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Abstract. Via Carleman estimates we prove uniqueness and continuous dependence
results for an identification and strongly ill-posed linear integro-differential parabolic
problem with the Dirichlet boundary condition, but with no initial condition. The
additional information consists in a boundary linear integral condition involving the
normal derivative of the temperature on the whole of the lateral boundary of the
space-time domain.
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1 Introduction

This paper is concerned with the determination of an unknown time-dependent
function in a strongly ill-posed problem, where strongly means that no trans-
formation can be found in order to change our problem to a well-posed one, at
least, when working in classical or Sobolev function spaces of finite order.

We stress that the main stream concerning strongly ill-posed problems in-
volves PDE’s. For this purpose we refer the reader to the monograph [4], deal-
ing with elliptic and parabolic problems, and the rich bibliography therein. Of
course, lesser interest was devoted to recovering unknown functions in strongly
ill-posed integro-differential problems. This paper is just devoted to shed some
light on such problems, mainly on the questions of uniqueness and continuous
dependence on the data, two fundamental topics for people working in Applied
Mathematics. More exactly, we will deal here with an integro-differential linear
parabolic problem, where in the integral operator the integrations involve both
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space and time and the operator is of Volterra type. Furthermore in our prob-

lem no initial condition will be supplied. It will be replaced by the requirement

that the “temperature” u should assume prescribed values on (0,7) x 912 as

well as an additional boundary condition involving a linear combination of the

flux of u and a Volterra type integral of the temperature itself will be prescribed
n (0,7) x 942.

The main task of this paper consists in recovering a function « in the source
term when a mean of the temperature is known for all times ¢ € [0,7]. More-
over, we shall be able to estimate u in C((0,77]; L*(£2))N L3 .((0, T); H(£2)) in
terms of suitable norms of our data and « in L2((0, T]; R).

The fundamental tool to give a positive answer to our problem will be
deduced by adapting to our case the celebrated (weighted) Carleman estimates
for PDE’s [5,6] — of use both in Control and Inverse Problem Theory. They
will ensure the uniqueness of the solution to our problem and also an unusual
(weighted) result involving continuous dependence on the data. To improve this
result to one related to usual L?-spaces we shall add a few new assumptions on
the kernels and some additional analysis.

We conclude this introduction by observing that, although there is a wide
literature concerned with the problem of recovering an unknown function en-
tering a well-posed parabolic problem and also a rich literature dealing with
ill-posed problems for PDE’s, at the best of our knowledge in these last years
no paper can be found in MathScinet corresponding to the keywords il posed
and identification or recovering and concerned with integro-differential equa-
tions with integral boundary conditions. We quote also a few related papers
concerning the identification of constants in strongly ill-posed parabolic prob-
lems [8,9] or in well-posed ones [1,3,7,10,11,12,13].

The plan of the paper is the following: Section 2 reports Carleman estimates
for linear second-order parabolic equations when the additional information is
given on the lateral boundary. In Section 3 we express the unknown func-
tion as an affine operator involving w, so that we can transform the given
integro-differential identification problem into a strongly (non-standard) ill-
posed integro-differential problem for u. In Section 4 we determine sufficient
conditions on our data and the integral kernels leading to a Carleman estimate
of weak type, i.e. with a fived parameter sy (cf. Theorem 1), as well as we
deduce the desired weighted L?-estimate for unknown function «. Finally, in
Section 5 we determine sufficient conditions on the integral kernels ensuring
the continuous dependence on our data of (u,«) in the non-weighted spaces
[C((0,T); L?(2)) N L2 _((0,T); L?(£2))] x L*((0,T); R) (cf. Theorem 2).

loc



A Strongly Ill-Posed Integro-Differential Parabolic Problem 397
2 An Auxiliary Linear Strongly Ill-Posed Problem

Let §2 be a bounded open sets in R”, 92 being of C?-class. Let A(x, D) be
the (formal) uniformly elliptic linear operator defined by

A@,D) =Y Dy, [a;j(@)Ds,] + > Dy, [a;(x)]
i,j=1 j=1

n

= Ai(2,D)+ Y D, [a;(z)], (2.1)

j=1
where
a;j € Cl(ﬁ), aj;=a;j, aj€ Whe(), i,j=1,...n,

n

polél < > ai(@)&& < mlgl, xR, LR,

ij=1

for some positive constants pg and pg, po < p1.
We consider the following ill-posed problem, where Q7 = (0,7) x {2 and
X = (O,T) x 0f2:

ue H((0,T); L2(2)) N L2((0,T); H*(£2)),

Dyu(t,z) — A(z, D)u(t, =) = q(t, x), (t,z) € Qr,
(IP1) u(t,x) = go(t, ), (t,z) € X, (22)
Dyu(t,z) = g1(t, x), (t,x) € Xp.

