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Abstract. Based on the MHSS (Modified Hermitian and skew-Hermitian splitting)
and preconditioned MHSS methods, we will present a generalized preconditioned
MHSS method for solving a class of complex symmetric linear systems. The new
method (GPMHSS) is essentially a two-parameter iteration method where the it-
erative sequence is unconditionally convergent to the unique solution of the linear
system. A parameter region of the convergence for our method is provided. An effi-
cient preconditioner is presented for the actual implementation of the new method.
Some numerical results are given to show its effectiveness.
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1 Introduction

In the paper, we consider the iterative solution of the linear system of the form

Ax = b, (1.1)

where A ∈ Cn×n is a complex symmetric matrix of the form

A = W + iT (1.2)
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and W,T ∈ Rn×n are real symmetric matrices, with W and T being positive
definite and positive semidefinite, respectively. We assume T 6= 0 which implies
A is non-Hermitian. Note that here and in the sequal i =

√
−1 denotes the

imaginary unit.
As it is stated in [4], complex symmetric linear systems of this kind appear in

several applications in scientific computing and engineering, including quantum
mechanics [23], diffuse optimal tomography [2], structural dynamics [18], FFT-
based solution of certain time-dependent PDEs [14], molecular scattering [21],
and lattice quantum chromodynamics [19]. For more examples and additional
references, we refer the interested reader to [4, 11].

The Hermitian and skew-Hermitian parts of the complex symmetric matrix
A can be shown by

H =
1

2
(A+A∗) = W and S =

1

2
(A−A∗) = iT

respectively, hence, A is non-Hermitian positive definite matrix. Based on this
Hermitian and skew-Hermitian splitting of the matrix A ∈ Cn×n, Bai et al. [8]
proposed iterative method HSS, to compute an approximate solution for the
complex symmetric linear system (1.1)–(1.2). This iterative scheme works as
follows.

The HSS iteration method: Given an initial guess x(0), for k = 0, 1, 2, . . .
until {x(k)} converges, compute{

(αI +W )x(k+
1
2 ) = (αI − iT )x(k) + b,

(αI + iT )x(k+1) = (αI −W )x(k+
1
2 ) + b,

(1.3)

where α is a given positive constant and I is the identity matrix. Since W ∈
Rn×n is symmetric positive definite, we know from [8] that the HSS iteration
method converges for any positive constant α.

Due to it is promising performance, the HSS scheme has immediately at-
tracted considerable attention. In [7, 10], one can see the preconditioned HSS
(PHSS) method and it is systematic analysis. The method was extended to the
solution of saddle point problems [12,13] and the idea of using two parameters
to accelerate the HSS iteration method for solving saddle point linear systems
was introduced in [6] and deeply discussed in [3].

In applying HSS iteration method for solving system (1.1)–(1.2), a potential
difficulty is the need to solve the shifted skew-Hermitian linear subsystem with
coefficient matrix αI + iT . In [4] a modification of the HSS iteration scheme
was presented that has the advantage that the solution of linear system with
coefficient matrix αI + iT is avoided and only two linear subsystems with
coefficient matrices αI + W and αI + T need to be solved at each step. This
iterative scheme works as follows.

The MHSS iteration method: Given an initial guess x(0), for k =
0, 1, 2, . . . until {x(k)} converges, compute{

(αI +W )x(k+
1
2 ) = (αI − iT )x(k) + b,

(αI + T )x(k+1) = (αI + iW )x(k+
1
2 ) − ib,

(1.4)
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where α is a given positive constant, and I is the identity matrix. Authors of [4]
showed that the MHSS iteration method is unconditionally convergent, i.e.,
the sequence {x(k)} converges to the unique solution x∗ = A−1b of the system
Ax = b, as k → ∞ for all α > 0 and for any choice of x(0). Moreover, in the
same paper it is shown that choosing α =

√
γminγmax , where γmin = λmin(W )

and γmax = λmax (W ) are the extreme eigenvalues of the symmetric positive
definite matrix W ∈ Rn×n, minimizes an upper bound on the spectral radius
of the iteration matrix associated with MHSS scheme (1.4).

The Generalized MHSS iteration method (denoted GMHSS) is obtained by
replacing α with β in the second half-step of the scheme (1.4). The interested
reader can see [24] for the main idea behind our approach.

