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Abstract. This paper deals with the stabilization of the poroelasticity system, in
the incompressible fully dynamic case. The stabilization term is a perturbation of the
equilibrium equation that allows us to use central difference schemes to approximate
the first order spatial derivatives, yielding numerical solutions without oscillations
independently of the chosen discretization parameters. The perturbation term is a
discrete Laplacian of the forward time difference, affected by a stabilization parameter
depending on the mesh size and the properties of the porous medium. In the one-
dimensional case, this parameter is shown to be optimal. Some numerical experiments
are presented to show the efficiency of the proposed stabilization technique.
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1 Introduction

The mathematical equations governing the dynamic behaviour of fully satu-
rated elastic porous media were provided by Biot [3], using the displacements
of the solid phase and the fluid displacement relative to the solid phase as vari-
ables. The study of these models are of great interest in geomechanics due to
their applications in the study of the earthquake response of soil structures.
We focus on the fully dynamic Biot’s model which describes wave propagations
in Ω, a domain in Rn, n ≤ 3, occupied by an elastic, porous and permeable
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matrix of density ρ, saturated by a viscous and slightly compressible or incom-
pressible fluid. For problems where high-frequency components are absent, an
economical model based on the displacements u(x, t) of the solid phase and the
pore-pressure p(x, t) as the essential variables was proposed in [9]. This model,
called u− p formulation, is given by the system of equations

ρ
∂2u

∂t2
− µ∆u− (λ+ µ)∇(∇ · u) + α∇p = g(x, t),

∂

∂t
(γp+ α∇ · u)−∇ · (k∇p) = f(x, t), (1.1)

where λ and µ are the Lamé coefficients; γ = nγ̃, with n the porosity and γ̃ the
compressibility coefficient of the fluid; k is the conductivity defined by k = κ/η
with κ the permeability of the porous medium, η the viscosity of the fluid, and
α is the Biot–Willis constant. Adequate initial and boundary conditions must
be supplemented. The existence and uniqueness of solution of this coupled
mixed hyperbolic–parabolic system has been studied in [2].

A very interesting case corresponds to the problem of a porous medium
with small permeability, saturated by an incompressible fluid. The presence
of non-physical oscillations in the numerical solution if finite elements with
equal order polynomial interpolation spaces are used for pressure and displace-
ments is well known. To minimize this difficulty, different interpolation spaces
for displacements and pressure, satisfying the LBB condition, can be chosen.
Nevertheless, in order to use simpler codes, stabilization techniques permitting
equal interpolation spaces have been investigated in the past years. Stabiliza-
tion methods based on adding to the pressure equation a stabilization term
have been studied in [7, 10]. Although these techniques are simple, in general,
they suffer from the need to know apriori the stabilization parameter. In the
quasi-static Biot’s model, a stabilization term is added to the flow equation
in [1], obtaining solutions without oscillations independently of the chosen dis-
cretization parameters. The stabilization parameter, which depends on the
elastic properties of the solid, and on the size of the triangulation, is given
a priori, and it is shown that in the one-dimensional case, this parameter is
optimal.

In the framework of finite-difference methods, similar oscillatory behaviour
is observed if the standard second-order central difference scheme is used to
approximate the first order derivatives appearing in system (1.1). In [4] it is
shown that the use of staggered grid discretizations provides solutions free of
oscillations for any values of discretization parameters. For other Biot’s models,
staggered grids have also been successfully applied, see for example [5,6]. In this
work, collocated grids and standard central difference schemes are considered.
To remove the spurious numerical oscillations, a stabilization technique based
on a well defined perturbation of the first equation of system (1.1) is proposed.

The rest of the paper is organized as follows. In Section 2, we focus on a
one-dimensional problem to analyze the numerical behaviour of standard dis-
cretizations and to identify the reason of the appearing of spurious oscillations.
After the analysis of this unstable behaviour, in Section 3, we propose a new
stabilized finite difference scheme, and stability estimates and convergence re-
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sults on suitable energy norms are obtained. We finish the paper with some
numerical experiments on one and two dimensions which confirm the efficiency
of the stabilization strategy.