Here D, denotes the (outer) normal derivative, v denoting the (outer) normal
vector-field. Moreover, we assume

g€ L*(Qr), go € H'((0,7); L*(2)) N L*((0,T); H*(2)).
Then the function v = u — gg solves the (equivalent) ill-posed problem

ve H'((0,T); L*(£2)) N L*((0,T); H*(£2)),
Dy(t,z) — A(x, D)v(t, )
(

(IP2) =q(t,x) — Dego(t,z) + A(x, D)go(t,x), (t,x) € Qr, (2.3)
v(t,x) =0, (t,x) € Xp,
Dyv(t,z) = g1(t,z) — Dygo(t, x), (t,x) € Xp.

In the sequel we shall need the Carleman estimate related to problem (IP2).
For this purpose we begin by introducing the functions ¢y : 2 — R, ay :
[0,T] x 2 — R, depending on the parameter A € [1,+00), defined by

(@) _ 22wl
(t,z) € (0,T) x 12,

1(t) ’

oAt x) = e’\w(w), ax(t,x) =

where

I(t) = (T — 1), (2.4)

Math. Model. Anal., 18(3):395-414, 2013.



398 A. Lorenzi
and function ¢ € C*(£2) satisfies the properties (cf. [5])
V(@) >0, z€ 2, |VY@)|>p2>0,2€2, Dy,p(x) <0, z€d2\T

for some positive constant ps.

Owing to Lemma 2.4, with p = 0, in [6], since ) (z) > 1 for all z € 2, any
solution v € H*((0,T); L*(£2)) N L%((0,T); H*(£2) N H'(2)) to problem (IP2)
satisfies the Carleman estimate

83/ l(t)_?”v(t,x)’Qexp[?sa,\(t,x)] dt dx (2.5)

+ s/ 1)~ Vo(t, x)|2 exp[2sa (¢, z)] dt dz + sTleAm
T

X / I(t) [‘Dtv(t,x)f + Z ‘Dmiijv(t,x)‘g} exp[2sa (¢, z)] dt dx

T ij=1

< 53/ l(t)_3<p,\(x)3’v(t,x)’2 exp[2sa(t, x)] dt dw
Qr
+ s/ l(t)*lgoA(x)}Vv(t,x)fexp[QSQA(t,:c)] dtdx

45t /QT {GENE [’Dtv(t,x)|2 +¢JZ_1’DIiDIjU(t7x)’2}
x exp[2san(t, )] dt dz

< C’l{/ HDtgo(t,av)|2 + ‘A(m,D)go(t,x)ﬁ exp[2sa (t, x)] dt d
Qr

+ /|h(t,x)|2exp[25a>\(t,x)} dt dx
Qr

+s/ l(t)_lgo,\(m)exp[Qsa,\(t,x)]|Dyv(t,x)’2dtda:}, 5> 5.
Xr

Here [)]oo = min, 5 9 (z) and the positive constants Cy, A and 5y depend on
Mo, T, ||ai’j||Loo(_Q), ||ajHW1,oo(_Q), i,j = 1,. Lo, n, and (2.

3 The Strongly Ill-Posed Identification Problem

We consider the ill-posed problem consisting in recovering the function o :
(0,T) — R in the linear integro-differential parabolic problem

we H'Y((0,T); L>(£2)) N L2((0,T); H*(12)),
Dyu(t,x) — A(x, D)u(t, x)

(IP3) = Byu(t,x) + a(t) f(t, z) + h(t, z), (t,x) € Qr, (3.1)
u(t,z) =0, (t,x) € X,
Dyu(t,z) = g(t,x) + Bau(t, ), (t,z) € Xy,
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v denoting the (outer) normal to 92, under the following additional condition,
standing for an (integral) spatial mean of u:

/Q u(t,z)dx = B(t), te(0,T). (3.2)

Here 8 : (0,T) — R and By and Bs are the linear integral operators defined by
Buu(t.a) = [ ko gyulny) drdy. (t0) € Qr.

Bow(t,x) = ko(t,x,r,y)w(r,y)drdy, (t,x)€ X,
Q+

where the kernels k; : E — R, with j = 1,2 and Ey = {(t,z,r,y) € Qr X Qr:
r <t} and Ey = {(t,z,7,y) € X1 X Qr: r < t}, are measurable and, for the
time being, separably integrable over Qr, if j = 1, and over Xp, if j = 2, with
respect to (¢, z) and over Qr with respect to (r,y).