The GMHSS iteration method: Given an initial guess x(0), for k =
0, 1, 2, . . . until {x(k)} converges, compute{

(αI +W )x(k+
1
2 ) = (αI − iT )x(k) + b,

(βI + T )x(k+1) = (βI + iW )x(k+
1
2 ) − ib,

(1.5)

where α and β are given positive constants. when α = β, the method reduces
to the MHSS iteration method.

The rest of the current paper is organized as follows: in Section 2, the
GPMHSS method is described and its convergence analysis is presented, and
the IGPMHSS iteration is given in Section 3. A few numerical tests are dis-
cussed in Section 4. Finally we give a brief concluding remark in Section 5.

2 The GPMHSS Method

Instead of applying the GMHSS iteration methods to the system of linear equa-
tions (1.1)–(1.2), we may consider that these methods are applied for solving
another preconditioned linear system

Âx̂ = b̂, with Â = R−TAR−1, x̂ = Rx and b̂ = R−T b,

where R ∈ Rn×n is a prescribed nonsingular matrix. Let P = RTR, then P
is a Hermitian positive definite matrix. The PMHSS method was defined as
follows (see [5]).

The PMHSS iteration method: Given an initial guess x(0), for k =
0, 1, 2, . . . until {x(k)} converges, compute{

(αP +W )x(k+
1
2 ) = (αP − iT )x(k) + b,

(αP + T )x(k+1) = (αP + iW )x(k+
1
2 ) − ib,

(2.1)

where α is a given positive constant and P is a prescribed symmetric positive
definite matrix.

We introduce two different parameters α and β in the PMHSS scheme, that
leads to the following generalized preconditioned MHSS method (GPMHSS
method).

Math. Model. Anal., 18(4):561–576, 2013.
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The GPMHSS iteration method: Given an initial guess x(0), for k =
0, 1, 2, . . . until {x(k)} converges, compute{

(αP +W )x(k+
1
2 ) = (αP − iT )x(k) + b,

(βP + T )x(k+1) = (βP + iW )x(k+
1
2 ) − ib,

(2.2)

where α and β are given positive constants, and P is an Hermitian positive
definite matrix.

The new method is a two-parameter two-step iterative method. It has
MHSS and PMHSS methods as its special cases, respectively, when (α = β ∧
P = I) and α = β. We will show that there exists a reasonable convergence
domain of the two parameters for the GPMHSS method.

At each step of the GPMHSS iteration we need to solve the two linear sub-
systems with their coefficient matrices being symmetric positive definite, so
the iterations at each step may be efficiently computed either exactly by the
Cholesky factorization or inexactly by the conjugate gradient method [20].

Eliminating x(k+
1
2 ) from the second step of (2.2) yields

x(k+1) = Mα,βx
(k) + P−1α,βb, (2.3)

where

Mα,β = I − P−1α,βA, Pα,β =
1

β − iα
(αP +W )P−1(βP + T ).

Thus A = Pα,β− (Pα,β−A) is the splitting induced by the GPMHSS iteration,
and Pα,β can be used as a preconditioning matrix for the complex symmetric
matrix A. Note that the multiplicative factor 1

β−iα has no effect on the precon-
ditioned system and then can be dropped. Hence, the GPMHSS preconditioner
is just the real matrix Pα,β = (αP + W )P−1(βP + T ). The iteration matrix
Mα,β is given by

Mα,β = (βP + T )−1(βP + iW )(αP +W )−1(αP − iT ).

Now the following convergence result can be proved.

Theorem 1. Let A=W + iT ∈ Cn×n, with W ∈ Rn×n and T ∈ Rn×n be
symmetric positive definite and symmetric positive semidefinite, respectively,
P = RTR where R ∈ Rn×n is a prescribed nonsingular matrix and α be a given
positive constant. Let Ŵ = R−TWR−1, T̂ = R−TTR−1. Suppose σ(Ŵ ) and
σ(T̂ ) denote the spectrum of Ŵ and T̂ , respectively. Denote

λmin = min
λk∈σ(Ŵ )

{λk}, µmin = min
µj∈σ(T̂ )

{µj},

if β ∈ [
√
α2 + µ2

min −µmin ,
√
α2 + 2αλmin), then the GPMHSS iteration (2.2)

converges unconditionally to the unique solution of the linear system (1.1)–
(1.2).
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Proof. The iteration matrix M(α, β) is given by

Mα,β = (βP + T )−1(βP + iW )(αP +W )−1(αP − iT ),

which is similar to

M̂α,β = (βP + iW )(αP +W )−1(αP − iT )(βP + T )−1.

