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Abstract. In their recent paper (Math. Model. Anal., 17(4):457–466, 2012), Tang,
Peng and Liu proposed a cyclic algorithm for solving the split common fixed point
problem and established its weak convergence under some certain conditions. In this
paper, we shall present a simple proof of such a result and moreover we shall remove
one condition, continuity of the mapping involved, ensuring the convergence of the
algorithm.
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1 Introduction

The split feasibility problem (SFP) [6] is formulated as finding

x ∈ C, s.t. Ax ∈ Q,

where C and Q are respectively closed convex subsets in Hilbert spaces H1

and H2, and A : H1 → H2 is a bounded linear mapping. The SFP has been
widely studied by many authors (see [3,8,11,13,14,15,16,17]), due to its various
applications in the real word application [4,5]. An efficient algorithm for solving
the SFP is Byrne’s CQ algorithm: for any x0 ∈ H1 the CQ algorithm generates
an iterative sequence as

xn+1 = PC
(
I + γA∗(PQ − I)A

)
xn,

where 0 < γ < 2/‖A‖2, and PC denotes the projector onto C. It is known that
the CQ algorithm converges weakly to a solution of the SFP if such a solution
exists.

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2013.839963
mailto:wfenghui@gmail.com
mailto:hhcui@live.cn


538 F. Wang and H. Cui

In the case whenever both C and Q consist of fixed point sets of some
nonlinear mappings, the SFP is known as the two-sets split common fixed
point problem (SCFP). More specifically, the two-sets SCFP requires to find

x ∈ Fix(U), s.t. Ax ∈ Fix(T ), (1.1)

where Fix(U) and Fix(T ) stand for respectively the fixed point sets of
U : H1 → H1 and T : H2 → H2. We note that to implement the CQ al-
gorithm one has to calculate the metric projection at each iteration. However,
it is hard to calculate the metric projection whenever the corresponding closed
convex subset is fixed point set. Therefore the CQ algorithm does not work for
the two-sets SCFP. Alternatively, Censor and Segal [7] introduced the following
algorithm:

xn+1 = U
(
I − γA∗(I − T )A

)
xn, (1.2)

to solve the two-sets SCFP for directed mappings. Subsequently, Moudafi
[10] considered (1.1) for demicontractive mappings and proposed the following
algorithm: [

un = xn − γA∗(I − T )Axn,

xn+1 = (1− αn)un + αnUun.
(1.3)

It is known that demicontractive mappings properly include directed mappings.
So in this sense, the Moudafi’s algorithm (1.3) is an extension of algorithm (1.2).

Note that the two-sets SCFP is just a special case of the SCFP. More
specifically, the general SCFP requires to find

x ∈
p⋂
i=1

Fix(Ui), s.t. Ax ∈
s⋂
j=1

Fix(Tj), (1.4)

where Ui : H1 → H1, i = 1, . . . , p and Tj : H2 → H2, j = 1, . . . , s are two
classes of nonlinear mappings. Recently Tang, Peng and Liu [12] considered
the SCFP for demicontractive mappings and proposed a cyclic algorithm:[

un = xn − γA∗(I − Tj(n))Axn,
xn+1 = (1− αn)un + αnUi(n)un,

(1.5)

where i(n) := n mod p + 1 and j(n) := n mod s + 1. Clearly, the above
algorithm is a further generalization of Moudafi’s algorithm (1.3). Under some
mild assumptions they established the weak convergence of their algorithm to
a solution of the SCFP whenever such a solution exists.

We note that in [12] the continuity of the mappings Ui and Tj is one of
conditions that ensures the convergence of algorithm (1.5). However the con-
vergence of Moudafi’s algorithm (1.3) does not need such a condition and more
importantly many nonlinear mappings, such as directed and demicontractive
mappings, are discontinuous in general [9]. In this short paper, we shall restate
the weak convergence of algorithm (1.5) but we present a simple proof and
moreover we can remove the continuity condition.
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2 Preliminary and Notation

Throughout, let I denote the identity mapping, Fix(T ) denote the set of the
fixed points of an mapping T, and let ωw(xn) denote the set of weak cluster
points of the sequence {xn}. The notation “→” stands for strong convergence
and “⇀” stands for weak convergence.