We note that, up to a translation, a problem with a non-vanishing u on X7,
can be reduced to one with a vanishing u on Y.

We need now to compute the conormal derivative D,,u in terms of the
normal derivative D,u. For this task we recall that the conormal vector-field
va, is defined by

(va)i = Zai7j(z)yi(aj), x€ed, i=1,...,n.
j=1

Then we note that, if 7¢)(z), j = 1,...,d — 1, denote the set of d — 1 unit
vectors that are mutually orthogonal and tangent to 0f2 at z, we have

d—1

va(z) = Z ¢; ()79 (2) + (va, (2) - n(2)|v(z), =€ i

Jj=1

d
va(z) :=va(z) n(z) = Z a; j(x)ni(z)n;(z) > po >0, forall z € 9002
j=1
and all the tangential derivative of u vanish according to the first boundary
condition in (3.1), we easily deduce the relation
D, u(z) =7a(x)Dyu(z), x= € 1.

Apply now the functional Jw = | o w(r)dr to both sides of the differential
equation in (IP2) and consider the following formulae (cf. (2.2)):

/ Au(t,z) dx = D, u(t,x)do(x) = / Ua(x)Dyu(t, x) do(x)
2 o o0

:/ ﬁA(x)g(t,a:)do(x)+/ Ua(x)Bou(t, z) do(x),
o1

o8

Math. Model. Anal., 18(3):395-414, 2013.



400 A. Lorenzi

where o denotes the Lebesgue surface measure.
Consider now the identities

/Blutxdx—/dx / ky(t, z, 7, y)u(r,y) drdy

(0,t)x 2

= / Ei(t,r,y)u(r,y) dr dy,
(0,t)x 2

AQUA(.T)BQU(t,x) do(z) = /093,4(96) da(m)/( ka(t,z,r,y)u(r,y) drdy

0,t)x 2

= / %Q(tvrv y)u(rv y) dr dyv
(0,t)x 2

where
’]:31 (ta r, y) = / kl (t7 z,T, y) d{E, (33)
Q
Rt = [ ma@kat o) doo) (3.4)
o0
We easily deduce the equation for a:
- [ Ryt drdy (5.0 = olt) [ fit.0)de.
where
2
try:Zk]try (3.5)
j=1

v(ﬁ,g,h)(t)z,é”(t)—/anu,q( x)g(t,z) do(x /htx

Assume now
‘/ (¢, ) dx‘ >m>0, Vtelo,T] (3.6)

and set x(f =[,f o f(t,z)dx. Then o can be represented as an operator
of u:

o)) = XN [ Frpulry)drdy+ x(F)O1(3.9.1)(0)
(0,t)x 2

=: —A(u)(t) = 1(B, f, 9, h)(t). (3.7)

Consequently, u has to solve the strongly ill-posed integro-differential problem
ue H((0,T); L2(2)) N L2((0,T); H*(£2)),
Diu(t,z) — A(z, D)u(t, )

(IP4) = Bu(t,z) + h(t, z), (t,x) € Qr, (3.8)

u(t,z) =0, (t,x) € X,
Dyu(t,x) = g(t, z) + Bau(t, x), (t,z) € Xy,
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where
Bu(t,z) = Byu(t,z) — A(u)(t) f (¢, x),
h(t,z) = ht,z) = 1(B, f,9, W) (®) f(t,2), (t,2) € Qr. (3.9)

4 An Estimate of Weak Carleman Type

Let u be a solution to problem (IP4). Then u solves problem (IP2) with
q = B+h, go =0, and g1 = g+ Bou. Consequently, from (2.5), with s = s9 > 5
to be chosen later on, we deduce the following estimate

/ l(t)73’u(t,x)’2 exp[2so (¢, x)] dt dz

T

+ So/ l(t)*wvu(ta x)|2 exp[280a>\(t,x)] dt dx + salef)‘”wﬂoc

Qr

X / 1(t) [’Dtu(t,x)’2 + Z ’Dg;tiju(t,a:)ﬂ exp[2soo (¢, x)] dt d

T ij=1

< 201/ ’Bu(t,x)fexp[Qsooo\(t,x)] dt dx
Qr
+ 201/ !E(t,x)|2 exp[2soo (¢, z)] dt dz
Qr

+ 250C4 /E Hg(t,x)|2 + ‘BQU(f,I)‘Q] exp[2soan (¢, x)] dt do(x). (4.1)

To prove our weak Carleman estimate,’ related to a suitable sg, for our ill-
posed integro-differential problem (IP4) we need four positive constants K
7 =0,...,3, and choose s( satisfying the inequalities

po(so, f) := so[sg — 2C1K4(f)] >0, so >3, s0>1, (4.2)
where
Eu(f) = KoKy +m 72| fl[1 = (@rym(2)[Ko + i Ko [K1 + pn K3 > 0. (4.3)

