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corresponding OCPs. Applying the PADM, the nonlinear two-point boundary value
problem (TPBVP), derived from the application of Pontryagin’s maximum principle
(PMP), is transformed into a sequence of linear time-invariant TPBVP’s. Through
the finite iterations of algorithm, a suboptimal control law is obtained for the nonlinear
optimal control problem. Comparing the methodology with some known techniques
shows that the present approach is powerful and reliable. It is remarkable accuracy
properties are finally demonstrated by two examples.
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1 Introduction

The investigation of the optimal control is of great importance in modern con-
trol theory. One of the most active subjects in control theory is the optimal
control which has a wide range of practical applications not only in all areas
of physics but also in economy, aerospace, chemical engineering, robotic, etc.
(see [6, 17, 20]). The theory and the application of optimal control for linear
time-invariant systems have been developed perfectly. However, as for nonlin-
ear systems, synthesis problems that are solved by classic control theory lead
to difficult computations. It is well-known that the nonlinear optimal control
problem can be reduced to a Two-Point Boundary Value Problem (TPBVP),
implementing the Pontryagin’s Maximum Principle (PMP). In general, this
TPBVP cannot be solved exactly and most researches have been devoted to
find an approximate solution, for nonlinear TPBVP’s, see [4].

In order to find an analytical approximate solution, some methods have
been proposed. One of these approaches is Successive Approximation Ap-
proach (SAA) which designs an suboptimal controller for a class of nonlinear
systems with a quadratic performance index. In this approach, a sequence
of nonhomogeneous linear time-varying TPBVP’s is solved to produce a finite-
step iteration of the nonlinear compensation sequence obtaining the suboptimal
control law [20].

However, SAA needs to solve a linear time-varying TPBVP’s which cannot
be solved easily and thus, reduces the efficiency of this method. Recently, in [9],
a novel method which implements Modal series to solve a class of nonlinear
OCP’s with quadratic performance index, has been proposed. This method
which requires solving a sequence of linear time-invariant TPBVP’s, has less
efficiency for large scale problems. Other methods for solving the nonlinear
TPBVP obtained from PMP, such as the Homotopy perturbation method and
the Homotopy analisys methods are available in [5, 7, 8, 12,13,15,16,22,23].

On the other hand, in the context of numerical analysis, the Adomian De-
composition Method (ADM) which was proposed originally by Adomian [1],
has been proved by many authors to be a powerful mathematical tool for var-
ious kinds of linear and nonlinear ODE’s or PDE’s. Unlike the traditional
numerical methods, ADM needs no discretization, linearization, transforma-
tion or perturbation. The method, has been widely applied to solve nonlinear
problems, and different modifications are suggested to overcome the demerits
arising in the solution procedure (see for example [1, 2, 10,18,19]).

In this work, we present a improved method known as PADM to solve a class
of infinite horizon nonlinear OCPs. Using the PADM, we obtain the optimal
control law and a suboptimal control law. Finally, simulation examples are
employed to test the validity of the PADM.

The rest of the paper is organized as follows. In Section 2, the ADM
are introduced. The nonlinear infinite horizon quadratic OCP and optimality
conditions are presented in Section 3, also we give a brief description of PADM
in this section. The numerical results are given in Section 4. Section 5 ends
this paper with a brief conclusion.
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2 The Adomian Decomposition Method

In [1], G. Adomian developed a decomposition method for solving nonlinear
(stochastic) differential equations using special polynomials An, usually called
Adomian polynomials. The An’s are generated for each nonlinearity.

Given a partial differential equation the application of the Adomian de-
composition method separates the equation into linear and nonlinear parts.
A solution is obtained in the form of a series whose terms are determined by a
recursive relationship using the Adomian polynomials. The advantages of the
Adomian’s decomposition method are emphasized by many authors.

The usual numerical procedures such as finite differences, Galerkin method,
Finite element method, etc., used to solve or find approximate solutions to non-
linear partial/ordinary differential equations, linearize the equation (or equa-
tions) or assume that the nonlinearities are relatively small, transforming the
physical problem into a purely mathematical one with an available solution.
Therefore, the use of these methods may change the real solution of the math-
ematical model which represents the physical reality. Generally, the numerical
methods are based on discretization techniques, and allow only to calculate the
approximate solutions for some values of time and space variables. Therefore,
to find the value (or approximate value) in other points that do not belong to
the grid, it is necessary to use interpolation. It is well known that the use of
interpolation has several disadvantage since an error is related with the inter-
polation process and we could not overlooking some phenomenon related to the
problem.