2 The One-Dimensional Problem

Let us consider a test problem which corresponds to a column of a porous
medium saturated by an incompressible fluid, bounded by impermeable and
rigid lateral walls and bottom, and supporting a unit load on the top which is
free to drain. Taking α = 1 as Biot–Willis constant, this problem is modelled
as a particular case of (1.1), with γ = 0 because of the incompressibility of the
fluid. So, we have the following system of partial differential equations

ρ
∂2u

∂t2
− (λ+ 2µ)

∂2u

∂x2
+
∂p

∂x
= 0,

∂

∂t

(
∂u

∂x

)
− k ∂

2p

∂x2
= 0, x ∈ (0, 1), 0 < t < T (2.1)

subject to the boundary and initial conditions

(λ+ 2µ)
∂u

∂x
(0, t) = 1, p(0, t) = 0, t ∈ (0, T ], (2.2)

u(1, t) = 0,
∂p

∂x
(1, t) = 0, t ∈ (0, T ], (2.3)

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, x ∈ (0, 1). (2.4)

Applying the method of separation of variables to this test problem, it is
possible to calculate its analytical solution which represents damped waves
for both displacement and pressure. The performance of the solution is very
different depending on a relation between the parameters in the problem. So,

when kπ
√
ρ(λ+ 2µ) − 1 > 0 the solution is a damped wave with marked

oscillatory behaviour, where the displacement is given by

u(x, t) =

∞∑
n=0

bn cos(mnx)e−at
(

cos(
√
dnt) +

a√
dn

sin(
√
dnt)

)
+

x− 1

(λ+ 2µ)
,

and the pressure by

p(x, t) = − 1

ρk

∞∑
n=0

2

mn

√
dn

sin(mnx)e−at sin(
√
dnt),

where, for n ≥ 0,

a =
1

2ρk
, mn =

π + 2nπ

2
, bn =

2

(λ+ 2µ)m2
n

, dn =
(λ+ 2µ)

ρ
m2
n − a2. (2.5)

Figure 1 shows the pressure solution when

λ = µ = 1.32× 107 N/m2, ρ = 1.7× 103 Kg/m3, (2.6)

and the hydraulic conductivity is taken as k = 10−5 m/s.

Math. Model. Anal., 18(4):463–479, 2013.
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Figure 1. An accurate enough approximation for pressure obtained truncating the series
of the analytical solution in a particular case kπ

√
ρ(λ+ 2µ)− 1 > 0.

If kπ
√
ρ(λ+ 2µ) − 1 = 0 we are in a transition case, however from the

numerical point of view, the most interesting situation appears for small con-
ductivities, and it corresponds to the relation kπ

√
ρ(λ+ 2µ) − 1 < 0, where

the analytical solution is given by

u(x, t) =

N0−1∑
n=0

bn cos(mnx)e−at
(

cosh(
√
−dnt+

a√
−dn

sinh(
√
−dnt)

)
−

∞∑
n=N0

bn cos(mnx)e−at
(

cos(
√
dnt) +

a√
dn

sin(
√
dnt)

)
+

x− 1

(λ+ 2µ)

for displacements and by

p(x, t) = − 1

ρk

(N0−1∑
n=0

2

mn

√
−dn

sin(mnx)e−at sinh(
√
−dnt)

+

∞∑
n=N0

2

mn

√
dn

sin(mnx)e−at sin(
√
dnt)

)

for the pressure, with N0 the smallest integer such that (1/(k
√
ρ(λ+ 2µ)) −

π) < 2πN0 and a, mn, bn and dn defined as in (2.5).

In this context, as it happens when a load is applied on an elastic saturated
porous medium and inertial effects are neglected, the pressure quickly rises
and sharp boundary layers in both space and time appear. In Figure 2, we
display a particular example of this phenomenon choosing λ, µ, ρ as in (2.6),
and k = 10−9 m/s to be in the last case. Classical discretization methods may
not be stable in the sense that strong non-physical oscillations appear in the
approximated numerical solutions.
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Figure 2. An accurate enough approximation for pressure in the case κπ
√
ρ(λ+ 2µ) < 1

obtained truncating the series of the analytical solution.