Once we have fixed sy, we are allowed to make the following assumptions
concerning k; and ko:

/ |kj(ta$»7"» y)! drdy < Ky,
Q¢

(t,x) € Qp, if j=1, (t,x) € Ty, if j =2, (4.4)
/ |k (t,z,r,y)| dt dp;(x) < Ko;_1l(r) % exp[—2soe1 (¥)1(r) '],

(’I‘,T)XFJ'

(T,y)EQT,j:1,2, F1:‘Q7 F2:6'Qa p1L=m, p2 =0, (45)

m and o denoting, respectively, the n-dimensional Lebesgue measure and the
related Lebesgue surface measure.

1 Weak means here that the Carleman estimate holds for a fized s = sq.

Math. Model. Anal., 18(3):395-414, 2013.
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Remark 1. To exhibit an example of functions k;, j = 1, 2, satisfying conditions
(4.4), (4.5) we choose the functions

+oo
kj(t,x,’/‘, y) = Zh17i,j(tvaj)h2,i,j(rv y)’ Jj=12, (46)

i=1
where the functions hy;; € L°°((0,T) x F;) and ho; ; € L*°(Qr) satisfy the
following bounds for all i € N, j =1,2:

|h2,ij(ry)| < kigl(t) "2 exp[—2s0c1 (W)Y, (r,y) € Qr, j=1,2, (4.7)
+oo

D kigllhigllie oy« <400, j=1,2, (4.8)
i=1
for some nonnegative constants r;;, ¢ € N, j = 1,2. Indeed, assumptions

(4.7)—(4.8) imply
/Q ks () drdy <Y | ha g (6 2) [ sl L on)

T i=1

< 4m(£2) Z Ki gl oo (0,7 < )
i=1

X / s¥2(T%s — 4) 72 exp[—2s0c1 (1)s] ds =: Kp(j_1y, j=1,2,
4/T?

/ ’k’l(t,l",?“, y)| dtdx < Z ||h1,i,j||L1((O,T)><F1)|h2,i,j(ra y)‘
(r,T)x Fy i—1

< %7 [e1 ()] 737”(9) Zﬂi,jth,i,jHLoc((o,T)xQ) =: Ky,
=1 .
/ ko (t, 2,7, y)| dtdo(x) < gl o) <) | e, (r0)|
(T,T)XFQ i=1
27 -3 =
< 3 [e1(¥)] "o (892) Z/fz',jth,i,jHLoc((o,T)xaQ) =: K3,

i=1
since sp > 1. We stress that, according to assumption (4.7) and definition
(2.4), functions hg ; ; must vanish exponentially as ¢ — 0+ and t — T—.

We can now state the main result of this section.

Theorem 1. Let f € L>®(Qr), h € L*(Qr), g € H'((0,T); L*(2))NL*((0,T);
H?(02)), B € H'(0,T). Moreover, let f and the kernels kj : E; - R, j = 1,2,
satisfy, respectively, conditions (4.4) and (4.5). Then the solution u to problem
(IP4) satisfies the weak Carleman estimate

p(s0, f) / 1(t) 3 exp[—2s0c1 (¥)1(1) ] lu(t, z) |2 dt dx

T

+So/ l(t)—lyvu(tl‘)‘QeXp[QSOa)\(t,q;)] dtdx+so_1@—>\\|¢\loo
Qr
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n

X / 1(t) HDtu(t,SEH2 + Z |Da, Dy, uft, x)|2] exp[2soan(t, z)] dt dx

i,j=1

gzcl/ |E(t,x)|2dtdx+25001/ |g(t, 2)|? dt do (), (4.9)
T Py

T

where c1(Y) = 2Pl Moreover, the solution (u,a) to problem (IP3), (3.2)
satisfies estimate (4.9) and the following

T
/0 lat)] exp[~2s0en ()1(6) "] dt < 2C1mp(s0, 1)~ 13w gy (£2)

x [Ko + i Ka][K1 +M1K3][/ |E(ta$)|2dtd$

Qr
+ S0 LT’g(t,$)|2dth(x)} +2/0 ’I(Ba f,g,h)(t)|2dt. (4.10)

In particular, if (g,h,B8) = (0,0,0), the linear identification problem (IP3),
(3.2) admits the null solution, only.

Remark 2. As a by-product, we have proved the uniqueness of the solution to
the direct ill-posed problem (IP3) with o = 0, i.e. to problem (IP4) with A = O
and I = 0.