Let T : H1 → H1 be a mapping with Fix(T ) 6= ∅. Then I − T is called
demiclosed at zero if xn ⇀ x, (I − T )xn → 0 ⇒ x = Tx. Let C be a closed
convex nonempty subset and {xn} be a sequence in H1. The sequence {xn} is
called Fejér monotone with respect to C, if

‖xn+1 − c‖ ≤ ‖xn − c‖, ∀c ∈ C.

Lemma 1 [Bauschke–Borwein [1]]. If the sequence {xn} is Fejér monotone
with respect to C, then xn ⇀ x∗ ∈ C if and only if ωw(xn) ⊆ C.

A mapping T : H1 → H1 is called τ -demicontractive (τ < 1) if

‖Tx− z‖2 ≤ ‖x− z‖2 + τ‖x− Tx‖2, ∀x ∈ H1, y ∈ Fix(T )

or equivalently

〈x− z, Tx− x〉 ≤ τ − 1

2
‖x− Tx‖2, ∀x ∈ H1, y ∈ Fix(T ). (2.1)

In particular, T is called quasi-nonexpansive if τ = 0 and directed if τ = −1
(cf. [2, 7, 9]).

Lemma 2. Let T : H2 → H2 be a τ -demicontractive mapping, A : H1 → H2

be a linear bounded mapping and let Vλ := I − λA∗(I − T )A with 0 < λ <
(1− τ)/‖A‖2. Then

‖Vλx− z‖2 ≤ ‖x− z‖2 − λ
(
1− τ − λ‖A‖2

)
‖Tx− x‖2

for all x ∈ H1 and all z ∈ A−1(Fix(T )) = {y : Ay ∈ Fix(T )}.

Proof. Given x ∈ H and z ∈ A−1(Fix(T )), we have

‖Vλx− z‖2 = ‖x− z‖2 − 2λ
〈
x− z,A∗(I − T )Ax

〉
+ λ2

∥∥A∗(I − T )Ax
∥∥2.
(2.2)

Since Az ∈ Fix(T ) and

2
〈
x− z,A∗(I − T )Ax

〉
= 2
〈
Ax−Az, (I − T )Ax

〉
,

it follows from inequality (2.1) that

2
〈
x− z,A∗(I − T )Ax

〉
≥ (1− τ)

∥∥(I − T )Ax
∥∥2.

Substituting this into (2.2) we have

‖Vλx− z‖2 ≤ ‖x− z‖2 − λ(1− τ)
∥∥(I − T )Ax

∥∥2 + λ2
∥∥A∗(I − T )Ax

∥∥2.
Therefore the desired inequality follows from the fact that ‖A∗y‖ ≤ ‖A‖‖y‖,
∀y ∈ H2. ut
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3 Weak Convergence Theorem

Assumption 1. We assume the following conditions on problem (1.4):

• The solution set to (1.4), denoted by S, is nonempty;

• I − Ui, i = 1, . . . , p and I − Tj , j = 1, . . . , s are demiclosed at 0;

• Ui (1 ≤ i ≤ p) is νi-demicontractive and Tj (1 ≤ j ≤ s) is τi-demicontractive.

Let now ν := max1≤i≤p νi and τ := max1≤j≤s τj . Clearly Ui is ν-demicon-
tractive for all 1 ≤ i ≤ p and Tj is τ -demicontractive for all 1 ≤ j ≤ s.

Theorem 1. Let Assumption 1 be satisfied, γ ∈ (0, (1− τ)/‖A‖2) and {αn} ⊆
[ε, 1 − ν − ε] with ε a sufficiently small number. If S 6= ∅, then the sequence
{xn}, generated by (1.5), converges weakly to some x∗ ∈ S.