The Adomian’s decomposition has many advantages: it does not require
any kind of discretization, linearization or perturbation of the variables and of
the equation, therefore it does not need any modification of the actual model
that could change the solution; is efficient on providing an approximate or even
exact solution in a closed form, to linear and nonlinear problems; provides a fast
and accurate convergent series and therefore it is only necessary to calculate
a few terms of the series in order to obtain a reliable approximate solution;
the method depends only on the known function u0(x) and the algorithm is of
simple implementation.

To illustrate the basic idea of this method, let us consider the equation

L(u) +R(u) +N(u) = g (2.1)

with prescribed initial conditions, where u(t) is the unknown function, is a
linear operator which is assumed to be invertible, L−1 exist, R is another
linear differential operator, N(u) represents the nonlinear terms, and g is the
source term. Applying the inverse operator L−1 to both sides of (2.1), and
using the given conditions we obtain

u = f − L−1(Ru)− L−1(Nu), (2.2)

where the function f(t) represents the terms arising from integrating the source
term g and from using the given initial or boundary conditions, all are assumed
to be prescribed.

Math. Model. Anal., 18(4):543–560, 2013.
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The standard Adomian method defines the solution u(t) of (2.1) as a series

u(t) =

∞∑
n=0

un(t). (2.3)

The decomposition method suggests that the zeroth component u0(t) is usu-
ally identified by the function f(t) defined above. The components u0, u1, u2, . . .
are determined recursively, therefore the solution u(t) in a series form defined
by (2.3) is readily determined. The closed form for the solution u(x), if exists,
can be immediately obtained because of the rapid convergence presented by
the method.

The last term in (2.3) can be computed by substituting

N(u) =

∞∑
n=0

An(u0, u1, u2, . . . , un), (2.4)

where An are specially generated Adomian polynomials for the specific non-
linearity. They depend only on the u0, to un components and form a rapidly
convergent series. The An, are given as

An =
1

n!

∂n

∂qn
N

[ ∞∑
k=0

qkuk

]
q=0

, n = 1, 2, 3, . . . (2.5)

or,

A0 = f(u0), A1 = u1f
′(u0), A2 = u2f

′(u0) +
u21
2!
f ′′(u0),

A3 = u3f
′(u0) + u1u2f

′′(u0) +
u31
3!
f ′′′(u0), . . . .

Algorithms for formulating Adomian polynomials were investigated in [2].
Putting (2.3) and (2.4) into (2.2) we get

∞∑
n=0

un(t) = f(t)− L−1
(
R

∞∑
n=0

un(t)

)
− L−1

(
t

∞∑
n=0

An

)
.

Each term of series (2.3) is given by the recurrent relation

u0 = f(t),

un = −L−1Run−1 − L−1An−1, n ≥ 1.

For later numerical computation, we use the expression Φn(t) =
∑n−1

k=0 uk(t) to
denote the n-term approximation to u(t).

Now, we briefly describe how to apply the Adomian decomposition method
to systems of ordinary differential equations. Let us consider a system of ordi-
nary differential equations in the form

Lu1 = f1(t, u1, u2, . . . , un),

Lu2 = f2(t, u1, u2, . . . , un),
...

Lun = fn(t, u1, u2, . . . , un)

(2.6)



Solution of Infinite Horizon Optimal Control Problems by Piecewise ADM 547

with initial conditions ui(0), 1 ≤ i ≤ n, where Lu = u̇ ≡ du
dt with inverse

L−1(·) =
∫ t

0
(·) dt.

Applying the inverse operator L−1 to (2.6) we obtain the following canonical
form 

u1 = u1,0 + L−1t

[
f1(t, u1, u2, . . . , un)

]
,

u2 = u2,0 + L−1t

[
f2(t, u1, u2, . . . , un)

]
,

...

un = un,0 + L−1t

[
fn(t, u1, u2, . . . , un)

]
,

(2.7)

where ui,0 = ui(0) for 1 ≤ i ≤ n.

Thus, by the Adomian decomposition method, each component of the so-
lution of (2.6) can be expressed as a series of the form uj =

∑∞
i=0 fi,j and the

integrands on the right side of (2.7), using (2.5), are expressed as

fi(t, u1, u2, . . . , un) =

∞∑
j=0

Ai,j(fi,0, fi,1, fi,2, . . . , fi,j), 1 ≤ i ≤ n, (2.8)

where the Ai,j are the Adomian polynomials corresponding to the nonlinear
part fi.