2.1 Standard discretization

For simplicity in the analysis, we will take uniform meshes both in space and
time. Let N be a positive integer, we define h = 1/N as space mesh size and
denote by xi = ih, i = 0, . . . , N the mesh points. In the same way, let M be a
positive integer, and we will also consider a uniform grid in the time domain
[0, T ] with step τ = T/M . Now, for each time level tm = mτ, m = 1, . . . ,M−1,
we approximate the solution of the column problem with the standard finite-
difference scheme

ρ(uh,tt)i
m − (λ+ 2µ)

2

(
(uh,xx)i

m+1
+ (uh,xx)i

m)
+ (p

h,
◦
x
)i
m+1

= 0,

(u
h,t

◦
x
)i
m − k(ph,xx)i

m+1
= 0, (2.7)

where (uh, ph) are grid functions denoting the numerical approximation to
(u, p). We use the standard index-free notation for finite difference schemes [8].
Scheme (2.7) must be completed with suitable boundary and initial conditions.
If we approach the solution of the column problem (2.1)–(2.4) by discretiza-
tion (2.7), the behaviour of the numerical solution depends on the chosen ma-
terial parameters. If we choose the values given in (2.6) and k = 10−5, even
though the analytical solution has a marked oscillatory behaviour, it can be
satisfactorily approximated taking a small enough step size to capture the os-
cillatory behaviour (see Figures 3 and 4).

However, if we change the hydraulic conductivity to k = 10−9, the column
problem is not satisfactorily solved by (2.7), because spurious oscillations for
displacement and pressure approximations appear. This phenomenon can be
observed in Figures 5 and 6 where we display a comparison between the analy-
tical solution and the numerical approximation, for displacements and pressure
respectively, at time T = 0.001 with N = M = 20.

Math. Model. Anal., 18(4):463–479, 2013.
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Figure 3. Time history for an accurate enough approximation of the analytical solution
and a numerical solution for displacements, obtained by scheme (2.7) for the column

problem with N = M = 400 at node x = 0.5.
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Figure 4. Time history for an accurate enough approximation of the analytical solution
and a numerical solution for pressure, obtained by scheme (2.7) for the column problem

with N = M = 400 at node x = 0.5.

2.2 Stabilization of scheme (2.7)

In this simple 1D test problem, system (2.1)–(2.4) can be decoupled. From the
second differential equation and boundary conditions on x = 1, we obtain the
relation

∂p

∂x
=

1

k

∂u

∂t
. (2.8)

By substituting this expression into the first equation, the original problem can
be written as

ρ
∂2u

∂t2
− (λ+ 2µ)

∂2u

∂x2
+

1

k

∂u

∂t
= 0,

∂p

∂x
− 1

k

∂u

∂t
= 0, x ∈ (0, 1), 0 < t < T (2.9)

subject to the boundary and initial conditions (2.2)–(2.4).
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Figure 5. Comparison between an accurate enough approximation of the analytical
solution and an approximated solution for displacements, obtained by scheme (2.7) for the

column problem at time T = 0.001 and N = M = 20.
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Figure 6. Comparison between an accurate enough approximation of the analytical
solution and an approximated solution for pressure obtained by scheme (2.7) for the column

problem at time T = 0.001 and N = M = 20.

Now, for i = 1, . . . , N − 1 and m = 1, . . .M − 1, the numerical solution of
the column problem can be performed using for the first equation of (2.9) the
following scheme

ρ(uh,tt)i
m − (λ+ 2µ)

2

(
(uh,xx)i

m+1
+ (uh,xx)i

m)
+

1

k
(uh,t)

m
i = 0 (2.10)

with a suitable approximation of initial and boundary conditions for displace-
ments.

It is clear that the numerical solution for the uncoupled formulation of the
column problem, does not present any numerical instabilities, independently of
the choice of h and τ , because the resulting coefficient matrices are M-matrices
in each time level.

Now, we decouple scheme (2.7) in order to compare it with the previous
scheme (2.10). Taking into account the boundary conditions, at each time

Math. Model. Anal., 18(4):463–479, 2013.



