− x)± ȳ(x) ≥ 0̄, x ∈ Ω̄, and the desired result follows. ut

Sharper bounds on the derivatives of the solution are obtained by decom-
posing the solution ȳ into regular and singular components as, ȳ = v̄+w̄, where
v̄ = (v1, v2)T and w̄ = (w1, w2)T . The regular component v̄ can be written in
the form v̄ = v̄0 + εv̄1 + ε2v̄2 + ε3v̄3, where v̄0 = (v01, v02)T , v̄1 = (v11, v12)T ,
v̄2 = (v21, v22)T , v̄3 = (v31, v32)T are defined respectively to be the solutions of
the problems

−A(x)v̄′0 + B(x)v̄0 = f̄(x), x ∈ Ω,
(
B11v01(1)
B21v02(1)

)
=

(
B11y1(1)
B21y2(1)

)
;

−A(x)v̄′1 + B(x)v̄1 =

(
d2

dx2 0

0 d2

dx2

)
v̄0,

(
B11v11(1)
B21v12(1)

)
= 0̄;

−A(x)v̄′2 + B(x)v̄2 =

(
d2

dx2 0

0 d2

dx2

)
v̄1,

(
B11v21(1)
B21v22(1)

)
= 0̄ and

Lv̄3 =

(
d2

dx2 0

0 d2

dx2

)
v̄2,

(
B10v31(0)
B20v32(0)

)
= 0̄,

(
B11v31(1)
B21v32(1)

)
= 0̄.

Thus the regular component v̄ is the solution of

Lv̄ = f̄(x), x ∈ Ω, (2.4)

(
B10v1(0)

B20v2(0)

)
=

(
B10v01(0) + ε(B10v11(0)) + ε2(B10v21(0))

B20v02(0) + ε(B20v12(0)) + ε2(B20v22(0))

)
,(

B11v1(1)

B21v2(1)

)
=

(
B11y1(1)

B21y2(1)

)
.

(2.5)

Then the singular component w̄ is the solution of

Lw̄ = 0̄, (2.6)(
B10w1(0)
B20w2(0)

)
=

(
B10y1(0)−B10v1(0)
B20y2(0)−B20v2(0)

)
,

(
B11w1(1)
B21w2(1)

)
= 0̄. (2.7)

The following lemma provides the bound on the derivatives of the regular and
singular components of the solution ȳ.

Math. Model. Anal., 18(5):577–598, 2013.
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Lemma 1. [14] The solution ȳ can be decomposed into the sum ȳ = v̄ + w̄,
where, v̄ and w̄ are regular and singular components respectively. Further, these
components and their derivatives satisfy the bounds for j = 1, 2∥∥v(k)

j

∥∥ ≤ C(1 + ε3−k), k = 0, 1, 2, 3, 4,∣∣w(k)
j (x)

∣∣ ≤ Cε−ke−αx/ε, k = 0, 1, 2, 3, 4, ∀x ∈ Ω̄.

3 Discrete Problem

On Ω a piecewise-uniform mesh of N mesh interval is constructed as follows.
The domain Ω is subdivided into the two subintervals [0, σ] ∪ [σ, 1] for some
σ that satisfies 0 < σ ≤ 1

2 . On each subinterval a uniform mesh with N/2
mesh-intervals is placed. The interior points of the mesh are denoted by Ω̄Nε =
{xi | xi = 2iσ/N, 0 ≤ i ≤ N/2; xi = xi−1 + 2(1 − σ)/N, N/2 + 1 ≤ i ≤ N}
condensing at the boundary point x0 = 0. The transition parameter σ is chosen
to satisfies σ = min{ 1

2 ,
2ε
α lnN}. For our analysis we assume that σ = 2ε

α lnN,
since otherwise N−1 is exponentially small compared with ε. Then the mesh
widths are

hi =

{
H1 = 2σ/N, i = 1, . . . , N/2− 1,

H2 = 2(1− σ)/N, i = N/2, . . . , N.

The application of second order central difference and cubic spline difference
schemes on the whole domain using a Shishkin mesh may result in oscillations
in the coarse mesh region. However, the use of a midpoint scheme in the whole
domain results in an oscillation free scheme but with a first order convergence
rate. In order to retain second order convergence and also to avoid an oscilla-
tion, we propose two hybrid difference schemes that use the central difference,
cubic spline in the fine mesh region and a midpoint scheme in the coarse mesh
region.

Let δ2Yj(xi) = 2
hi+hi−1

(
Yj(xi+1)−Yj(xi)

hi
− Yj(xi)−Yj(xi−1)

hi−1
), D0Yj(xi) =

Yj(xi+1)−Yj(xi−1)
hi+hi−1

, D+Yj(xi) =
Yj(xi+1)−Yj(xi)

hi
and aj,i+1/2 ≡ aj((xi+1 + xi)/2);

similarly for b11,i+1/2, b12,i+1/2, b22,i+1/2, b21,i+1/2 and fj,i+1/2, for j = 1, 2.