We should note that in order to solve system (2.6), we obtain a system of
Volterra integral equations of the second kind, (2.7).

3 Nonlinear Infinite Horizon Quadratic OCP and Opti-
mality Conditions

Consider an infinite horizon nonlinear OCP described by

ẋ(t) = F
(
x(t)

)
+Bu(t), t > t0,

x(t0) = x0 (3.1)

with x(t) ∈ Rn denoting the state variable, u(t) ∈ Rm the control variable and
x0 the given initial state at t0, respectively. Moreover, F : Rn → Rn is a non-
linear analytic vector field, where F (0) = 0 (and hence x = 0 is an equilibrium
point of the system), B is a constant matrix of appropriate dimension. Our
aim is to minimize the quadratic objective functional

J [x, u] =
1

2

∫ ∞
t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (3.2)

subject to the nonlinear system (3.1), for Q ∈ Rn×n, R ∈ Rm×m positive semi-
definite and positive definite matrices, respectively. Also, it is assumed that
the pair (JF (0), B) is controllable and the pair (JF (0), Q

1
2 ) is observable, where

JF is the Jacobian matrix of F , and Q
1
2 is the square root of matrix Q. These

assumptions ensure the existence of a smooth optimal solution on a certain
region of state space containing the equilibrium point, see [14].

Math. Model. Anal., 18(4):543–560, 2013.
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According to Pontryagin’s maximum principle, the optimality conditions
are obtained as the following nonlinear TPBVP:

ẋ(t) = −BR−1BTλ(t) + F
(
x(t)

)
,

λ̇(t) = −Qx(t)− Ψ
(
x(t), λ(t)

)
,

x(t0) = x0, λ(∞) = 0, (3.3)

where λ(t) ∈ Rn is the co-state vector with the ith component λi(t), i = 1, . . . , n

and Ψ(x(t), λ(t)) = [∂F (x(t))
∂x(t) ]Tλ(t). Also, the optimal control law is obtained

by
u∗ = −R−1BTλ(t), t > t0. (3.4)

Remark 1 [Approximating the co-state initial guess]. It is necessary to trans-
form the BVP in a IVP. Therefore, we must find an α ∈ R such that the
condition λ(∞) = 0 can be replaced by the condition λ(t0) = α. By consider-
ing this condition, and since the approximations of these methods are functions
of both t and α, we have

∑n
k=0 λk(∞, α) = 0. That is, α should be a real root

of the equation
∑n

k=0 λk(∞, α) = 0, which can be easily approximated by
numerical methods such as Newton–Raphson or Secant method.

Lemma 1. The solution of the nonlinear TPBVP (3.3) is analytic with respect
to x0.

Proof. Let us consider the solution of TPBVP (3.3) as (x(·), λ(·)). Because
the initial value of λ is not known. Thus we rewrite the TPBVP in (3.3) as
following:

ẋ(t) = −BR−1BTλ(t) + F
(
x(t)

)
,

λ̇(t) = −Qx(t)− Ψ
(
x(t), λ(t)

)
,

x(t0) = x0, λ(t0) = α, (3.5)

where α ∈ R is an unknown parameter. Since the nonlinear terms in Eq. (3.5)
are analytic, (x(·), λ(·)), as the solution of IVP (3.5), is analytic with respect
to x0, [3]. Thus, (x(·), λ(·)) as the solution of TPBVP (3.3) is analytic with
respect to x0, and the proof is complete. ut

Theorem 1. Assume that {
∑n

k=0 xk(t)} and {
∑n

k=0 λk(t)} are the solution se-

quences produced by ADM, which converge respectively to x̂(t, α) and λ̂(t, α),

as n −→ ∞. Then x̂(t, α), λ̂(t, α) are the exact solutions of (3.5). Accord-

ingly, x̂(t, α̂), λ̂(t, α̂) are the exact solutions of (3.3) when α̂ is the real root of

λ̂(∞, α) = 0.