470 N. Boal, F.J. Gaspar, F.J. Lisbona and P.N. Vabishchevich

level, we obtain the relations

pmh,N+1 = pmh,N−1, (uh,t)
m
N+1 = −(uh,t)

m
N−1,

where a ghost point xN+1 has been considered in the space grid. Then, the
second equation of (2.7) in the node xN gives

(uh,t)
m
N−1 = 2k

(pm+1
h,N − p

m+1
h,N−1

h

)
.

Since, (uh,t)
m
N = 0, we have

(uh,t)
m
N + (uh,t)

m
N−1

2
= k

(pm+1
h,N − p

m+1
h,N−1

h

)
. (2.11)

In a similar way, for i = N − 1, . . . , 1, rewriting the second equation of (2.7) in
each internal node xi and applying recursion, we deduce the following relation

(uh,t)
m
i + (uh,t)

m
i−1

2
= k

(pm+1
h,i − p

m+1
h,i−1

h

)
, (2.12)

and then ( (uh,t)
m
i+1 + 2(uh,t)

m
i + (uh,t)

m
i−1

4

)
= k

pm+1
h,i+1 − p

m+1
h,i−1

2h
. (2.13)

Then, the first equation of (2.7) can be rewritten as

ρ(uh,tt)
m

i
− (λ+ 2µ)

2

(
(uh,xx)

m+1
i + (uh,xx)

m
i

)
+

1

k
(ûh,t)

m
i = 0, (2.14)

where

v̂mh,i :=
(vmh,i+1 + 2vmh,i + vmh,i−1

4

)
gives us a second order approximation of vmh,i.

Solving (2.14), for each time level a linear system appears with equations(
c+

τ

4k

)
um+1
h,i−1 +

(
ρ− 2c+

τ

2k

)
um+1
h,i +

(
c+

τ

4k

)
um+1
h,i+1

= 2ρumh,i + ρum−1h,i − c
(
umh,i+1 − 2umh,i + umh,i−1

)
+
τ

k
ûmh,i, (2.15)

where c = −(λ+ 2µ)τ2/(2h2).
Now, the extradiagonal elements c + τ

4k can be positive, depending on h
and τ , and spurious oscillations come from the positivity of these coefficients.
So, if h2 < 2k(λ + 2µ)τ , the tridiagonal matrices obtained from (2.15) are
M-matrices. Therefore this unstable behaviour can be avoided taking a small
enough spatial discretization step. However, when we consider a small time
step in the initial stage, this restriction on the mesh size is severe and a big
computational effort can be required for multidimensional problems.

It is worth to compare finite difference scheme (2.10) for the decoupled
problem and the decoupled scheme (2.14). It can be observed that the only
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discrepancy appears in the approximation of ∂u/∂t. In the first case, to ap-
proximate ∂u/∂t(xi, tm) we use the forward difference (uh,t)

m
i , whereas, in the

second one, we take (ûh,t)
m
i that is an average in neighbouring points. The

following relation is satisfied

(ûh,t)
m
i −(uh,t)

m
i =

(
(uh,t)

m
i+1−2(uh,t)

m
i +(uh,t)

m
i−1

4

)
=
h2

4

(
(uh,t)xx

)m
i
. (2.16)

So, a possible way to stabilize (2.7) is to perturb the displacement equation in
order to recover scheme (2.10).

Coming back to the column problem, we approach its solution over a uni-
form grid in space with step size h and a uniform grid in [0, T ] with time step τ ,
in the following way

ρ(uh,tt)
m

i
− (λ+ 2µ)

2

(
(uh,xx)

m+1
i +(uh,xx)

m
i

)
+(p

h,
◦
x
)
m+1

i
−h

2

4k

(
(uh, t)xx

)m
i

=0,

(u
h,t

◦
x
)
m

i
− k(ph,xx)

m+1
i = 0. (2.17)

3 The General Case

3.1 Fully discrete problem

For simplicity, we restrict ourselves to the two-dimensional case. All results
presented here, can be straightforwardly generalized to the three-dimensional
case. Although more general conditions can be considered, for simplicity we
focus on the fully dynamic Biot’s model given by (1.1) on a square unit domain
Ω of side L with homogeneous Dirichlet boundary conditions

u(x, t) = 0, p(x, t) = 0, x ∈ ∂Ω, t > 0 (3.1)

and initial conditions

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = w0(x), p(x, 0) = p0(x), x ∈ Ω, (3.2)

and we restrict our attention to the case of very small conductivities leading
to a over-damped wave.