Clearly for the spectral radius ρ(Mα,β) of iteration matrix Mα,β , we can write

ρ(Mα,β) = ρ(M̂α,β) = ρ
(
(βP + iW )(αP +W )−1(αP − iT )(βP + T )−1

)
= ρ
(
RT
(
βI + iR−TWR−1

)
RR−1

(
αI +R−TWR−1

)−1
R−TRT

×
(
αI − iR−TTR−1

)
RR−1

(
βI +R−TTR−1

)−1
R−T

)
= ρ
((
βI + iR−TWR−1

)(
αI +R−TWR−1

)−1
×
(
αI − iR−TTR−1

)(
βI +R−TTR−1

)−1)
≤
∥∥(βI + iŴ )(αI + Ŵ )−1(αI − iT̂ )(βI + T̂ )−1

∥∥
2

≤
∥∥(βI + iŴ )(αI + Ŵ )−1

∥∥
2

∥∥(αI − iT̂ )(βI + T̂ )−1
∥∥
2
.

It is stated in [4], that because Ŵ ∈ Rn×n and T̂ ∈ Rn×n are symmetric, there
exist orthogonal matrices U, V ∈ Rn×n such that

UT ŴU = ΛŴ , V T T̂ V = ΛT̂ ,

where ΛŴ = diag(λ1, λ2, . . . , λn) and ΛT̂ = diag(µ1, µ2, . . . , µn), with λj
(1 ≤ j ≤ n) and µj (1 ≤ j ≤ n) being the eigenvalues of the matrices Ŵ

and T̂ , respectively. W and T are positive definite and positive semi-definite,
respectively, and R is a nonsingular matrix thus Ŵ and T̂ are positive definite
and positive semi-definite, respectively, and then we have

λj > 0 and µj ≥ 0, 1 ≤ j ≤ n.

Now, based on the orthogonal invariance of the Euclidean norm ‖.‖2, the fol-
lowing upper bound for the spectral radius of M(α, β) can be obtained:

ρ(Mα,β) ≤
∥∥(βI + iŴ )(αI + Ŵ )−1

∥∥
2

∥∥(αI − iT̂ )(βI + T̂ )−1
∥∥
2

=
∥∥(βI + iΛŴ )(αI + ΛŴ )−1

∥∥
2

∥∥(αI − iΛT̂ )(βI + ΛT̂ )−1
∥∥
2

= max
λj∈σ(Ŵ )

∣∣∣∣β + iλj
α+ λj

∣∣∣∣ · max
µj∈σ(T̂ )

∣∣∣∣α− iµjβ + µj

∣∣∣∣
= max
λj∈σ(Ŵ )

√
β2 + λ2j

α+ λj
· max
µj∈σ(T̂ )

√
α2 + µ2

j

β + µj
.

Denoting

τ(α, β) = max
λj∈σ(Ŵ )

√
β2 + λ2j

α+ λj
· max
µj∈σ(T̂ )

√
α2 + µ2

j

β + µj
,

Math. Model. Anal., 18(4):561–576, 2013.
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then the spectral radius of ρ(Mα,β) is bounded by τ(α, β), i.e.,

ρ(Mα,β) ≤ τ(α, β).

Now with assumption β ∈
[√

α2 + µ2
min −µmin ,

√
α2 + 2αλmin

)
, we show that

τ(α, β) < 1. The assumption√
α2 + µ2

min − µmin ≤ β <
√
α2 + 2αλmin

yields

β <
√
α2 + 2αλmin , and β ≥

√
α2 + µ2

min − µmin ,

thus we can write

β2 < α2 + 2αλmin and α2 ≤ β2 + 2βµmin ,

and hence we obtain

β2 + λ2j < α2 + 2αλj + λ2j and α2 + µ2
j ≤ β2 + 2βµj + µ2

j

for j = 1, . . . , n. Therefore√
β2 + λ2j < α+ λj and

√
α2 + µ2

j ≤ β + µj

for j = 1, . . . , n. Finally we conclude√
β2 + λ2j

α+ λj
< 1 and

√
α2 + µ2

j

β + µj
≤ 1, j = 1, . . . , n,

that yields τ(α, β) < 1. Therefore ρ(Mα,β) < 1 for α > 0 and

β ∈
[√

α2 + µ2
min − µmin ,

√
α2 + 2αλmin

)
,

and the GPMHSS iteration converges to the unique solution of the linear system
(1.1)–(1.2). ut