Proof. Let us consider the TPBVP (3.3) as

x(t) = x(t0) + L−1
[
−BR−1BTλ(t) + F

(
x(t)

)]
,

λ(t) = λ(t0) + L−1
[
−Qx(t)− Ψ

(
x(t), λ(t)

)]
,

x(t0) = x0, λ(t0) = α, (3.6)
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where L = d
dt (·) and L−1 =

∫ t

t0
(·) dt. Thus, by ADM we obtain the recurrence

relation,

xn(t) =

∫ t

t0

[
−BR−1BTλn−1(s) +A1,n−1(x0, x1, . . . , xn−1)

]
ds, n ≥ 1,

λn(t)=

∫ t

t0

[
−Qxn−1(s)−A2,n−1(x0, x1, . . . , xn−1, λ0, λ1, . . . , λn−1)

]
ds, n ≥ 1,

x0(t) = x(t0) = x0, λ0(t) = λ(t0) = α, (3.7)

where the A1,n−1, A2,n−1 are the Adomian polynomials corresponding to the
nonlinear parts. Taking limits of both sides of (3.7) as n −→∞

lim
n→∞

n∑
k=1

xk(t) =

∫ t

t0

[
−BR−1BT lim

n→∞

n∑
k=1

λk−1(s)

]
ds

+

∫ t

t0

[
lim
n→∞

n∑
k=1

A1,k−1(x0, x1, . . . , xk−1)

]
ds,

lim
n→∞

n∑
k=1

λk(t) =

∫ t

t0

[
−Q lim

n→∞

n∑
k=1

xk−1(s)

]
ds

−
∫ t

t0

[
lim
n→∞

n∑
k=1

A2,k−1(x0, x1, . . . , xk−1, λ0, λ1, . . . , λk−1)

]
ds,

then,

x̂(t, α) =

∫ t

t0

[
−BR−1BT λ̂(s, α) + F

(
x̂(s, α)

)]
ds,

λ̂(t, α) =

∫ t

t0

[
−Qx̂(s, α)− Ψ

(
x̂(s, α), λ̂(s, α)

)]
ds.

Differentiating both sides with respect to t, yields

˙̂x(t, α) = −BR−1BT λ̂(t, α) + F
(
x̂(t, α)

)
,

˙̂
λ(t, α) = −Qx̂(t, α)− Ψ

(
x̂(t, α), λ̂(t, α)

)
.

Furthermore, if t = t0, then from (3.7), xn(t0) = 0, λn(t0) = 0 for every n ≥ 1.
Thus,

n∑
k=0

xk(t0) = x0(t0) = x0,

n∑
k=0

λk(t0) = λ0(t0) = α

or equivalently, x̂(t0, α) = x0, λ̂(t0, α) = α. Hence, x̂(t, α) and λ̂(t, α) are the
exact solutions of (3.5). In addition, they are the exact solutions of (3.3), only
if the condition λ(∞) = 0 is satisfied. So, it is straightforward to choose the

unknown parameter α ∈ Rn such that λ̂(∞, α) = 0. Denoting this real root of

λ̂(∞, α) = 0 by α̂ completes the proof. ut

Math. Model. Anal., 18(4):543–560, 2013.
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3.1 Piecewise Adomian decomposition method

In order to find the solution of (3.5), we will use piecewise Adomian decomposi-
tion method (PADM). The piecewise strategy is used to provided a steady state
solution in whole time horizon rather than traditional ADM. The preference of
the method lies in the fact that the piecewise strategy gives this relation in an
arbitrary longtime interval, while the ADM gives the optimal solution just only
in the neighborhood of the initial time. In order to overcome the difficulty, we
modify the ADM in the following.

We assume that equation (3.5) is defined on the time interval I = [t0, tf ].
We divide the time interval into M equal subintervals Ij = [tj−1, tj), j =

1, . . . ,M where 0 ≤ t0 < t1 < · · · ≤ tM = tf . This is, ti = t0 +
tf−t0
M i, for

0 ≤ i ≤M .
Now we employ the piecewise Adomian decomposition method for solving

Equation (3.5) in each subinterval. In order to carry out the iterations in
every subinterval of equal length ∆t, we consider the approximate solution of
Equation (3.5) in the a sequence of intervals, which are subject to continuity
conditions at the end points of each interval, and choose the corresponding
initial approximations. But, in general, we do not have these information at our
clearance except at the initial point t0. Let u1(t) be solution of Equation (3.5)
in the subinterval I1. For 2 ≤ i ≤M, ui(t) is solution of Equation (3.5) in the
subinterval Ii with initial conditions by obtaining the initial conditions from
the interval Ii−1,

ui(ti−1) = ui−1(ti−1), i = 2, 3, . . . ,M.

The solution of Equation (3.5) for t ∈ [t0, tf ] is given by

u(t) =

M∑
i=1

χIiui(t), where χIi =

{
0, t /∈ Ii,
1, t ∈ Ii.