Let N be a positive integer, h = L/N the mesh size and ω the set of nodes
ω =

{
(ih, jh), i, j = 0, 1, . . . , N

}
, ω denotes the internal nodes and ∂ω the set

of boundary grid points. We define the corresponding Hilbert spaces of grid
functions Hω and H = Hω × Hω, with usual L2 inner product [8]. We also
denote by Hω and H = Hω ×Hω the subspaces of grid functions vanishing on
the boundaries.

Now, we discretize the divergence operator by the second order approx-
imation Dv = (v1) ◦

x1
+ (v2) ◦

x2
for v ∈ H. The discrete gradient operator

G : Hω → H is taken such that (Gy,w) = −(y,Dw), i.e., as the negative
adjoint to operator D.

To discretize the elasticity operator, we use the operator A : H→ H given
by A = −µ∆̃h−(λ+µ)GD where ∆̃h = diag(∆h,∆h), and ∆hv = vx1x1 +vx2x2

Math. Model. Anal., 18(4):463–479, 2013.
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is the usual five-point stencil approximation of the scalar Laplace operator.
Operator A is self-adjoint and positive definite on H, i.e. A = A∗ ≥ δAE
where δA > 0 is independent of h and E is the identity operator in H .

Finally, the discrete diffusion operator B : Hω → Hω is defined by By =
−k∆hy, so that B is symmetric and positive definite in Hω, i.e., B = B∗ ≥ δBE
where δB > 0 is independent of h and E is the identity operator in Hω.

The semi-discrete approximations uh(t) ∈ H and ph(t) ∈ H are given by
the solution of the Cauchy problem

ρ
d2uh(t)

dt2
+Auh(t) + αGph(t) = gh(t),

d

dt

(
γph(t) + αDuh(t)

)
+Bph(t) = fh(t) (3.3)

for all t ∈ (0, T ], with initial conditions

uh(0) = u0
h,

d

dt
uh(0) = w0

h, ph(0) = p0h. (3.4)

For time discretization of (3.3)–(3.4), we consider a uniform grid in [0, T ].
Let umh and pmh be approximations to uh(tm) and ph(tm), where tm = mτ,
m = 0, 1, . . . ,M and T = τM . Generalizing (2.7) to the two-dimensional case,
we propose a stabilized finite-difference scheme based on the perturbation of
the equation for the displacements. Namely, we define the discrete operator
C : H→ H as

C =
(
−h2/4k

)
∆̃h, (3.5)

which is self-adjoint and positive definite on H and, for m = 1, . . .M − 1, we
approach the solution of the fully dynamic Biot’s problem by

ρ
wm+1
h −wm

h

τ
+A

um+1
h + umh

2
+ αGpm+1

h + Cwm+1
h = gmh ,

γ
pm+1
h − pmh

τ
+ αDwm+1

h +Bpm+1
h = fm+1

h (3.6)

with wm+1
h = (um+1

h − umh )/τ .

3.2 Stability and convergence

Proposition 1. The solution of difference scheme (3.6) satisfies the a priori
estimate

ρ
∥∥wm+1

h

∥∥2 +
∥∥um+1

h

∥∥2
A

+ γ
∥∥pm+1

h

∥∥2 ≤ τ

2

(
K̃1

∥∥gmh ∥∥2 + K̃2

∥∥fm+1
h

∥∥2
B−1

)
+ K̃3

(
ρ
∥∥wm

h

∥∥2 +
∥∥umh ∥∥2A + γ

∥∥pmh ∥∥2)
for m = 1, 2, . . .M − 1, where K̃1, K̃2 and K̃3 are constants independent of h
and τ .
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Proof. Multiplying the first equation of (3.6) by (τwm+1
h ) and taking into

account that 2(wm+1
h −wm

h ,w
m+1
h ) ≥ ‖wm+1

h ‖2 − ‖wm
h ‖

2
, we obtain

ρ

2

(∥∥wm+1
h

∥∥2 − ∥∥wm
h

∥∥2)+
1

2

(∥∥um+1
h

∥∥2
A
−
∥∥umh ∥∥2A)+ α

(
Gpm+1

h , τwm+1
h

)
+ τ
∥∥wm+1

h

∥∥2
C
≤
(
gmh , τw

m+1
h

)
.