Hybrid Difference Scheme - I (HDS - I) uses the central difference scheme
in the fine mesh region and a midpoint difference scheme in the coarse region,
that is,

LN1 Ȳ (xi) =



−εδ2Y1(xi)− a1(xi)D
0Y1(xi) + b11(xi)Y1(xi)

+ b12(xi)Y2(xi) = f1(xi), 0 ≤ i < N/2,

−εδ2Y1(xi)− a1,i+1/2D
+Y1(xi)

+ b11,i+1/2(Y1(xi) + Y1(xi+1))/2

+ b12,i+1/2(Y2(xi) + Y2(xi+1))/2

= (f1(xi) + f1(xi+1))/2, N/2 ≤ i < N,

(3.1)
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LN2 Ȳ (xi) =



−εδ2Y2(xi)− a2(xi)D
0Y2(xi) + b21(xi)Y2(xi)

+ b22(xi)Y1(xi) = f2(xi), 0 < i ≤ N/2,
−εδ2Y2(xi)− a2,i+1/2D

+Y2(xi)

+ b21,i+1/2(Y2(xi) + Y2(xi+1))/2

+ b22,i+1/2(Y1(xi) + Y1(xi+1))/2

= (f2(xi) + f2(xi+1))/2, N/2 < i < N,

(3.2)

We now approximate the boundary conditions (2.2) and (2.3). The first
order derivative in the left boundary conditions are approximated by the central
difference operator,{

βj1Yj(x0)− εβj2D0Yj(x0) = Aj ,

γj1Yj(xN ) + γj2D
−Yj(xN ) = Bj , j = 1, 2.

(3.3)

From (3.3), we have for j = 1, 2

Yj(x−1) = −2H1βj1
εβj2

Yj(x0) + Yj(x1) +
2H1

εβj2
Aj (3.4)

Yj(xN ) =
BjH2 + γj2Yj(xN−1)

γj1H2 + γj2
, (3.5)

where Yj(x−1) are the functional values at x−1. The node x−1 lies outside the
interval [0, 1] and is called a fictitious node.

The values Yj(x−1) may be eliminated by assuming that the difference equa-
tion (3.1) holds also for i = 0, that is, at the boundary point x0. Substituting
the values Yj(x−1) and Yj(xN ) from (3.4) and (3.5) into the equations (3.1) for
i = 0 and i = N − 1, we get respectively

BN10Y1(x0) ≡
(

2ε

H2
1

+ b11(x0)− 2H1β11

εβ12

(
− ε

H2
1

+
a1(x0)

2H1

))
Y1(x0)

−
(

2ε

H2
1

)
Y1(x1) + b12(x0)Y2(x0)

= f1(x0)− 2H1A1

εβ12

(
− ε

H2
1

+
a1(x0)

2H1

)
,

BN20Y2(x0) ≡
(

2ε

H2
1

+ b21(x0)− 2H1β21

εβ22

(
− ε

H2
1

+
a2(x0)

2H1

))
Y2(x0)

−
(

2ε

H2
1

)
Y2(x1) + b22(x0)Y1(x0)

= f2(x0)− 2H1A2

εβ22

(
− ε

H2
1

+
a2(x0)

2H1

)
BN11Y1(xN ) ≡

(
−ε
H2

2

)
Y1(xN−2)

+

(
γ12

γ11H2 + γ12

(
−ε
H2

2

−
a1,N−1/2

H2
+
b11,N−1/2

2

)

(3.6)

Math. Model. Anal., 18(5):577–598, 2013.



584 R. Mythili Priyadharshini and N. Ramanujam

and

+
2ε

H2
2

+
a1,N−1/2

H2
+
b11,N−1/2

2

)
Y1(xN−1)

+

(
b12,N−1/2

2
+

γ22b12,N−1/2

2(γ21H2 + γ22)

)
Y2(xN−1)

= f1,N−1/2 −
H2B1

γ11H2 + γ12

(
− ε

H2
2

−
a1,N−1/2

H2
+
b11,N−1/2

2

)
−
B2H2b12,N−1/2

2(γ21H2 + γ22)
,

BN21Y2(xN ) ≡
(
−ε
H2

2

)
Y2(xN−2)

+

(
γ22

γ21H2 + γ22

(
−ε
H2

2

−
a2,N−1/2

H2
+
b22,N−1/2

2

)
+

2ε

H2
2

+
a2,N−1/2

H2
+
b22,N−1/2

2

)
Y2(xN−1)

+

(
b21,N−1/2

2
+

γ12b21,N−1/2

2(γ11H2 + γ12)

)
Y1(xN−1)

= f2,N−1/2 −
H2B2

γ21H2 + γ22

(
− ε

H2
2

−
a2,N−1/2

H2
+
b22,N−1/2

2

)
−
B1H2b21,N−1/2

2(γ11H2 + γ12)
.

(3.7)

Thus the scheme is given by
LN1 Ȳ (xi) ≡ r−1,iY1(xi−1) + rc1,iY1(xi) + r+

1,iY1(xi+1) + q−1,iY2(xi−1)

+ qc1,iY2(xi) + q+
1,iY2(xi+1) = F1(xi),

LN2 Ȳ (xi) ≡ r−2,iY2(xi−1) + rc2,iY2(xi) + r+
2,iY2(xi+1) + q−2,iY1(xi−1)

+ qc2,iY1(xi) + q+
2,iY1(xi+1) = F2(xi)

(3.8)

with the following equations corresponding to the boundary points

BN10Y1(x0) ≡ rc1,0Y1(x0) + r+
1,0Y1(x1) + qc1,0Y2(x0) + q+

1,0Y2(x1) = F1(x0),

BN11Y1(xN ) ≡ r−1,N−1Y1(xN−2) + rc1,N−1Y1(xN−1) + qc1,N−1Y2(xN−1)