(3.8)

3.2 Suboptimal control design

Consider the OCP of nonlinear system (3.1) with quadratic cost function (3.2).
Then, the Nth order suboptimal trajectory-control pair is obtained as follows:

x(N)(t) =

N∑
i=0

xi(t),

u(N)(t) = −R−1BT

N∑
i=0

λi(t).

(3.9)

The integer N in (3.9) is generally determined according to a concrete control
precision. As we will present in the next subsection, every time xi(t) and λi(t)
are obtained from the linear TPBVP sequence, we let N = i and calculate
x(N)(t) and λ(N)(t) from (3.9). Then the following quadratic performance
index (QPI) can be calculated:

J (N) =
1

2

∫ ∞
t0

((
x(N)

)T
(t)Q

(
x(N)

)
(t) +

(
u(N)

)T
(t)R

(
u(N)

)
(t)
)
dt. (3.10)
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The Nth order suboptimal trajectory-control pair in (3.9) has desirable ac-
curacy if for a given positive constant ε > 0, the following condition holds:∣∣∣∣J (N) − J (N−1)

J (N)

∣∣∣∣ < ε. (3.11)

If the tolerance error bounds ε > 0 is small enough, the Nth order subop-
timal control law will be very close to the optimal control law u∗(t), the value
of QPI in (3.9) will be very close to its optimal value J∗, and the boundary
condition will be satisfied tightly.

4 Numerical Experiment

In this section, we consider two illustrative examples to illustrate the simplicity
and efficiency of the proposed method. The codes are developed using symbolic
computation software MATLAB 7.8 and the calculations are implemented on
a machine with Intel Core 2 Due Processor 2.53 Ghz and 4 GB RAM to solve
nonlinear quadratic OCP, that reduced to a TPBVP.

Test problem 4.1. As first numerical test problem we consider the optimal
maneuvers of a rigid asymmetric spacecraft, [11]. Euler’s equations for the
angular velocities of the spacecraft are given by

ẋ =

ẋ1(t)

ẋ2(t)

ẋ3(t)

 =

−
I3−I2
I1

x2(t)x3(t)

− I1−I3
I2

x1(t)x3(t)

− I2−I1
I3

x1(t)x2(t)

+


1
I1

0 0

0 1
I2

0

0 0 1
I3


u1(t)

u2(t)

u3(t)

 ,
where x1, x2, and x3 are angular velocities of the spacecraft, u1, u2, and u3
are control torques, I1 = 86.24, I2 = 85.07, and I3 = 113.59 kg m2 are the
spacecraft principle inertia.

The infinite horizon quadratic cost functional to be minimized is given by

J [x, u] =
1

2

∫ ∞
0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt, where Q = R =

1 0 0
0 1 0
0 0 1

 .
In addition, the following boundary conditions should be satisfied:

x1(0) = 0.01 r/s, x2(0) = 0.005 r/s, x3(0) = 0.001 r/s, (4.1)

According to the Pontryagin’s maximum principle, the following nonlinear
TPBVP should be solved:

ẋ1(t) = −λ1(t)

I21
− I3 − I2

I1
x2(t)x3(t),

ẋ2(t) = −λ2(t)

I22
− I1 − I3

I2
x1(t)x3(t),

ẋ3(t) = −λ3(t)

I23
− I2 − I1

I3
x1(t)x2(t),

Math. Model. Anal., 18(4):543–560, 2013.
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λ̇1(t) = −x1(t) +
I1 − I3
I2

x3(t)λ2(tu+
I2 − I1
I3

x2(t)λ3(t),

λ̇2(t) = −x2(t) +
I3 − I2
I1

x3(t)λ1(t) +
I2 − I1
I3

x1(t)λ3(t),

λ̇3(t) = −x3(t) +
I3 − I2
I1

x2(t)λ1(t) +
I1 − I3
I2

x1(t)λ2(t),

x1(0) = 0.01 r/s, x2(0) = 0.005 r/s, x3(0) = 0.001 r/s,

λ1(∞) = 0, λ2(∞) = 0, λ3(∞) = 0

(4.2)

and the optimal control law is given by

u∗1(t) = −λ1(t)

I1
, u∗2(t) = −λ2(t)

I2
, u∗3(t) = −λ3(t)

I3
.