To the proof of Theorem 1 we premise two lemmata.

Lemma 1. Letw = {(t,7) € (0,T)2: r < t} and k : wx 2 — C be a measurable

function satisfying the following inequalities for some positive constants Ko(k),
Kl(k) and S0 2 go:

KO(E) = esssup |75(t, T, y)| dr dy < oo,
te(0,T) JQ,

/ ‘E(tﬂ’, y)| dt S Kl(E)l(r)_B exp[_25001(w)l(r)_l]a (7", y) € QT7 (411)

where

cr1() = eMPlle _ AVm gy — min (). (4.12)
xel?

Then the linear operator

Bu(t)= [ k(t,r,y)ulr,y)drdy, te(0,T)
Q

satisfies the weighted inequality
T
m(Q)/ | Bu(t)|? exp[2soc1 (¢)1(£) 1] dt
0
§/ |§u(t)‘zexp[250a>\(t, )] dt d
Qr

< m(Q)KO(k')Kl(k‘)/ l(t)_‘q”v(t,ac)’2 exp[2soo(t, @)] dtdw.  (4.13)

T

Math. Model. Anal., 18(3):395-414, 2013.
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Proof. Consider first the inequalities
|Bu(t)|” < / k(t,r,y) drdy /Q |E(t, 7. y)|[u(r, )| dr dy
~ ~ 2
< KolE) [ [Ftr.w)llutro) P drdy, (t.0) € Qr.
Q¢
Then we have the following chain of inequalities
/ |§u(t)’2 exp[2soan(t,z)] dt dx
Qr
< KO(E)/ exp [QSOaA(t,x)] dt dx/ |%>\(t,r, y)Hu(r, y)|2dr dy
T Q+
~ _ B 2
< Ko(k)/ Fx(r, y)l(r) =% exp [2s0ax (r, ) [u(r,y) | drdy, — (4.14)
T
where, for all (r,y) € Qr, we have set

kx(r,y) :/ I(r)? exp[250(04>\(t z) — ax(r,y) Hk (t,r,y |dtd:c
(r, T)x $2

Observe now the identities

axr(t,x) — axn(r,y) = [aa(t,z) — ax(r,@)] + [ax(r,z) — ax(r,y)] (4.15)
_ U = U) oadwlle _ 2@ 4 L [0 _ )
i) | I+ i )

Note that, when t > r,
t)y=lr)y=¢t-—r)(T—t—7r)>0
if and only if r € (0,7/2) and t € (r,T — r), so that, in this case, we have
[1(t) = I(M][I@)(r)] = <I(r)~L. Since
MWl _ M) < (M0l _ Mo — ¢ (), (4.16)
V@) _  AW) < 2AWllee _ Am < ) (1)), (4.17)

we easily deduce the inequalities
e2M¥llee — eW(y)] if t € (max{r,T —r},T)
t, . : <1 -1 [ ) ) ) )
ax(t,xz) —ax(r,y) <I(r) {[ezﬂmm _ew(y)L otherwise,
< e (P)I(r)~t (4.18)

Then, according to assumption (4.11) and (4.12), for all (r,y) € Q1 we conclude
that

kx(r,y) < l(r)3 exp [23001(1/1)1(7“)_1] / !E t,ry |dt dzx
(r,T)x 2

< m(2)l(r)? exp[2sc1 (¥ / ’k‘ (t,r,y)|dt

< m(2)K, (k). (4.19)
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Finally, the latter inequality in (4.13) easily follows from (4.14), (4.19), while
the first is an easy consequence of (4.16). O

We prove now the following Lemma 2 concerning the kernels k;, j =1, 2.

Lemma 2. Let By 4, ¢, = (t1,t2) X 2 and Eg 4, 1, = (t1,t2) X082, 0 < t; <ty <
T. Let kj : Ejor x Qr — C, j = 1,2, be two measurable functions satisfying
inequalities (4.4) and (4.5). Then the linear operator

Bju(t,x) = / kl(t,l',T', y)u(r, y) dr dya (tvx) € Ej,O,T?
satisfies the weighted inequality

/E |Bju(t, z) |2 exp[2so(t, x)] dt dp;(x)

3,0, T

< Kg(j,l)ng_l/ l(t)‘ﬂu(t,x)ﬁexp [280&)\(t,$)} dtdpi(z), j=1,2,

T

where p1 =m and py = 0.