Proof. Take z ∈ S. It then follows from inequality (2.1) that

‖un − z‖2 =
∥∥xn − γA∗(I − Tj(n))Axn − z∥∥2

≤ ‖xn − z‖2 − γ
(
1− τ − γ‖A‖2

)∥∥(I − Tj(n))Axn
∥∥2

and also that

‖xn+1 − z‖2 =
∥∥un − z + αn(Ui(n)un − un)

∥∥2
= ‖un − z‖2 + 2αn〈un − z, Ui(n)un − un〉+ α2

n

∥∥(I − Ui(n))un
∥∥2

≤ ‖un − z‖2 − αn(1− ν − αn)
∥∥(I − Ui(n))un

∥∥2.
Let

µ := min(γ(1− τ − γ‖A‖2), ε(1− ν − ε)) > 0.

Combining the last two inequalities, we get

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − µ
(∥∥(I − Ui(n))un

∥∥2 +
∥∥(I − Tj(n))Axn

∥∥2).
Clearly {xn} is Fejér monotone with respect to S, and moreover

∞∑
n=0

∥∥(I − Ui(n))un
∥∥2 <∞, ∞∑

n=0

∥∥(I − Tj(n))Axn
∥∥2 <∞. (3.1)

In view of Lemma 1, to finish the proof it remains to show that ωw(xn) ⊆ S.
To see this let x̂ ∈ ωw(xn) and let an index j ∈ {1, 2, . . . , s} be fixed. Noticing
that the pool of indexes is finite, we can find a subsequence {xmk

} of {xn}
such that it converges weakly to x̂ and j(mk) = j for all k. Since, by weak
continuity of A, Axmk

converges weakly to Ax̂ and∥∥(I − Tj)Axmk

∥∥ =
∥∥(I − Tj(mk))Axmk

∥∥→ 0,

this together with the demiclosedness of I − Tj at zero yields Ax̂ ∈ Fix(Tj).
Now let an index i ∈ {1, 2, . . . , p} be fixed. Similarly we can find a subsequence
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{xpk} of {xn} such that it converges weakly to x̂ and i(pk) = i for all k. Noting
‖(I − Tj(n))Axn‖ → 0 thanks to (3.1) and by definition of un, we have

‖xn − un‖ ≤ γ‖A‖
∥∥(I − Tj(n))Axn

∥∥→ 0,

and thus upk converges weakly to x̂. Since by (3.1) ‖(I − Ui(n))un‖ → 0, the
demiclosedness of I − Ui at zero yields x̂ ∈ Fix(Ui). Altogether x̂ ∈ S, and
therefore the proof is complete. ut

Acknowledgments

We would like to express our sincere thanks to the referees for their valuable
suggestions. The first author is supported by the National Natural Science
Foundation of China (11226227, 11301253) and the second author is supported
by the Key Foundation of Henan Educational Committee (12A110016).

References

[1] H.H. Bauschke and J.M. Borwein. On projection algorithms for solving convex
feasibility problems. SIAM Rev., 38:367–426, 1996.
http://dx.doi.org/10.1137/S0036144593251710.

[2] H.H. Bauschke and P.L. Combettes. A weak-to-strong convergence principle for
Fejér-monotone methods in Hilbert spaces. Math. Oper. Res., 26:248–264, 2001.
http://dx.doi.org/10.1287/moor.26.2.248.10558.

[3] C. Byrne. Iterative oblique projection onto convex sets and the split feasibility
problem. Inverse Problems, 18:441–453, 2002.
http://dx.doi.org/10.1088/0266-5611/18/2/310.

[4] C. Byrne. A unified treatment of some iterative algorithms in signal processing
and image reconstruction. Inverse Problems, 18:103–120, 2004.
http://dx.doi.org/10.1088/0266-5611/20/1/006.

[5] Y. Censor, T. Bortfeld, B. Martin and A. Trofimov. A unified approach for inver-
sion problems in intensity-modulated radiation therapy. Physics in Medicine and
Biology, 51:2353–2365, 2006. http://dx.doi.org/10.1088/0031-9155/51/10/001.