τ(α, β) defines an upper bound of the contraction factor of the GPMHSS
iteration and it is obvious that the convergence rate depends on the choice of
the two parameters α and β. So we need to investigate the properties of the
function τ(α, β) with respect to the two parameters. We have

τ(α, β) = max
λj∈σ(Ŵ )

√
β2 + λ2j

α+ λj
· max
µj∈σ(T̂ )

√
α2 + µ2

j

β + µj
.

Consider the univariate functions β∗(α) and α∗(β) as follows

β∗(α) =
α2(λmax + λmin) + 2αλmaxλmin

2α+ λmax + λmin
,

α∗(β) =
β2(µmax + µmin) + 2βµmaxµmin

2β + µmax + µmin
.



A GPMHSS Method for a Class of Complex Symmetric Linear Systems 567

Since α > 0 and β > 0, it follows that

max
λj∈σ(Ŵ )

√
β2 + λ2j

α+ λj
= max

{√
β2 + λ2max

α+ λmax
,

√
β2 + λ2min

α+ λmin

}
.

Now using β∗(α) we have

max
λj∈σ(Ŵ )

√
β2 + λ2j

α+ λj
=


√
β2+λ2

max

α+λmax
, β < β∗(α),

√
β2+λ2

min

α+λmin
, β ≥ β∗(α).

(2.4)

Also we can write

max
µj∈σ(T̂ )

√
α2 + µ2

j

β + µj
=


√
α2+µ2

max

β+µmax
, α < α∗(β),

√
α2+µ2

min

β+µmin
, α ≥ α∗(β).

(2.5)

β∗ and α∗ are nondecreasing functions that depend on the extreme eigenvalues
of Ŵ and T̂ . While we don’t know the values of these extreme eigenvalues, we
will not know the position of two functions with respect to each other.

α

β

α = α

β = β

S2

S3
S4

S1

Figure 1. The four subregions of S.

For instance, suppose β∗ and α∗ be such that, we can divide the first quar-
ter of (α, β)-plane into four subregions S =

⋃4
i=1 Si (see Figure 1). By this

assumption and from (2.4) and (2.5), we can write

τ(α, β) =



√
β2+λ2

max

α+λmax
·
√
α2+µ2

max

β+µmax
, (α, β) ∈ S1,

√
β2+λ2

max

α+λmax
·
√
α2+µ2

min

β+µmin
, (α, β) ∈ S2,

√
β2+λ2

min

α+λmin
·
√
α2+µ2

min

β+µmin
, (α, β) ∈ S3,

√
β2+λ2

min

α+λmin
·
√
α2+µ2

max

β+µmax
, (α, β) ∈ S4

and then if we know the values of extreme eigenvalues of the matrices Ŵ
and T̂ , using preliminary calculus, the values of the parameters α and β which

Math. Model. Anal., 18(4):561–576, 2013.
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minimize the upper bound τ(α, β) can be obtained. Note that without knowing
the values of λmin , λmax , µmin , and µmax , we cannot find the optimal values
of the iteration parameters in general.

It can be seen that the GPMHSS iteration scheme and its convergence result
are applicable also to the case where the matrix W is symmetric positive semi-
definite and the matrix T is symmetric positive definite. As it is stated in [4],
if there exist real numbers ξ and η such that both matrices W̃ := ξW +ηT and
T̃ := ξT−ηW are symmetric positive semi-definite while at least one of them is
positive definite, we can first scale the complex linear system (1.1)–(1.2) by the
complex number ξ− iη, then apply the GPMHSS iteration scheme to compute
an approximation solution of the linear system (1.1)–(1.2), for the following
equivalent system

(W̃ + iT̃ )x = b̃, with b̃ = (ξ − iη)b.