Proof. Consider first the inequalities
‘Bju(t,a;ﬂ2 S/Q ki(t,z,ry) drdy/Q ’k:j(t,a:,r,y)Hu(r,y)‘zdrdy
< Kg(j_l)/Q |kj(t,x,r, y)||u(r, y)|2drdy, (t,x) € Ejor, j=1,2.
Then we have the following chain of inequalities
/E |Bju(t, x)|2 exp[2soan (t, z)] dt dp;(x)
5,07

gKg(j,U/ exp[Qsoa,\(t,x)] dtdpj(ac)/Q ‘kj,,\(t,r,ac,y)Hu(r,y)‘zdrdy

Ejo,1

< Kooy /Q kj(r, )I(r) 3 exp [2soa,\(r, y)] ’u(r, y)’2 dr dy, (4.20)
T
where, for all (t,z) € Ej o r, we have set
kja(ry) = /E I(r)3 exp [230(ak(t, x) — ax(r, y))] |kj (t,z,r, y)| dtdp;(x).
5T
Now from (4.15)—(4.18) and assumptions (4.4) and (4.5), we conclude that

kj(r,y) < U(r)° exp[2e1(¥)1(r) 7] / (k1 (t, 2, y)| dt dpj()

Ejo,1

< Kjj1, (ry) €Qr. (4.21)

Math. Model. Anal., 18(3):395-414, 2013.
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Finally, the latter inequality in (4.13) easily follows from (4.20), (4.21), while
the first easily follows from the inequality

Ml _ A9 (2) < 2Pl _ Am e (). (4.22)

This concludes the proof of the lemma. 0O

Proof of Theorem 1. From definition (3.5) and Lemmata 1 and 2 we easily

deduce that Ko(k) = m(2)[Ko + p1 Ks] and K (k) = m(02)[Ky + p1 K3).
Then we estimate A(u)f:

/Q exp[2sgan (t, )] |A(u) t)f(t,x) ‘2 dt dx

_ ~ 2
<m 2||f||2Loo(QT)/Q exp [QSOOQ\(t,x)] |Bv(t)| dt
T
<72 T oo (@ gy m(2)[Ko + pn K)[Ky + 1K)

X / 1(r) 2 exp[2spa (1, )] lu(r, y) |2 dr dy. (4.23)
T
From Lemmata 1 and 2 and (4.23) we deduce the estimate

/ |Bv(t, :E)|2 exp [250a>\(t,x)] dt dx

< K4(f)/Q l(t)_3|v(t,x)‘2exp[2soa)\(t,m)] dt dz,

where we have set
Ko(f) = KoK1 +m72|| {1 gy m(2)[Ko + pi K] [K1 + pn K]

Consequently, according to assumptions (4.2) and estimates (4.13), estimate
(4.1) simplifies to the following

p(so,f)/Q l(t)_gyu(t,x)’Qexp[Zsooz,\(t,x)] dt dx

+So/ l(t)71|Vu(t,;U)|2 exp[280a>\(t,x)] dtd:ﬂ+sale*>‘”¢|\m

T
n

x /T () [|Dtu(t,x)’2 + 3 ]DItiju<t,x)|2}

ij=1
x exp[2soax(t, x)] dt dx
< 201/ |E(t,x)|2 dtdz + 23001/ ‘g(t,x)|2 dt do(x). (4.24)
T Xr

Taking advantage of the inequality

/ l(t)*3|u(t, 3:)|2 exp[2soan(t, z)] dt dx

T

> / 1(8)~ exp [—2s0e1 (0)1() ] |ult, )| dt dy,

T
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from (4.24) we deduce the weak Carleman estimate (4.9).

To find out the corresponding estimate for the unknown function «, from the
representation (3.7), i.e. a(t) = —A(u)(t)—I(B, f,g,h)(t), and from Lemma 1,
with B = A(u), and the Carleman estimate (4.9) we easily deduce the estimates

T
[ es[-2sacs i)

< 2/ |/1u(t)’2 exp[2soo (¢, z)] dt dz

T 2
2 / (8, 1,9, 1)(1)|* exp[2s00x (1, 2)] dt
< 20vm = 2p(s0, ) Fl1 7 (@rym(92) [ Ko + 11 Ko)[Ky + pa K3

x [/ yﬁ(t,x)fdtdx+sO/ZT]g(t,x)|2dtda(x)]

T

T
+2 /O 11(8, f,9, h)(t)|” dt. (4.25)

Observe now that ¢ = h = 0 in Qr and 8 = 0 in (0,7) imply successively
7(0,0,0) = 0, I(0, £,0,0) = 0 for any f satisfying (3.6) and h = 0 in Q7.
Consequently, from estimates (4.9) and (4.10) we deduce v = 0 in Qr and
a =01in (0,7). We have thus shown that problem (IP3), (3.2) admits at most
one solution. 0O