By considering initial conditions x1(0) = 0.01, x2(0) = 0.005, x3(0) = 0.001,
λ1(0) = α1, λ2(0) = α2 and λ3(0) = α3, the two-point boundary value problem
in (4.2) can be transformed to an initial value problem. Using the method
mentioned in Remark 1 and considering the condition λi(∞) = 0, we should

have
∑i

k=0 λm(k, 1000) = 0, for i = 2 and m = 1, 2, 3. Therefore, we have
a system of three nonlinear equations with three unknowns. By solving this
system, we get α1 = 0.8624, α2 = 0.42535 and α3 = 0.11359.

All the nonlinearities in (4.2) are of the form Φ(u, υ) = uυ. Thus, using
(2.5) we have for Φ(u, υ)

A0 = u0υ0, A1 = u1υ0 + u0υ1, A2 = u2υ0 + u1υ1 + u0υ2,

A3 = u3υ0 + u2υ1 + u1υ2 + u0υ3,

A4 = u4υ0 + u3υ1 + u2υ2 + u1υ3 + u0υ4, (4.3)

...

In order to apply the PADM, it is necessary to integrate (4.2) in order to the
variable t in each Ij = [tj−1, tj [. Therefore, we obtain the following recurrence
scheme:

x1,m+1(t) = − 1

I21

∫ t

tj−1

λ1,m(τ) dτ − I3 − I2
I1

∫ t

tj−1

Am

(
x2(τ), x3(τ)

)
dτ,

x2,m+1(t) = − 1

I22

∫ t

tj−1

λ2,m(τ) dτ − I1 − I3
I2

− 1

I21

∫ t

tj−1

Am

(
x1(τ), x3(τ)

)
dτ,

x3,m+1(t) = − 1

I23

∫ t

tj−1

λ3,m(τ) dτ − I2 − I1
I3

− 1

I22

∫ t

tj−1

Am

(
x1(τ), x2(τ)

)
dτ,

λ1,m+1(t) = −
∫ t

tj−1

x1,m(τ) dτ +
I1 − I3
I2

∫ t

tj−1

Am

(
x3(τ), λ2(τ)

)
dτ

+
I2 − I1
I3

∫ t

tj−1

Am

(
x2(τ), λ3(τ)

)
dτ,

λ2,m+1(t) = −
∫ t

tj−1

x2,m(τ) dτ +
I3 − I2
I1

∫ t

tj−1

Am

(
x3(τ), λ1(τ)

)
dτ
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+
I2 − I1
I3

∫ t

tj−1

Am

(
x1(τ), λ3(τ)

)
dτ,

λ3,m+1(t) = −
∫ t

tj−1

x3,m(τ) dτ +
I3 − I2
I1

∫ t

tj−1

Am

(
x2(τ), λ1(τ)

)
dτ

+
I1 − I3
I2

∫ t

tj−1

Am

(
x1(τ), λ2(τ)

)
dτ, (4.4)

where j = 1, 2, . . . ,M and with initial conditions x1,0(0) = 0.01, x2,0(0) =
0.005, x3,0(0) = 0.001, λ1,0(0) = 0.8624, λ2,0(0) = 0.42535 and λ3,0(0) =
0.11359, for m ∈ N∪{0}. By applying PADM, the following piecewise optimal
value functions are obtained, for M = 50 subintervals and m = 2 iterations:

x1(t) = 0.00000069t2 − 0.00011760t+ 0.01, t ∈ [0, 20],

x1(t) = 0.00000055t2 − 0.00011505t+ 0.010007941, t ∈ [20, 40],

...

x1(t) = 0.0000000000086t2 − 0.000000018444t

+ 0.0000098974681, t ∈ [980, 1000],

x2(t) = 0.00000029t2 − 0.00005556t+ 0.005, t ∈ [0, 20],

x2(t) = 0.00000024t2 − 0.00005463t+ 0.00500227, t ∈ [20, 40],

...

x2(t) = 0.000000000004t2 − 0.000000008877t

+ 0.000004757963, t ∈ [980, 1000],

x3(t) = 0.00000003t2 − 0.00000828t+ 0.001, t ∈ [0, 20],

x3(t) = 0.00000002t2 − 0.00000822t+ 0.001000005, t ∈ [20, 40],

...

x3(t) = 0.000000000007t2 − 0.000000016517t

+ 0.000009129045, t ∈ [980, 1000],

λ1(t) = 0.000060187t2 − 0.010142599t+ 0.8624, t ∈ [0, 20],

λ1(t) = 0.000047469t2 − 0.009922472t+ 0.863084893, t ∈ [20, 40],

...