3 The IGPMHSS Iteration

The two half-steps at each step of the GPMHSS iteration require finding so-
lution of the two symmetric positive definite systems with coefficient matrices
αP + W and βP + T , which is very costly and impractical in the actual im-
plementation. To overcome this disadvantage and improve the efficiency of
the GPMHSS iteration method, similar to the introduced approach in [9] for
inexact implementation of HSS iteration method, we can solve the two inner
linear systems iteratively. Because of the symmetrically and positive definite
properties of the matrices of the two sub-systems, we can use the conjugate gra-
dient (CG) method for solving two sub-problems. This results in the inexact
generalized preconditioned modified Hermitian and skew-Hermitian splitting
(IGPMHSS) iteration method. Its convergence can be shown in a similar way
to that of the IHSS iteration method, using Theorem 3.1 of [8].

For the two half steps at each iteration of GPMHSS method, if good pre-
conditioners for matrices αP + W and βP + T are available, we can use the
preconditioned conjugate gradient (PCG) method instead of CG for the two
inner systems, that yields a better performance of IGPMHSS method. If either
αP+W or βP+T (or both) be Toeplitz, we can use fast algorithms for solution
of the corresponding sub-systems [1, 15,17].

4 Computational Results

In this section, we present several numerical experiments to show the efficiency
of the GPMHSS iteration method, when it is used either as a solver or as a
preconditioner for solving the linear system (1.1)–(1.2). We also compare the
GPMHSS with the HSS and MHSS schemes as solvers and as preconditioners
for the GMRES and GMRES(10), restarted variant of GMRES, [16,20,22].

In our experiments, we use x(0) = 0 for the initial guess and the stopping
criteria for outer iterations (when HSS, MHSS, and GPMHSS methods are used
as solvers) is

‖b−Ax(k)‖2/‖b‖2 < 10−6.
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For the inexact HSS, MHSS, and GPMHSS iteration methods, the stopping
criteria for the inner CG iterations is set to be∣∣rTk rk∣∣ < 10−11,

where rk is the kth residual.
The numerical examples used to illustrate the effectiveness of the GPMHSS

method are given in the following two subsections.
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Figure 2. The spectral radius versus parameter α for HSS and MHSS methods and
parameters α, β for GPMHSS method; Top: Example 4.1 and Bottom: Example 4.2.

For the tests reported in this section we used the optimal values of the pa-
rameters α and β, denoted by α∗(HSS ) for HSS method, α∗(MHSS ) for MHSS
method, and α∗(GPMHSS ), β∗(GPMHSS ) for GPMHSS method. These pa-
rameters are obtained experimentally with the least spectral radius for the
iteration matrices of the three methods. See Figure 2 for a graph illustrating
of the spectral radius of the three solvers with respect to corresponding param-
eters for each scheme, (α for HSS and MHSS and α, β for GPMHSS) for the
following two examples with grid dimension 20× 20.

4.1 Example 1

These examples are taken from [4]. The first example is as follows. The system
of linear equations (1.1)–(1.2) is of the form (W + iT )x = b with

T = I ⊗ V + V ⊗ I, and W = 10(I ⊗ Vc + Vc ⊗ I) + 9
(
e1e

T
m + eme

T
1

)
⊗ I,

where V = tridag(−1, 2,−1) ∈ Rm×m, Vc = V − e1eTm− emeT1 ∈ Rm×m, and e1
and em are the first and the last unit vectors in Rm, respectively. We take the
right hand side vector b to be b = (1 + i)AB, with B being the vector of all en-
tries equal to 1. Here T and W correspond to the five-point centered difference
matrices approximating the negative Laplacian operator with homogeneous

Math. Model. Anal., 18(4):561–576, 2013.
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Dirichlet boundary conditions and periodic boundary conditions, respectively,
on a uniform mesh in the unit square [0, 1]× [0, 1] with the mesh-size h = 1

m+1 .

For tests reported in this subsection we used P = W for GPMHSS method;
see [5]. For each choice of the special mesh-sizes, one can observe the optimal
experimental parameters for Example 1 in Table 1.

Table 1. The experimentally optimal parameters for HSS, MHSS, and GPMHSS iteration
methods.