= F1(xN−1),

BN20Y2(x0) ≡ rc2,0Y2(x0) + r+
2,0Y2(x1) + qc2,0Y1(x0) + q+

2,0Y1(x1) = F2(x0),

BN21Y2(xN ) ≡ r−2,N−1Y2(xN−2) + rc2,N−1Y2(xN−1) + qc2,N−1Y1(xN−1)

= F2(xN−1),

(3.9)
for i = 0, we have

rc1,0 =
2ε

H2
1

+ b11(x0)− 2H1β11

εβ12

(
− ε

H2
1

+
a1(x0)

2H1

)
, r+

1,0 = −
(

2ε

H2
1

)
,

qc1,0 = b12(x0), q+
1,0 = 0, F1(x0) = f1(x0)− 2H1A1

εβ12

(
− ε

H2
1

+
a1(x0)

2H1

)
,
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rc2,0 =
2ε

H2
1

+ b22(x0)− 2H1β21

εβ22

(
− ε

H2
1

+
a2(x0)

2H1

)
, r+

2,0 = −
(

2ε

H2
1

)
,

qc2,0 = b22(x0), q+
2,0 = 0, F2(x0) = f2(x0)− 2H1A2

εβ22

(
− ε

H2
1

+
a2(x0)

2H1

)
;

for i = 1, . . . , N/2− 1, we have

r−1,i =
−2ε

hi−1(hi + hi−1)
+

a1(xi)

hi + hi−1
, rc1,i =

2ε

hihi−1
+ b11(xi),

r+
1,i =

−2ε

hi(hi + hi−1)
− a1(xi)

hi + hi−1
, q−1,i = 0, qc1,i = b12(xi), q+

1,i = 0,

F−1,i = 0, F c1,i = 1, F+
1,i = 0,

r−2,i =
−2ε

hi−1(hi + hi−1)
+

a2(xi)

hi + hi−1
, rc2,i =

2ε

hihi−1
+ b22(xi),

r+
2,i =

−2ε

hi(hi + hi−1)
− a2(xi)

hi + hi−1
, q−2,i = 0, qc2,i = b21(xi), q+

2,i = 0,

F−2,i = 0, F c2,i = 1, F+
2,i = 0,

for i = N/2, . . . , N − 2, we have

r−1,i =
−2ε

hi−1(hi + hi−1)
, rc1,i =

2ε

hihi−1
+
a1,i+1/2

hi
+
b11,i+1/2

2
,

r+
1,i =

−2ε

hi(hi + hi−1)
−
a1,i+1/2

hi
+
b11,i+1/2

2
, q+

1,i =
b12,i+1/2

2
,

qc1,i =
b12,i+1/2

2
, q−1,i = 0, F−1,i = 0, F c1,i = 1, F+

1,i = 0,

r−2,i =
−2ε

hi−1(hi + hi−1)
, rc2,i =

2ε

hihi−1
+
a2,i+1/2

hi
+
b22,i+1/2

2
,

r+
2,i =

−2ε

hi(hi + hi−1)
−
a2,i+1/2

hi
+
b22,i+1/2

2
, q+

2,i =
b21,i+1/2

2
,

qc2,i =
b21,i+1/2

2
, q−2,i = 0, F−2,i = 0, F c2,i = 1, F+

2,i = 0,

for i = N − 1, we have

rc1,i =

(
γ12

γ11H2 + γ12

(
−ε
H2

2

−
a1,N−1/2

H2
+
b11,N−1/2

2

)
, r−1,i =

−ε
H2

2

,

+
2ε

H2
2

+
a1,N−1/2

H2
+
b11,N−1/2

2

)
,

qc1,i =
b12,N−1/2

2
+

γ22b12,N−1/2

2(γ21H2 + γ22)
,

F1(xN−1) = f1,N−1/2 −
H2B1

γ11H2 + γ12

(
− ε

H2
2

−
a1,N−1/2

H2
+
b11,N−1/2

2

)
−
B2H2b12,N−1/2

2(γ21H2 + γ22)
,
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rc2,i =

(
γ22

γ21H2 + γ22

(
−ε
H2

2

−
a2,N−1/2

H2
+
b22,N−1/2

2

)
+

2ε

H2
2

+
a2,N−1/2

H2
+
b22,N−1/2

2

)
, r−2,i =

−ε
H2

2

,

qc2,i =

(
b21,N−1/2

2
+

γ12b21,N−1/2

2(γ11H2 + γ12)

)
,

F2(xN−1) = f2,N−1/2 −
H2B2

γ21H2 + γ22

(
− ε

H2
2

−
a2,N−1/2

H2
+
b22,N−1/2

2

)
−
B1H2b21,N−1/2

2(γ11H2 + γ12)

and

F1(xi) =


f1(xi−1)F−1,i + f1(xi)F

c
1,i + f1(xi+1)F+

1,i, for 1 ≤ i ≤ N/2− 1,

f1((xi+1 + xi)/2)F−1,i + f1((xi+1 + xi)/2)F c1,i
+ f1((xi+1 + xi)/2)F+

1,i, for N/2 ≤ i ≤ N − 2,

F2(xi) =


f2(xi−1)F−2,i + f2(xi)F

c
2,i + f2(xi+1)F+

2,i, for 1 ≤ i ≤ N/2− 1,

f2((xi+1 + xi)/2)F−2,i + f2((xi+1 + xi)/2)F c2,i
+ f2((xi+1 + xi)/2)F+

2,i, for N/2 ≤ i ≤ N − 2.