5 A Continuous Dependence Result for the Solution to
the Identification Problem Related to (IP3)

The aim of this section is to estimate first the solution u of the ill-posed problem
(IP4) in C((0,T); L3(£2)) N L3 ((0,T]; H'(£2)) and the related function « in

loc

L? ((0,T);R). For this task we need that the kernels k; and ko satisfy the
additional properties

K5 = / I(r)% exp [—2soaA(r, y)} ’kl(t,x,r, y)|2 dtdzx dr dy < oo, (5.1)
Q

TXQT

K¢ := / I(r)3 exp[—2soax(r,y)] |I<;2(t,x,7‘, y)|2 dtdo(x)drdy < oo. (5.2)
B>

TXQT

Remark 3. Since exp [—2soax(r,y)] < exp [2s9c1 (1)I(r)71], it suffices to replace
K5 and Kg by

Kl = / 1(r)? exp[2soc1 (¥)I(r) "] |k1(t, 2, y)|2 dt dx dr dy < o0,
QrXQr

K= / 1(r)? exp[2soct (Y)1(r) " | ka(t, 2, 7, y)’2 dtdo(z)drdy < .
Y2rXQr

Math. Model. Anal., 18(3):395-414, 2013.
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If we restrict condition (4.5) to the following
/,(O,T) x Fj|k;(t, y)|2 dtdz < Kyj_11(r) % exp[—2soc1 (¥)I(r) "],

(Tvy)eQTaj:172a Flz'Qa F2:6‘97 (53)

it is easy to observe that Kf and K} satisfy the inequalities

Kl < Kl/ drdy = K1Tm(2) =: KZ,
Qr

K{ < Kj drdy = K3sTm(2) =: K{.
Qr

Therefore, under assumptions (5.3) we can replace the pair (K5, Kg) with
(KY,K{). In particular, when functions k;, j = 1,2 are defined by formula
(4.6), then conditions (5.3) is satisfied, if conditions (4.7) are replaced with the
stricter one

|h2,i,j(r7 y)| S Hi,jl(r)73/2 €xp [7 5061(11[})1(7,)71]7 (T’, y) € QT7 j = 152

and conditions (4.8) are implemented with

[e%¢) “+o0o
Z””ia‘ < +o0, Z il Z2 0, myxmy) < F00 5 =1,2, (54)
i=1 i=1

Indeed, we get

/ 1(r)? exp[2soc1 (¥)I(r) 7] k1 (t, 2, y)|2 dt dz dr dy
(0,T)xF;xQr

/ Z|h1”m\ dtdzx
(0,T)x

Fle

/Q r)? exp[2socr (V)U(r) Y [ha,i i (ry)|” dr dy
T =1

+oo too
2 2 ,
< Z 171,122 0,0y % 7)) Z"%,j: J=12
1=1 =1

Finally, we note that conditions (4.8) are implied by the stronger (5.4).
We now state our continuous dependence theorem.

Theorem 2. Let f € L>(Qr), h € L*(Qr), g € H'((0,T); L*>(£2))NL2((0,T);
H?(92)), B € HY0,T). Moreover, let f and the kernels ki : Q7 x Qr — R
and k1 : Qr X Qr — R satisfy, respectively, conditions (3.6) and (4.4), (4.5),
(5.1), (5.2). Then the solution (u,c) to problem (IP3), (3.2) satisfies, for all
e €(0,1/4) and T € (2¢T,T), the continuous dependence estimates

o) g + 20 |90

< @1 (e, m, {93 0.1y 02020 + 191 72(0,7):02 ()
+0l72 0 + 1817 (0. (5.5)
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ledlz20,1) < Pa(e,m, f){”g”Hl((O,T);LZ(Q)) + gl 2 0,7); 52 2)
+ 1kl L2@ry + 1Bl (0,1} (5.6)
where @;, j = 1,2, are two positive functionals depending continuously on the
triplet (e,m, f) € (0,1/2) x Ry x L>®(Qr).

Proof. First we introduce the family of functions o. € W1°°(]0,T];|0,1]),
e € (0,1/4), defined by

0, t € [0,eT],
o.(t) = (eT) Yt —€T), te (eT,2eT), (5.7)
1, t € [2eT, 7).

Introduce also the function u. = o.u. It is a simply task to show that u. solves
the following initial and boundary-value problem:

ue € H'((0,T); L*(2)) N L*((0,7); H*(£2)),

Diuc(t,z) — A(z, D)uc(t, x)

(DP1) = 0. (t)Bu(t,z) + ol (t)u(t,z) + he(t,x),  (t,z) € Qr,
u:(0,z) =0, T € {2,
’U,E(t,l') =0, (t,.’E) €Xlr.