By the generalized Cauchy–Schwarz inequality, we have

ρ

2

(∥∥wm+1
h

∥∥2 − ∥∥wm
h

∥∥2)+
1

2

(∥∥um+1
h

∥∥2
A
−
∥∥umh ∥∥2A)+ α

(
Gpm+1

h , τwm+1
h

)
≤ ρ

2

(
1− e−βτ

)∥∥wm+1
h

∥∥2 +
τ2

2ρ(1− e−βτ )

∥∥gmh ∥∥2 (3.7)

with β > 0. Next, if we consider the second equation of (3.6) and we multiply
it by (τpm+1

h ) we obtain

γ

2

(∥∥pm+1
h

∥∥2 − ∥∥pmh ∥∥2)+ α
(
Dwm+1

h , τpm+1
h

)
≤ τ

4

∥∥fm+1
h

∥∥2
B−1 . (3.8)

From (3.7) and (3.8),

ρe−βτ
∥∥wm+1

h

∥∥2 +
∥∥um+1

h

∥∥2
A

+ γ
∥∥pm+1

h

∥∥2
≤ ρ
∥∥wm

h

∥∥2 +
∥∥umh ∥∥2A + γ

∥∥pmh ∥∥2 +
τ

2

∥∥fm+1
h

∥∥2
B−1 +

τ2

ρ(1− e−βτ )

∥∥gmh ∥∥2.
Then, as β > 0, it is fulfilled

ρ
∥∥wm+1

h

∥∥2 +
∥∥um+1

h

∥∥2
A

+ γ
∥∥pm+1

h

∥∥2 ≤ eβτ
(
ρ
∥∥wm

h

∥∥2 +
∥∥umh ∥∥2A + γ

∥∥pmh ∥∥2)
+
τ

2

(
eβτ
∥∥fm+1
h

∥∥2
B−1 +

2e2βτ

ρβ

∥∥gmh ∥∥2) , (3.9)

and final estimate results. ut

The convergence results follow from the error-problem

ρ
δum+1

h − 2δumh + δum−1h

τ2
+A

δum+1
h + δumh

2
+ αGδpm+1

h

+ C
δum+1

h − δumh
τ

= Ψm
h ,

γ
δpm+1
h − δpmh

τ
+ α

Dδum+1
h −Dδumh

τ
+Bδpm+1

h = φmh , (3.10)

where

δumh = umh − u(·, tm) ∈ H, δpmh := pmh − p(·, tm) ∈ Hω,
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for m = 1, . . . ,M , and the right-hand side functions Ψm
h and φmh are the

approximation errors given by

Ψm
h (x) = ρ

u(x, tm+1)− 2u(x, tm) + u(x, tm−1)

τ2
+ αGp(x, tm+1)

+A
u(x, tm+1) + u(x, tm)

2
+ C

u(x, tm+1)− u(x, tm)

τ
−gh(x, tm), x ∈ ω,

φmh (x) = γ
p(x, tm+1)− p(x, tm−1)

2τ
+ α

Du(x, tm+1)−Du(x, tm−1)

2τ
+Bp(x, tm+1)− fh(x, tm), x ∈ ω.

If the exact solution is smooth enough, it is easy to verify by simple Taylor
expansion that Ψm

h (x) = O(h2 + τ), and φmh (x) = O(h2 + τ) for x ∈ ω.
From the stability results given in Proposition 1, we can prove the next

convergence result.

Proposition 2. Let u(x, t) and p(x, t) be the solution of problem (1.1) with
(3.1)–(3.2) as boundary and initial condition and let (um+1

h ,wm+1
h , pm+1

h ) be
the numerical solution of finite difference scheme (3.6). If u1

h, w1
h and p1h are

O(h2 + τ) approximations of u(x, τ), ∂u
∂t (x, τ) and p(x, τ), then

ρ
∥∥δwm+1

h

∥∥+
∥∥δum+1

h

∥∥
A

+ γ
∥∥δpm+1

h

∥∥ = O
(
h2 + τ

)
.