Remark 1. The truncation error for (3.6) is given by

∣∣BN10(Y1 − y1)(x0)
∣∣ =

∣∣∣∣ 2ε

H2
1

+ b11(x0) +
2H1β11

εβ12

(
− ε

H2
1

+
a1(x0)

2H1

)
)Y1(x0)

−
(

2ε

H2
1

)
Y1(x1) + b12(x0)Y2(x0)− f1(x0) +

2H1A1

εβ12

(
− ε

H2
1

+
a1(x0)

2H1

)∣∣∣∣
≤ CεH1

∣∣y(3)
1 (x0)

∣∣. (3.10)

Similarly, |BN20(Y2 − y2)(x0)| ≤ CεH1|y(3)
2 (x0)| and |BNj1(Yj − yj)(xN )| ≤

CH2|y(2)
j (xN )|, for j = 1, 2. Further, the truncation error bounds for the mid-

point scheme and central difference scheme for j = 1, 2,∣∣LNj (Ȳ − ȳ)(xi)
∣∣

≤

{
εH1‖y(3)

j ‖+ C(‖a1‖,‖a′1‖)H
2
1 (‖y(3)

j ‖+ ‖y(2)
j ‖), i = 1, . . . , N/2,

εH2
2‖y

(4)
j ‖+ ‖a1‖H2

2‖y
(3)
j ‖, i = N/2 + 1, . . . , N − 1.

(3.11)

[15] Hybrid Difference Scheme - II (HDS - II) uses the cubic spline difference
scheme in the fine mesh region and the midpoint difference scheme in the
coarse mesh region. Note that the elements in the system matrix changes for
i = 0, 1, . . . , N/2− 1. Thus, we have for i = 0,

rc1,0 =

(
3β11

h0
− β12a1(x0)

h0
+ β12b11(x0) +

β12a1(x1)

2h0
+

3εβ12

h2
0

)
,
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r+
1,0 =

(
−β12a1(x0)

h0
− β12a1(x1)

2h0
+
β12b11(x1)

2
− 3εβ12

h2
0

)
,

qc1,0 = β12b12(x0), q+
1,0 =

β12b12(x1)

2
,

F1(x0) =
3A1

h0
+ β12f1(x0) +

β12f1(x1)

2
,

rc2,0 = (
3β21

h0
− β22a2(x0)

h0
+ β22b22(x0) +

β22a2(x1)

2h0
+

3εβ22

h2
0

),

r+
2,0 =

(
−β22a2(x0)

h0
− β22a2(x1)

2h0
+
β22b22(x1)

2
− 3εβ22

h2
0

)
,

qc2,0 = β12b21(x0), q+
2,0 =

β22b21(x1)

2
,

F2(x0) =
3A2

h0
+ β22f2(x0) +

β22f2(x1)

2
,

for i = 1, . . . , N/2− 1,

r−1,i = − h2
i

2hi−1(hi + hi−1)
a1(xi+1) +

hi
hi−1

a1(xi) +
(hi + 2hi−1)

2(hi + hi−1)
a1(xi−1)

+
hi−1

2
b11(xi−1)− 3ε

hi−1
,

rc1,i = −−(hi + hi−1)

2hi−1
a1(xi+1)−

(h2
i − h2

i−1)

hihi−1
a1(xi)−

(hi + hi−1)

2hi
a1(xi−1)

+ (hi + hi−1)b11(xi) +
3ε(hi + hi−1)

hihi−1
,

r+
1,i = − (2hi + hi−1)

2(hi + hi−1)
a1(xi+1)− hi−1

hi
a1(xi) +

h2
i−1

2hi(hi + hi−1)
a1(xi−1)

+
hi
2
b11(xi)−

3ε

hi
,

q−1,i =
hi−1b12(xi−1)

2
, qc1,i = (hi + hi−1)b12(xi), q+

1,i =
hib12(xi+1)

2
,

F−1,i =
hi−1

2
, F c1,i = (hi + hi−1), F+

1,i =
hi
2
,

r−2,i = − h2
i a2(xi+1)

2hi−1(hi + hi−1)
+

hi
hi−1

a2(xi) +
(hi + 2hi−1)

2(hi + hi−1)
a2(xi−1)

+
hi−1

2
b22(xi−1)− 3ε

hi−1
,

rc2,i = −−(hi + hi−1)

2hi−1
a2(xi+1)−

(h2
i − h2

i−1)

hihi−1
a2(xi)−

(hi + hi−1)

2hi
a2(xi−1)

+ (hi + hi−1)b22(xi) +
3ε(hi + hi−1)

hihi−1
,

r+
2,i = − (2hi + hi−1)

2(hi + hi−1)
a2(xi+1)− hi−1

hi
a2(xi) +

h2
i−1a2(xi−1)

2hi(hi + hi−1)
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+
hi
2
b22(xi)−

3ε

hi
,

q−2,i =
hi−1

2
b21(xi−1), qc2,i = (hi + hi−1)b21(xi), q+

2,i =
hi
2
b21(xi+1),

F−2,i =
hi−1

2
, F c2,i = (hi + hi−1), F+

2,i =
hi
2
.