[6] Y. Censor, T. Elfving, N. Kopf and T. Bortfeld. The multiple-sets split feasibility
problem and its applications for inverse problems. Inverse Problems, 21:2071–
2084, 2005. http://dx.doi.org/10.1088/0266-5611/21/6/017.

[7] Y. Censor and A. Segal. The split common fixed point problem for directed
operators. J. Convex Anal., 16:587–600, 2009.

[8] J. Deepho and P. Kumam. A modified Halpern’s iterative scheme for solving
split feasibility problems. Abstr. Appl. Anal., 2012:Article ID 876069, 8 pp,
2012. http://dx.doi.org/10.1155/2012/876069.

[9] S. Maruster and C. Popirlan. On the Mann-type iteration and the convex feasi-
bility problem. J. Comput. Appl. Math., 212:390–396, 2008.
http://dx.doi.org/10.1016/j.cam.2006.12.012.

[10] A. Moudafi. The split common fixed point problem for demicontractive map-
pings. Inverse Problems, 26:055007, 2010.
http://dx.doi.org/10.1088/0266-5611/26/5/055007.

Math. Model. Anal., 18(4):537–542, 2013.

http://dx.doi.org/10.1137/S0036144593251710
http://dx.doi.org/10.1287/moor.26.2.248.10558
http://dx.doi.org/10.1088/0266-5611/18/2/310
http://dx.doi.org/10.1088/0266-5611/20/1/006
http://dx.doi.org/10.1088/0031-9155/51/10/001
http://dx.doi.org/10.1088/0266-5611/21/6/017
http://dx.doi.org/10.1155/2012/876069
http://dx.doi.org/10.1016/j.cam.2006.12.012
http://dx.doi.org/10.1088/0266-5611/26/5/055007


542 F. Wang and H. Cui

[11] S. Saewan and P. Kumam. Modified hybrid block iterative algorithm for convex
feasibility problems and generalized equilibrium problems for uniformly quasi-
π-asymptotically nonexpansive mappings. Abstr. Appl. Anal., 2010:Article ID
357120, 22 pp, 2010. http://dx.doi.org/10.1155/2010/357120.

[12] Y. Tang, J. Peng and L. Liu. A cyclic algorithm for the split common fixed
point problem of demicontractive mappings in Hilbert spaces. Math. Model.
Anal., 17:457–466, 2012. http://dx.doi.org/10.3846/13926292.2012.706236.

[13] F. Wang and H.K. Xu. Choices of variable steps of the CQ algorithm for the
split feasibility problem. Fixed Point Theory, 12:489–496, 2011.

[14] F. Wang and H.K. Xu. Cyclic algorithms for split feasibility problems in Hilbert
spaces. Nonlinear Anal., 74:4105–4111, 2011.
http://dx.doi.org/10.1016/j.na.2011.03.044.

[15] H.K. Xu. A variable Krasnosel’skii–Mann algorithm and the multiple-set split
feasibility problem. Inverse Problems, 22:2021–2034, 2006.
http://dx.doi.org/10.1088/0266-5611/22/6/007.

[16] H.K. Xu. Iterative methods for the split feasibility problem in infinite dimen-
sional Hilbert spaces. Inverse Problems, 26:105018, 2010.
http://dx.doi.org/10.1088/0266-5611/26/10/105018.

[17] Q. Yang. The relaxed CQ algorithm for solving the split feasibility problem.
Inverse Problems, 20:1261–1266, 2004.
http://dx.doi.org/10.1088/0266-5611/20/4/014.

http://dx.doi.org/10.1155/2010/357120
http://dx.doi.org/10.3846/13926292.2012.706236
http://dx.doi.org/10.1016/j.na.2011.03.044
http://dx.doi.org/10.1088/0266-5611/22/6/007
http://dx.doi.org/10.1088/0266-5611/26/10/105018
http://dx.doi.org/10.1088/0266-5611/20/4/014