Example Parameter Grid
for method 10 × 10 20 × 20 30 × 30 40 × 40 50 × 50

No. 1 α∗(HSS) 7.9 4.4 3.2 2.5 2.1
α∗(MHSS) 3 1.753 1.29 1 0.8
α∗(GPMHSS) 0.2 0.5 1 0.7 0.7
β∗(GPMHSS) 2 1 2 1 1

No. 2 α∗(HSS) 98 98 98 98 98
α∗(MHSS) 75 75 75 75 75
α∗(GPMHSS) 11 11 11 11 11
β∗(GPMHSS) 260 260 260 260 260

Let ρ(GHSS ), ρ(GMHSS ), and ρ(GGPMHSS ) denote the spectral radius of the
iteration matrices for the HSS, MHSS, and GPMHSS methods, respectively. In
Table 2, we give a comparison between the spectral radius of the three methods
for Example 1, with respect to the experimentally optimal parameters.

In Table 3, we give the iteration numbers for HSS, MHSS, and GPMHSS
schemes, and Table 4, shows CPU for these three methods for solving Exam-
ple 1.

Let error(k) = ‖b− Ax(k)‖2, where k denotes the iteration number. Using
HSS, MHSS, GPMHSS, and GMRES methods for solving Example 1, the log 10
of the residual error (log10(error(.))) for each method is plotted against the
iteration number in Figure 3.

The same results, using HSS, MHSS, and GPMHSS as preconditioner for
GMRES(k) method (k = 1, 10) are shown in Figures 4 and 5.
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Table 2. The comparison of ρ(GHSS ), ρ(GMHSS ), and ρ(GGPMHSS ).

Example Spectral radii Grid
for method 10 × 10 20 × 20 30 × 30 40 × 40 50 × 50

No. 1 ρ(GHSS ) 0.8175 0.8952 0.9242 0.9393 0.9488
ρ(GMHSS ) 0.7464 0.8212 0.8587 0.8847 0.9045
ρ(GGPMHSS ) 0.3814 0.4948 0.5454 0.5550 0.5768

No. 2 ρ(GHSS ) 0.1363 0.1373 0.1374 0.1375 0.1375
ρ(GMHSS ) 0.6383 0.6386 0.6386 0.6386 0.6386
ρ(GGPMHSS ) 0.3144 0.3150 0.3150 0.3151 0.3151

Table 3. The comparison of iteration number.

Example Method Grid
10 × 10 20 × 20 30 × 30 40 × 40 50 × 50

No. 1 HSS 61 103 140 167 193
MHSS 45 64 91 115 134
GPMHSS 14 18 23 22 23

No. 2 HSS 7 7 7 7 7
MHSS 31 31 31 31 31
GPMHSS 9 8 8 8 8

Table 4. The comparison of CPU time (measured in seconds).

Example Method Grid
10 × 10 20 × 20 30 × 30 40 × 40 50 × 50

No. 1 HSS 0.1146 7.2167 95.9719 627.5804 2712.3000
MHSS 0.0983 3.3312 42.5936 195.2957 619.6114
GPMHSS 0.0468 1.9128 30.4620 129.1083 391.4764

No. 2 HSS 0.0174 0.4870 5.5461 29.8779 105.6924
MHSS 0.0468 0.5394 4.3229 14.2822 34.4167
GPMHSS 0.0155 0.1699 1.2361 3.9926 9.7059

4.2 Example 2

The system of linear equations (1.1)–(1.2) is of the form (W + iT )x = b, where
Wn×n and Tn×n are symmetric positive definite Toeplitz matrices of the form

W=


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, T=
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and b(j) = 55i+ 90 for j = 1, 2, . . . , n.
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Figure 4. The log 10 of the residual error versus iteration number for Example 1, with
n = 20 × 20 (left) and n = 40 × 40 (right).
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Figure 5. The log 10 of the residual error versus iteration number for Example 1, with
n = 20 × 20 (left) and n = 40 × 40 (right).

For tests reported in this subsection we have used P = I for GPMHSS
method. The optimal experimental parameters for Example 2, for different
choices of the mesh-sizes are given in Table 1. In Table 2, we give a comparison
between the spectral radius of the three methods for Example 2, with respect
to the experimentally optimal parameters. The number of required outer iter-
ations for solving Example 2, for each method is given in Table 3. In Table 4,
we show CPU for HSS, MHSS, and GPMHSS methods.

Figure 6 shows the log 10 of the residual error (log10(error(.))) against the
iteration number using HSS, MHSS, GPMHSS, and GMRES methods for solv-
ing Example 2.