Remark 2. The truncation error bounds at x0 is given by∣∣BN10(Y1 − y1)(x0)
∣∣

=

∣∣∣∣(3β11

h0
− β12a1(x0)

h0
+ β12b11(x0) +

β12a1(x1)

2h0
+

3εβ12

h2
0

)
Y1(x0)

+

(
−β12a1(x0)

h0
− β12a1(x1)

2h0
+
β12b11(x1)

2
− 3εβ12

h2
0

)
Y1(x1)

+ β12b12(x0)Y2(x0) +
β12b12(x1)

2
Y2(x1)− 3A1

h0
+ β12f1(x0) +

β12f1(x1)

2

∣∣∣∣
≤ CεH2

1

∣∣y(4)
1 (x0)

∣∣. (3.12)

Similarly, |BN20(Y2 − y2)(x0)| ≤ CεH2
1 |y

(4)
1 (x0)|. Further, the truncation error

bounds for i = 1, . . . , N/2− 1,∣∣LNj (Ȳ − ȳ)(xi)
∣∣ ≤ CεH2

1

∣∣y(4)
j

∣∣, j = 1, 2. (3.13)

Note: It may be noted that the same operator symbols LNj , BNj0 and BNj1,
j = 1, 2 are used for both the schemes. In the following whatever discussion is
carried out, it is true for both the schemes.

3.1 Numerical solution estimates

To guarantee the monotonicity property of the difference operator LN , we
impose the following mild assumption on the minimum number of mesh points

N

lnN
≥ 2 max

{
‖a1‖
α

,
‖a2‖
α

}
. (3.14)

Analogous to the continuous results stated in Theorem 1 and Theorem 2 one
can prove the following results.

Theorem 3. [14] For any mesh function Ψ̄(xi) assume that BNj0Ψj(x0) ≥ 0,

BNj1Ψj(xN ) ≥ 0 for j = 1, 2 and LN Ψ̄(xi) ≥ 0̄, for all i = 1, . . . , N − 1. Then

Ψ̄(xi) ≥ 0̄, for all i = 0, 1, . . . , N.

Theorem 4. [14] If Z̄(xi) = (Z1(xi), Z2(xi))
T is any mesh function then, for

all xi ∈ Ω̄Nε , j = 1, 2,∣∣Zj(xi)∣∣ ≤ C max
{∣∣BN10Z1(x0)

∣∣, ∣∣BN11Z1(xN )
∣∣, ∣∣BN20Z2(x0)

∣∣, ∣∣BN21Z2(xN )
∣∣,

max
1≤i≤N−1

∣∣LN1 Z̄(xi)
∣∣, max

1≤i≤N−1

∣∣LN2 Z̄(xi)
∣∣}.
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3.2 Error analysis

The discrete solution Ȳ (xi) can be decomposed into the sum Ȳ (xi) = V̄ (xi) +
W̄ (xi) where V̄ (xi) and W̄ (xi) are regular and singular components respec-
tively defined as

LN V̄ (xi) = f̄(xi), i = 1, . . . , N − 1, (3.15)(
BN10V1(x0)
BN20V2(x0)

)
=

(
B10v1(0)
B20v2(0)

)
,

(
BN11V1(xN )
BN21V2(xN )

)
=

(
B11v1(1)
B21v2(1)

)
(3.16)

and

LNW̄ (xi) = 0̄, i = 1, . . . , N − 1, (3.17)(
BN10W1(x0)
BN20W2(x0)

)
=

(
B10w1(0),
B20w2(0)

)
,

(
BN11W1(xN )

BN21W2(xN )

)
= 0̄. (3.18)

The error in the numerical solution can be written in the form (Ȳ − ȳ)(xi) =
(V̄ − v̄)(xi) + (W̄ − w̄)(xi).

Lemma 2. At each mesh point xi ∈ Ω
N
, the error of the regular component

satisfies the estimate ∣∣(V̄ − v̄)(xi)
∣∣ ≤ (CN−2(2− xi)

CN−2(2− xi)

)
.

Proof. Using ε ≤ CN−1, (3.10), (3.12) and (3.11), (3.13) and the bounds on
the derivatives of v̄, we have for j = 1, 2∣∣BNj0(Vj − vj)(x0)

∣∣ ≤ CεH1

∣∣v(3)
j (x0)

∣∣ ≤ CN−2,∣∣LNj (V̄ − v̄)(xi)
∣∣ ≤ {CN−2, i = 1, . . . , N/2− 1,

CN−1(ε+N−1), i = N/2, . . . , N − 1

≤ CN−2, i = 1, . . . , N − 1,∣∣BNj1(Vj − vj)(xN )
∣∣ ≤ CH2

∣∣v(2)
j (xN )

∣∣ ≤ CN−2.

Consider the barrier functions Ψ̄±(xi) = (Ψ±1 (xi), Ψ
±
2 (xi))

T , where

Ψ̄±(xi) =

(
CN−2(2− xi)
CN−2(2− xi)

)
± (V̄ − v̄)(xi).

Then, we have BNj0Ψ
±
j (x0) = 2CN−2(rcj,0 + r+

j,0 + qcj,0 + q+
j,0)− CN−2x1(r+

j,0 +

q+
j,0) ≥ 0 and BNj1Ψ

±
j (xN ) = 2CN−2(r−j,N + rcj,N + qcj,N ) − CN−2xN−1(rcj,N +

qcj,N )− CN−2xN−2r
−
j,N ≥ 0, j = 1, 2. For j = 1, 2; i = 1, . . . , N − 1 we have

LNj Ψ̄
±(xi) = CN−2(r−j,i + rcj,i + r+

j,i + q−j,i + qcj,i + q+
j,i)− CN

−2
(
[r−j,i

+ q−j,i](xi−1) + [rcj,i + qcj,i](xi) + [r+
j,i + q+

j,i](xi+1)
)
± CN−2

≥ CN−2(r−j,i − r
+
j,i + q−j,i − q

+
j,i ± 1) > 0.