λ1(t) = 0.0000000007t2 − 0.0000015906t+ 0.0008535587, t ∈ [980, 1000],

λ2(t) = 0.000025038t2 − 0.004726499t+ 0.42535, t ∈ [0, 20],

λ2(t) = 0.000020620t2 − 0.004647830t+ 0.425543740, t ∈ [20, 40],

...

λ2(t) = 0.0000000003t2 − 0.0000007552t+ 0.0004047601, t ∈ [980, 1000],

λ3(t) = 0.000003475t2 − 0.000941500t+ 0.11359, t ∈ [0, 20],

Math. Model. Anal., 18(4):543–560, 2013.
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Figure 1. The ADM approximate (M = 1, m = 20) and PADM solution (M = 50,
m = 2) of state functions.

λ3(t) = 0.000003135t2 − 0.000934745t+ 0.113590628, t ∈ [20, 40],

...

λ3(t) = 0.0000000008t2 − 0.000001876t+ 0.001036968, t ∈ [980, 1000].

We compared the results of PADM with the solutions of obtained using the
standard ADM. In fact, Figs. 1, 2 confirm, the ADM is divergent in [0, 1000],
even for large number of iterations. Therefore, it is reasonable to use the
PADM instead. The following figures (Figs. 3–5) present the proposed solution
obtained by the PADM, the modal series method, see [9], and the solution
obtained by the MatLab package bvp4c.

In order to obtain an accurate enough suboptimal trajectory-control pair,
we applied the strategy proposed in section 3, with the tolerance error bounds
ε = 5× 10−5 . In this case, convergence is achieved after 2 iterations, i.e.∣∣∣∣J (2) − J (1)

J (2)

∣∣∣∣ = 4.441356111534995× 10−5 < 5× 10−5.

A minimum of J (2) = 0.005432169453226 is obtained. This confirms that
the proposed method yields excellent results.

Test problem 4.2. Consider the two-order nonlinear composite system, see
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Figure 2. The ADM approximate (M = 1, m = 20) and PADM solution (M = 50,
m = 2) of control functions.

0 200 400 600 800 1000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

time(sec.)

x
1
(t
)

 

 

PADM

Modal series method

Matlab bvp
4c

0 200 400 600 800 1000
−0.01

−0.009

−0.008

−0.007

−0.006

−0.005

−0.004

−0.003

−0.002

−0.001

0

time(sec.)

u
1
(t

)

 

 

PADM

Modal series method

Matlab bvp
4c

Figure 3. Comparison the bvp4c, modal series method and PADM (m = 2, M = 50)
approximate solution of x1(t), u1(t).

[21], described by[
ẋ1(t)
ẋ2(t)

]
=

[
1 0
0 −1

] [
x1(t)
x2(t)

]
+

[
−x31(t) + x22(t)

x1(t)x2(t) + x32(t)

]
+

[
1 0
0 1

] [
u1(t)
u2(t)

]
this is,

ẋ1(t) = x1(t) + u1(t)− x31(t) + x22(t), (4.5)

ẋ2(t) = −x2(t) + u2(t) + x1(t)x2(t) + x32(t),

x1(0) = 0, x2(0) = 0.8.

Math. Model. Anal., 18(4):543–560, 2013.
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Figure 4. Comparison the bvp4c, modal series method and PADM (m = 2, M = 50)
approximate solution of x2(t), u2(t).
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Figure 5. Comparison the bvp4c, modal series method and PADM (m = 2, M = 50)
approximate solution of x3(t), u3(t).

The quadratic cost functional to be minimized is given by

J [x, u] =
1

2

∫ ∞
0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

=
1

2

∫ ∞
0

(
x21(t) + x22(t) + u21(t) + u22(t)

)
dt,

since we considered Q = R =
[
1 0
0 1

]
. According to the optimal control theory

(3.3), the optimality conditions can be written as

ẋ1(t) = x1(t)− λ1(t)− x31(t) + x22(t),

ẋ2(t) = −x2(t)− λ2(t) + x1(t)x2(t) + x32(t),

λ̇1(t) = −x1(t)− λ1(t) + 3x21(t)λ1(t)− x2(t)λ2(t),

λ̇2(t) = −x2(t) + λ2(t)− 2x2(t)λ1(t)− x1(t)λ2(t)− 3x22(t)λ2(t),

x1(0) = 0, x2(0) = 0.8, λ1(0) = α1, λ2(0) = α2,

(4.6)

where αi ∈ R are unknown parameter. Also the optimal control law is given
by

u∗i (t) = −R−1i BT
i λi(t). (4.7)
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Figure 6. The optimal state function
x1(t).
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Figure 7. The optimal control function
u1(t).