Proof. By using estimate (3.9) recursively, we have

ρ
∥∥δwm+1

h

∥∥2 +
∥∥δum+1

h

∥∥2
A

+ γ
∥∥δpm+1

h

∥∥2
≤ eβτm

(
ρ
∥∥δw1

h

∥∥2 +
∥∥δu1

h

∥∥2
A

+ γ
∥∥δp1h∥∥2)

+
τ

2

m∑
k=1

eβτ(m−k)
(2e2βτ

ρβ

∥∥Ψk
h

∥∥2 + eβτ
∥∥φk+1

h

∥∥2
B−1

)
≤ e3βT

(
ρ
∥∥δw1

h

∥∥2 +
∥∥δu1

h

∥∥2
A

+ γ
∥∥δp1h∥∥2 +

τ

2

m∑
k=1

( 2

ρβ

∥∥Ψk
h

∥∥2 +
∥∥φk+1

h

∥∥2
B−1

))
.

The result follows taking into account the previous bounds for the approxima-
tion errors Ψm

h and φm+1
h . ut

4 Numerical Experiments for the Stabilized Scheme

In this section, numerical experiments confirming the theoretical results are
presented. First, we consider again the one-dimensional test problem described
in the Section 2 and we analyze numerical results obtained when we approach
its solution with the perturbed finite-difference scheme (2.17). To finish, we
present numerical experiments for a 2D problem.

4.1 The column problem

Now, we consider the 1D test problem (2.1)–(2.4) previously defined in Sec-
tion 2. We choose the material parameters λ, µ, ρ given in (2.6) and we
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consider a small conductivity case taking k = 10−9, so kπ
√
ρ(λ+ 2µ)− 1 < 0

yields. In this situation, a sharp boundary layer in both space and time appears
in the pressure field.

In Table 1, we display the energy norm of the errors for displacements and
the L2-norm for the pressure, i.e., ‖δuh‖A and ‖δph‖, for T = 0.1 and several
values of parameters N and M . We check that these numerical results are in
agreement with the theory proved in this paper.

Table 1. Errors in energy norm for displacements and L2-norm for pressure at time T = 0.1
by using the perturbed finite-difference scheme (2.17).

Space Time ‖δuh‖A ‖δph‖

N = 40 M = 10 3.5670× 10−10 1.1701× 10−2

N = 80 M = 20 1.4425× 10−10 5.7668× 10−3

N = 160 M = 40 6.4507× 10−11 2.8619× 10−3

N = 320 M = 80 3.0461× 10−11 1.4260× 10−3

In Figures 7 and 8, we represent the numerical solution for displacements
and pressure fields for T = 0.001 when we use (3.6) with N = M = 20. In this
case, any non-physical oscillation is observed in the behaviour of the numerical
approximations of displacement and pressure fields.
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Figure 7. Comparison between an accurate enough approximation of the analytical
solution and an approximated solution for displacements obtained by perturbed scheme

(3.6) for the column problem at time T = 0.001 and N = M = 20.

This way to stabilize the problem by perturbing an equation is usual in
incompressible Navier–Stokes equations, adding for example the term ah2∆hph
to the divergence constraint equation. In this case, a big limitation appears
because the strategy requires a “good” choice of the stabilization parameter a.
It is very easy to over-stabilize by using a parameter value that is too large.
This is not the case here. As we are going to see, the obtained parameter
h2/(4k) is the best, at least for the one-dimensional case on a uniform grid. To
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Figure 8. Comparison between an accurate enough approximation of the analytical
solution and an approximated solution for pressure obtained by perturbed scheme (3.6) for

the column problem at time T = 0.001 and N = M = 20.

confirm this numerically, we consider the perturbed scheme

ρ
um+1
h − 2umh + um−1h

τ2
+A

um+1
h + umh

2
+ αGpm+1

h + Cβ
um+1
h − umh

τ
= gmh ,

γ
pm+1
h − pmh

τ
+ α

Dum+1
h −Dumh

τ
+Bpm+1

h = fm+1
h , (4.1)

where

Cβ
um+1
h − umh

τ
:= −βh

2

4k
∆̃h

(um+1
h − umh

τ

)
with β a free parameter. If β = 1 we get the perturbed discrete problem (2.17),
and if β = 0 we get the standard finite-difference scheme without perturbing.
We consider the column problem for the small conductivity case, k = 10−9.
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Figure 9. Maximum error obtained for different values of β for the column problem with
k = 10−9 and N = M = 20.