Applying Theorem 3 to Ψ̄±(xi), xi ∈ Ω
N
, we get the required result. ut
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Lemma 3. At each mesh point xi ∈ Ω
N
, the error of the singular component

satisfies the estimate

∣∣(W̄ − w̄)(xi)
∣∣ ≤ (CN−2(lnN)3

CN−2(lnN)3

)
.

Proof. Suppose σ = 2ε
α lnN, so the mesh is non-uniform. We split the argu-

ment into two cases depending on the localization of the mesh point. In the

first case xi ∈ Ω
N ∩ [σ, 1], using the arguments in [1] and [14, Lemma 6], for

N/2 ≤ i ≤ N we have

∣∣(W̄ − w̄)(xi)
∣∣ ≤ (CN−2

CN−2

)
.

Now for xi ∈ Ω
N ∩ [0, σ), using (3.11), (3.13) and the bounds on the derivatives

of w̄, we have for j = 1, 2

∣∣LNj (W̄ − w̄)(xi)
∣∣ ≤ CH2

1

ε3
exp(−xiα/ε).

For all i, 0 ≤ i ≤ N/2− 1, we introduce the mesh functions

Ψ̄±(xi) =

(
CN−2 + C σ2

ε3N2 (σ − xi)
CN−2 + C σ2

ε3N2 (σ − xi)

)
± (W̄ − w̄)(xi).

It is easy to show that BNj0Ψ
±
j (x0) = (CN−2 + C σ2

ε3N2σ)(rcj,0 + r+
j,0 + qcj,0 +

q+
j,0) − C σ2

ε3N2x1(r+
j,0 + q+

j,0) ≥ 0 and Ψ±j (xN/2) ≥ 0, j = 1, 2. For j = 1, 2;
i = 1, . . . , N − 1 we have

LNj Ψ̄
±(xi) = CN−2(r−j,i + rcj,i + r+

j,i + q−j,i + qcj,i + q+
j,i)

+ C
σ2

ε3N2

(
[r−j,i + q−j,i](σ − xi−1) + [rcj,i + qcj,i](σ − xi)

+ [r+
j,i + q+

j,i](σ − xi+1)
)
± C σ2

ε3N2
> 0.

Then by Theorem 3 we get Ψ̄±(xi) ≥ 0̄. Thus we get the required result. ut

Theorem 5. Let ȳ(x) = (y1(x), y2(x))T , x ∈ Ω̄ be the solution of (2.1)–(2.3)
and let Ȳ (xi) = (Y1(xi), Y2(xi))

T , xi ∈ Ω̄N be the numerical solution of problem
(3.8)–(3.9). Then we have

sup
0<ε≤1

‖Y1−y1‖ΩN ≤ CN−2(lnN)3 and sup
0<ε≤1

‖Y2−y2‖ΩN ≤ CN−2(lnN)3.

Proof. The proof of the theorem follows immediately, if one applies the above
Lemmas 2 and 3 to Ȳ − ȳ = V̄ − v̄ + W̄ − w̄. ut
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Theorem 6. [14, 15] Let ȳ(x) be the solution of (2.1)–(2.3) and Ȳ (xi) be
the corresponding numerical solution of (3.8)–(3.9). Then, for j = 1, 2, and
x ∈ Ω̄i = [xi, xi+1], we have

sup
0<ε≤1

∥∥ε(D0Yj(xi)− y′j
)∥∥
Ωi
≤ CN−2(lnN)2, 1 ≤ i < N/2,

sup
0<ε≤1

∥∥D+Yj(xi)− y′j
∥∥
Ωi
≤ CN−1 lnN, N/2 ≤ i < N.

Remark 3. Let Ỹj , j = 1, 2, denote the piecewise linear interpolant of the
finite difference solution {Yj(xi)}Ni=0. As done in [6, p. 66], we get for j = 1, 2
and x ∈ Ω̄i = [xi, xi+1],

sup
0<ε≤1

∥∥ε(D̃0Yj − y′j
)∥∥
Ωi
≤ CN−2(lnN)2, i = 1, . . . , N/2− 1 and

sup
0<ε≤1

∥∥D̃+Yj − Y ′j
∥∥
Ωi
≤ CN−1 lnN, i = N/2, . . . , N − 1,

where, D̃0Yj(x) = D0Yj(xi), for all x ∈ [xi−1, xi+1), i = 1, . . . , N/2 − 1 and

D̃+Yj(x) = D+Yj(xi), for all x ∈ [xi, xi+1), i = N/2, . . . , N − 1.

4 Numerical Results

In this section, we consider the following examples to illustrate the results
obtained in the paper:

Example 1.

− εy′′1 (x)− 1

3 + x
y′1(x) + 2y1(x)− y2(x) = (3 + x)/3,

− εy′′2 (x)− 1

3 + x
y′2(x)− 4y1(x) + 5y2(x) = (3 + x)/2, x ∈ Ω,

y1(0)− εy′1(0) = 2, y1(1) + y′1(1) = 2, y2(0)− εy′2(0) = 2, y2(1) + y′2(1) = 2.