Also in Figures 7 and 8, one can see the numerical results for solving Ex-
ample 2, using HSS, MHSS, and GPMHSS as preconditioner for GMRES(k),
(k = 1, 10).

From Table 1, we see that for Example 1, α∗(HSS ) and α∗(MHSS ) decrease
with the mesh-size h. As can be seen, the experimentally optimal parameters
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Figure 6. The log 10 of the residual error versus iteration number for Example 2, with
n = 20 × 20 (left) and n = 40 × 40 (right).
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Figure 7. The log 10 of the residual error versus iteration number for Example 2, with
n = 20 × 20 (left) and n = 40 × 40 (right).
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for Example 2 are constant. Also note that α∗(GPMHSS ) is always less than
α∗(HSS ) and α∗(MHSS ) for the two examples.

In Table 2, we show the spectral radius of iteration matrices for the three
methods and for two examples by using the experimentally optimal parameters
that are given in Table 1. As you see, for Example 1, in all cases, the spectral
radius for the GPMHSS method is less than one for the HSS and MHSS meth-
ods. For Example 2, the spectral radius of iteration matrix for the HSS method
is less than one for MHSS and GPMHSS methods in all cases and the spectral
radius of iteration matrix for the GPMHSS method is almost half of the one
for MHSS method. Note that for the two examples and for three methods, the
spectral radius increases when the size of the problem increases.

In Table 3, we report the iteration numbers of HSS, MHSS and GPMHSS
methods for solving two examples. One can see that for Example 1, the number
of iterations for GPMHSS method is less than another two methods and MHSS
scheme requires fewer iteration than HSS scheme, also for all methods the
number of iterations grows with the problem size. However this growth for the
HSS and MHSS is faster than for the GPMHSS method. For Example 2, we
don’t have any growth in iteration numbers by increasing grid dimension. The
iteration number of HSS and GPMHSS methods, approximately are the same
for all cases and MHSS has more iteration number than the other two methods.
The presented results in Table 4, show that in all cases GPMHHS is superior
to the other methods in terms of the CPU time.

From Figure 3, we find that the GPMHSS iteration method for solving
Example 1 converges faster than the HSS, MHSS, and GMRES methods, and
GMRES method converges slower than other three methods. As can be seen,
where the mesh-size is larger (n = 40 × 40), this convergence for GPMHSS
method is much faster than the other three methods.

Figure 6 shows that the error of GPMHSS method in the first few repeats
decreases faster than those of the HSS, MHSS, and GMRES, but from 20th
iteration, the HHS and GMRES give better results. Note that because the
spectral radius of the iteration matrix for HSS scheme is very less than MHSS
and GPMHSS, so in a low iteration number, it achieves to a good accuracy.
However according to Table 4, the CPU time of this method for reaching a
prescribed accuracy is much more than MHSS and GPMHSS methods and this
is a weakness of it.

From Figure 4, we conclude that the preconditioned GMRES methods con-
verge much faster than the GMRES method for solving Example 1, further-
more, the GPMHSS-preconditioned GMRES method converges faster than one
for the HSS- and MHSS-preconditioned GMRES methods. GMRES has more
error than the other three methods. In Figure 5, one can see the same results
for GMRES(10) and preconditioned GMRES(10).

In Figure 7, we see that the HSS-preconditioned GMRES gives better results
than the GMRES and MHSS- and GPMHSS-preconditioned GMRES meth-
ods, also GPMHSS-preconditioned GMRES gives better results than MHSS-
preconditioned GMRES and GMRES methods. Figure 8 shows that GM-
RES(10) and preconditioned GMRES(10) techniques are approximately the
same.
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5 Concluding Remarks

In this paper, based on the Hermitian and skew-Hermitian splitting of the co-
efficient matrix, we have established and analyzed a two-parameter generalized
preconditioned MHSS method and the corresponding inexact variants. This
generalization has the classical MHSS and PMHSS methods as its special cases
when we take (α = β ∧ P = I) and α = β, respectively. The exact version
of the new method has been shown to be unconditionally convergent when P
is a symmetric positive definite matrix and the parameters α and β satisfy
some moderate conditions. Numerical experiments show the feasibility and
effectiveness of the new method.
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