In Figure 9 we have represented the maximum error obtained in a time step
for different values of β ∈ [0, 3] and for different time step sizes. In accordance
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with these results it can be observed that the minimum error is reached with
our proposed stabilization parameter corresponding to β = 1.

4.2 A two-dimensional problem

The aim of this last experiment is to asses the good performance of the proposed
stabilization for a two-dimensional realistic problem. It corresponds to a 2D
elastic soil foundation subjected to a surface step loading of σ0 = 103 N/m2.
The simulation domain is a 10 by 10 meters block of porous soil, Ω = (−5, 5)×
(0, 10), as in Figure 10.

 n,1  

!
  l

!
  l

!b  

!n,1  

! 

"n,2  

Figure 10. Computational domain for the two-dimensional numerical experiment.

At the base of this domain the soil is assumed to be fixed, i.e. both hor-
izontal and vertical components of displacements are taken as zero, while at
some centered upper part of the domain a uniform load is applied in a strip of
length 1m as depicted in Figure 10.

The remaining of the top surface is assumed to be traction free. Horizontal
displacement and vertical surface traction are assumed to be zero on each of
the vertical walls. Concerning the pressure, we prescribe the pore pressure at
the top surface as zero, and we assume the lateral and the bottom boundaries
to be impermeable. More precisely, the boundary condition is given as follows

p = 0, σxy = 0, σyy = 0, on Γn,1,

p = 0, σxy = 0, σyy = −σ0, on Γn,2,

∂p

∂n
= 0, σxy = 0, u = 0, on Γ`,

∂p

∂n
= 0, v = 0, u = 0, on Γb,

where σxy = µ
(
∂u
∂y + ∂v

∂x

)
, σyy = λ∂u∂x + (λ+ 2µ)∂v∂y , and

Γn,1 =
{

(x, y) ∈ ∂Ω / |x| > 1/2, y = 10},
Γn,2 =

{
(x, y) ∈ ∂Ω / |x| ≤ 1/2, y = 10},

Γ` =
{

(x, y) ∈ ∂Ω / |x| = 5}, Γb =
{

(x, y) ∈ ∂Ω / y = 0}.
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The material properties of the porous medium are indicated in Table 2 where
λ and µ are related to the Young’s modulus E and the Poisson’s ratio ν by

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

Table 2. Material parameters for the two-dimensional problem.

Parameter Definition Value Unit

E Young’s modulus 3.3× 107 N/m2

ν Poisson’s ratio 0.25 –
ρ Density of the soil 1.7× 103 Kg/m3

k Hydraulic conductivity 10−9 m/s

A mesh consisting of 101×101 nodes is used in the numerical experiment. In
order to adequately capture the time boundary layer, we have chosen the final
time T = 0.001 and the number of subdivisions in time M = 2. Figure 11 shows
that the approximation of the first derivatives by standard central differences
lead to spurious oscillations in the pressure at time T = 10−3.

X

Y

-5 0 5
0

1

2

3

4

5

6

7

8

9

10

Figure 11. Pressure contours for the two-dimensional problem without stabilization term.

These unphysical oscillations in the pressure are eliminated completely
adding the stabilization term to the first equation as can be seen in Figure
12.

5 Conclusions

In this paper we have presented a stabilized finite difference scheme for the in-
compressible fully dynamic poroelastic model. Stabilization is done by adding
an extra term to the equilibrium equation, that permits us to use central dif-
ference schemes to approximate the first order spatial derivatives providing
numerical solutions without oscillations independently of the chosen discretiza-
tion parameters. The stabilization parameter depends on the mesh size and the
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Figure 12. Pressure contours for the two-dimensional problem adding the stabilization
term.

properties of the porous medium. In the one-dimensional case, this parameter
is shown to be optimal.
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