The Adomian polynomials for all the nonlinearities in (4.6) can be obtained
from Φ(u, υ) = uυ, mentioned previously, or Γ (u, υ, z) = uυz whose Adomian
polynomials are

C0 = u0υ0z0,

C1 = u1υ0z0 + u0υ1z0 + u0υ0z1,

C2 = u2υ0z0 + u1υ1z0 + u0υ2z0 + u1υ0z1 + u0υ1z1 + u0υ0z2, (4.8)

...

In order to obtain Γ1 = u3 it is only necessary to consider u = υ = z
in (4.8). In order to obtain the nonlinearity for Γ2 = u2z it is only necessary
to consider u = υ in (4.8) and in order to obtain the Adomian polynomials for
Ψ(u) = u2 it is only necessary to consider u = υ in (4.3).

By considering initial conditions x1(0) = 0.01, x2(0) = 0, λ1(0) = α1,
and λ2(0) = α2, the two-point boundary value problem in (4.5) changes to an
initial value problem. As before, we used the method proposed in Remark 1 and
considering the condition λi(∞) = 0, we should have

∑i
k=0 λm(k, 6) = 0, for

i = 2 and m = 1, 2. Therefore, we have a system of three nonlinear equations
with three unknowns. By solving this system, we get α1 = 0.494152041559302
and α2 = 0.766169231759930.

Furthermore, to vanish the error especially at initial points of the time
horizon, we use the PADM. For this, we divided the interval [0, 6] into M = 10
subintervals. Therefore, we obtain the following recurrence scheme, for M = 10
subintervals and m = 3 iterations:

x1,m+1(t) =

∫ t

tj−1

(
x1(τ)− λ1(τ)

)
dτ −

∫ t

tj−1

Γm

(
x1(τ)

)
dτ −

∫ t

tj−1

Ψm

(
x2(τ)

)
dτ,

x2,m+1(t) = −
∫ t

tj−1

(
x2(τ) + λ2(τ)

)
dτ +

∫ t

tj−1

Φm

(
x1(τ), x2(τ)

)
dτ

+

∫ t

tj−1

Γm

(
x2(τ)

)
dτ,

Math. Model. Anal., 18(4):543–560, 2013.
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Figure 8. The optimal state function
x2(t).
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Figure 9. The optimal control function
u2(t).

λ1,m+1(t) =

∫ t

tj−1

(
−x1(τ)− λ1(τ)

)
dτ + 3

∫ t

tj−1

Γ2

(
x1(τ), λ1(τ)

)
dτ

−
∫ t

tj−1

Φm

(
x2(τ), λ2(τ)

)
dτ,

λ2,m+1(t) =

∫ t

tj−1

(
−x2(τ) + λ2(τ)

)
dτ − 2

∫ t

tj−1

Ψm

(
x2(τ), λ2(τ)

)
dτ

−
∫ t

tj−1

Ψm

(
x1(τ), λ2(τ)

)
dτ − 3

∫ t

tj−1

Γ2

(
x2(τ), λ2(τ)

)
dτ,

where j = 1, 2, . . . ,M and with initial conditions x1,0(0) = 0.01, x2,0(0) = 0,
λ1,0(0) = 0.494152041559302, and λ2,0(0) = 0.766169231759930.

In order to obtain an accurate enough suboptimal trajectory-control pair,
we applied the strategy proposed in section 3, with the tolerance error bounds
ε = 0.15. In this case, convergence is achieved after 3 iterations, i.e.∣∣∣∣J (3) − J (2)

J (3)

∣∣∣∣ = 0.1288 < 0.15.

A minimum of J (3) = 0.5350 is obtained.
In this example, we considered a much small tolerance error. With one more

iteration, the relative error to the J (n) is grater than the one in the previous
example. This is due to the complexity of this example. This shows that the
complexity of problem can influence the rate of convergence to the method.

The following figures (Figs. 6–9) present the proposed solution to problem
obtained by the PADM, the SAA method and solution obtained by the MatLab
package bvp4c.

5 Conclusions

In this paper, we have successfully developed ADM for a class of infinite horizon
nonlinear optimal control problems (OCPs). Then we employed PADM to
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finding optimal control of infinite horizon nonlinear systems. This method can
solve the TPBVP obtained from PMP. The results obtained by comparison
with other methods justify the use of this procedure to obtain solutions to
infinite horizon nonlinear OCP’s problems.
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