Example 2.

− εy′′1 (x)− 3y′1(x) + 3y1(x)− y2(x) = 1 + e−x,

− εy′′2 (x)− y′2(x)− y1(x) + 3y2(x) = 1− e−x, x ∈ Ω,
3y1(0)− εy′1(0)=0, 2y1(1) + y′1(1)=1, 3y2(0)− εy′2(0)=2, 2y2(1) + y′2(1)=2.

Let (Y N1 , Y N2 )T be a numerical approximation for the exact solution (y1, y2)T

on the mesh ΩNε and N is the number of mesh points. Since the exact solutions
are not available for the above test problems, for a finite set of values ε ∈ Rε =
{20, 2−1, . . . , 2−25}, we compute the maximum pointwise error for j = 1, 2,

SNε,j =
∥∥Y Nj − Ỹ 2048

j

∥∥
Ω̄N

ε
,

DN
ε,j =

{
max |ε(D0Y Nj − D̃0Y 2048

j )(xi)|, 0 < i < N/2,

max |D+Y Nj − D̃+Y 2048
j )(xi)|, N/2 ≤ i ≤ N − 1,

Math. Model. Anal., 18(5):577–598, 2013.
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Table 1. Values of SN
1 , rN1 and SN

2 , rN2 for the Example 1.

N 32 64 128 256 512

Hybrid Difference Scheme - I

SN
1 9.9694e−3 3.5633e−3 1.1948e−3 3.9575e−4 1.3294e−4

rN1 1.4843 1.5764 1.5941 1.5738 –

SN
2 9.3473e−3 3.3411e−3 1.1202e−3 3.7094e−4 1.2169e−4

rN2 1.4842 1.5766 1.5945 1.6080 –

Hybrid Difference Scheme - II

SN
1 1.3008e−2 4.7605e−3 1.6042e−3 5.2783e−4 1.7402e−4

rN1 1.4502 1.5693 1.6037 1.6008 –

SN
2 1.1630e−2 4.2553e−3 1.4336e−3 4.7161e−4 1.5545e−4

rN2 1.4505 1.5696 1.6040 1.6011 –
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Figure 1. Surface plot of the maximum pointwise errors as a function of N and ε for the
solution components Y1 and Y2 of the Example 1 using HDS - I.
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Figure 2. Surface plot of the maximum pointwise errors as a function of N and ε for the
solution component Y1 and Y2 of the Example 1 using HDS - II.

where Ỹ 2048
j is the piecewise linear interpolant of the mesh function Y 2048

j onto
[0, 1]. From these values the ε−uniform maximum pointwise difference

SNj = max
ε∈Rε

DN
ε,j , DN

j = max
ε∈Rε

DN
ε,j , j = 1, 2
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Table 2. Values of DN
1 , pN1 and DN

2 , pN2 for the Example 1 in the fine mesh region.

N 32 64 128 256 512

Hybrid Difference Scheme - I

DN
1 1.3089e−2 6.1793e−3 2.4958e−3 8.8598e−4 2.7041e−4

pN1 1.0828 1.3079 1.4942 1.7121 –

DN
2 1.2273e−2 5.7938e−3 2.3399e−3 8.3061e−4 2.5349e−4

pN2 1.0829 1.3081 1.4942 1.7122 –

Hybrid Difference Scheme - II

DN
1 5.4954e−3 2.7453e−3 1.1371e−3 4.0770e−4 1.2367e−4

pN1 1.0013 1.2716 1.4798 1.7210 –

DN
2 4.9110e−3 2.4532e−3 1.0160e−3 3.6422e−4 1.1046e−4

pN2 1.0014 1.2718 1.4800 1.7213 –
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Figure 3. Surface plot of the maximum pointwise errors as a function of N and ε for the
scaled discrete derivative components εD0Y1 and εD0Y2 using HDS - I for the Example 1.
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Figure 4. Surface plot of the maximum pointwise errors as a function of N and ε for the
scaled discrete derivative components εD0Y1 and εD0Y2 using HDS - II for the Example 1.

are formed for each available value of N satisfying N, 2N ∈ RN . Approxima-
tions to the ε−uniform order of local convergence are defined, for all N, 4N ∈
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Table 3. Values of DN
1 , pN1 and DN

2 , pN2 for the Example 1 in the coarse mesh region.

N 32 64 128 256 512

Hybrid Difference Scheme - I

DN
1 3.6576e−2 2.2318e−2 1.2230e−2 6.1025e−3 2.7078e−3

pN1 7.1269e−1 8.6778e−1 1.0030 1.1723 –

DN
2 6.3123e−2 4.5302e−2 2.6854e−2 1.3922e−2 6.2944e−3

pN2 4.7859e−1 7.5444e−1 9.4777e−1 1.1452 –

Hybrid Difference Scheme - II

DN
1 3.6576e−2 2.2318e−2 1.2230e−2 6.1025e−3 2.7078e−3

pN1 7.1269e−1 8.6778e−1 1.0030 1.1723 –

DN
2 6.3123e−2 4.5302e−2 2.6854e−2 1.3922e−2 6.2944e−3

pN2 4.7859e−1 7.5444e−1 9.4777e−1 1.1452 –

4

5

6

7 8

10

12

14

16

18

200

0.01

0.02

0.03

0.04

log
2
 (1/ε)

log
2
 N

4

5

6

7
10

12

14

16

18

20

0

1

2

3

4

x 10
−3

log
2
 (1/ε)

log
2
 N

Figure 5. Surface plot of the maximum pointwise errors as a function of N and ε for the
solution components Y1 and Y2 using HDS - I for the Example 2.
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Figure 6. Surface plot of the maximum pointwise errors as a function of N and ε for the
solution components Y1 and Y2 using HDS - II for the Example 2.

RN , by

rNj = log2

(
SNj
S2N
j

)
, pNj = log2

(
DN
j

D2N
j

)
, j = 1, 2.
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Figure 7. Surface plot of the maximum pointwise errors as a function of N and ε for the
scaled discrete derivative components εD0Y1 and εD0Y2 using HDS - I for the Example 2.
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Figure 8. Surface plot of the maximum pointwise errors as a function of N and ε for the
scaled discrete derivative components εD0Y1 and εD0Y2 using HDS - II for the Example 2.

Table 4. Values of SN
1 , rN1 and SN

2 , rN2 for the Example 2.

N 32 64 128 256 512

Hybrid Difference Scheme - I

SN
1 3.1272e−2 1.5401e−2 6.1397e−3 2.1772e−3 7.2595e−4

rN1 1.0218 1.3268 1.4957 1.5845 –

SN
2 3.5627e−3 1.3153e−3 4.6795e−4 1.5959e−4 5.1024e−5

rN2 1.4376 1.4910 1.5520 1.6451 –

Hybrid Difference Scheme - II

SN
1 1.3661e−2 5.4383e−3 2.0449e−3 9.0192e−4 4.4958e−4

rN1 1.3288 1.4111 1.1810 1.0044 -

SN
2 8.2171e−3 4.2905e−3 2.1935e−3 1.1092e−3 5.5774e−4

rN2 9.3748e−1 9.6791e−1 9.8372e−1 9.9185e−1 –

Surface plots of the maximum error for the solution as well as scaled first
derivative of the above test problems are presented. In Figures 1, 2, 5, 6

Math. Model. Anal., 18(5):577–598, 2013.
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Table 5. Values of DN
1 , pN1 and DN

2 , pN2 for the Example 2 in the fine mesh region.

N 32 64 128 256 512

Hybrid Difference Scheme - I

DN
1 2.7430e−2 6.5634e−3 3.4578e−3 2.1703e−3 9.5036e−4

pN1 2.0632 9.2459e−1 6.7196e−1 1.1913 –

DN
2 1.9461e−3 1.0750e−3 4.7343e−4 1.8143e−4 6.3543e−5

pN2 8.5625e−1 1.1831 1.3837 1.5136 –

Hybrid Difference Scheme - II

DN
1 2.2139e−2 1.5070e−2 8.0334e−3 3.5627e−3 1.3950e−3

pN1 5.5491e−1 9.0760e−1 1.1730 1.3527 –

DN
2 3.8384e−3 1.8550e−3 7.1561e−4 2.2432e−4 5.2987e−5

pN2 1.0491 1.3742 1.6736 2.0818 –

Table 6. Values of DN
1 , pN1 and DN

2 , pN2 for the Example 2 in the coarse mesh region.

N 32 64 128 256 512

Hybrid Difference Scheme - I

DN
1 7.4364e−3 3.8860e−3 1.9826e−3 1.0009e−3 5.0280e−4

pN1 9.3632e−1 9.7089e−1 9.8610e−1 9.9324e−1 –

DN
2 2.5901e−2 1.4260e−2 7.4885e−3 3.8370e−3 1.9409e−3

pN2 8.6103e−1 9.2923e−1 9.6470e−1 9.8325e−1 –

Hybrid Difference Scheme - II

DN
1 5.0791e−3 2.4669e−3 1.2173e−3 6.0486e−4 3.0151e−4

pN1 1.0419 1.0190 1.0090 1.0044 –

DN
2 4.8219e−2 2.4453e−2 1.2325e−2 6.1889e−3 3.1012e−3

pN2 9.7959e−1 9.8842e−1 9.9383e−1 9.9686e−1 –

and 3, 4, 7, 8 respectively we observe that as ε → 0, the maximum error for
the numerical approximation Y1, Y2 and εD0Y1, εD

0Y2 to the exact solution
y1, y2 and εy′1, εy

′
2 respectively using HDS - I and HDS - II decreases and gets

stabilized at a constant value. Tables 1 and 4 present ε−uniform maximum
pointwise two-mesh difference and ε−uniform order of local convergence to the
solution components Y1 and Y2 generated by HDS - I and HDS - II. Tables 2,
3, 5 and 6 present ε−uniform maximum pointwise two-mesh difference and
ε−uniform order of local convergence to the scaled derivatives in the fine mesh
region and the non scaled derivative in the coarse mesh region. From the
tables, the performance of the two schemes appears to be almost the same but
these two schemes are derived from different methods. It is expected that they
may significantly differ for certain problems as the truncation error derived for
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HDS - II is smaller than HDS - I

5 Conclusion

A weakly coupled system of two singularly perturbed convection–diffusion sec-
ond order ordinary differential equations subject to mixed type boundary con-
ditions was examined. Two hybrid difference schemes on the Shishkin mesh
were constructed for solving this problem which generate ε−uniform convergent
numerical approximations to the solution as well as to the scaled first derivative
of the solution. Numerical results were presented, which are in agreement with
the theoretical results. These schemes give better accuracy than the classical
upwind scheme.
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