Recall now that —A(-, D) satisfies the following estimate for all v € H?(£2) N
H(92):

_<A(-, v, v / Z a; j(x Dzllejvda:—/ ZCI,JUDLJ’Udl‘

= 2

/Za” 2) Dy 0Dy vdr + / ZDxJajda:
Jj=1

1,7=1
> 10l Vol 220y — m3llvl 720y,

where ps = ||(2:;L=1 Dy, a;)7 || 1o (2)/2, h~ denoting the negative part of func-
tion h.

It is well-known that the solution u. to (DP1) satisfies the following estimate
— obtained by multiplying scalarly by u. both sides in the differential equation
and then integrating by parts:

7Df““€ HL2(Q +/‘0HVUE HL2(Q ,u3Hu5 HL?(Q)

< Jote (8 )] 2y {18t M gy + o2 @alt )] gy + [Pt gy -
Integrating over (0,7), 7 € (0,7, we get

1 T T
§||u£(7—7)Hi2(Q)+MO/ ||Vu6(tv)H2L2(_Q) dt—/j,g/ Hus(ta)Hiz(Q) dt

0 0
< [ Mot 1Bt Myt [ el 00,

+/0 Hu5 HL2 Hﬁs(tW)HLQ(Q) dt. (58)
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Observe then that operator B admits the representation
Bu(t71’) = / kg(t7$,T, y)U(T‘, y) dr dy7 (t,l’) € QT7 (59)

where the kernel k3 : Qr x Qr — C is defined, for all (¢, z,7,y) € Qr X QT, by

k3(t, z,T, y) = kl(ta T, T, y) - X(f)(t)f(t, l’)k(t, T, y) (510)
Note now that from definition (3.3) and inequalities (3.6), (5.1) we deduce

/Q . 1(r)* exp[~2s0ax (r, )] [X(F) (D) £ (t.2)[* |k (¢, 7, 9) | dt da dr dy

< m—2||f||2Loo(QT) /Q l(r)3 exp [—2500[)\(7“, y)] dt dx dr dy

TXQT

< [ &l ds < m=m(@)1 e or)

X / l(r)s exXp [725000\(7', y)] |k1 (tv ga T, y)|2 dt dE dr dy
QT XQr
< M2 m( D) 2 gny K- (5.11)
Similarly, from (3.4) and (5.2) we get

/2 1(r)? exp[—2s00x (r, )] X (F) ()| £ 8, 2) [* [Ra(t, 7, )| dt do () dir dy

TXQT

< m_2|\f||2L°°(QT) /2 o I(r)® exp[—2soar(r,y)] dt do(z) dr dy
TXET

< [ va@lkatt &l ds < m o@D o)

x / 1(r)? exp 2500 ()] [Ra(t, €, 7. ) | dt do(€) dr dy
X2rXQr
< m*2u10(3(2)||f\|%x(QT)K6. (5.12)

Hence, from definitions (5.10), (3.3) and (3.4) we deduce the estimate

/ I(r)% exp [—23000\ (r, y)] ‘kg(t7 z,rY) |2 dt dx dr dy
QrXQr

< 3/ I(r)? exp[—2soax(r,y)]
QrXQr

2
X “kl(t,x,r, y)|2 —|—m72|f(t,a:)|2 Z@g(t,r, y)ﬂ dt dx dr dy

j=1
< {3K5 +3m ™2 [m(Q)Ks + 1o (02) Ko | | fI| 7 (gr) } = Kr(m, [).

Consequently, using the Carleman estimate (4.9), we deduce the following
weighted estimate for Bu, holding for all 7 € (0,T):

[ 1Butt ez < [ [ [ 16 e sontu)]

T t
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2
X [ks(t, 2,7, y)|1(r) /2 exp[soax (r, )] [u(r, y)| dr dy} dt da
§/ [/ 1(r)® exp[—2s0ax (r,y)] [ks (¢, 2,7, y) | dr dy
Q ¢

X 1(r)~3 exp [25004)\(7", y)] |u(7"7 Y) |2 dr dy} dtdx
Q:

< / I(r)? exp[—?soaA(r, y)] |k:3(t, x,rY) |2 dt dx dr dy
Qr X Q¢

X / L(r) ™3 exp[2s0 (1, y)] ‘u(r, y) ’2 dr dy

< 201 K7 (m, f)p(so, f) [HEH%P(QT) + 9z (2]
= Jl(m7f7977l)' (513)

Finally, we have
/H“s(tv')HLZ'm)HB“(t")||L2(f2)dt
0
/H“e ||L2(Q)dt+ / |Buta:} dt dx

< 5,/0 Hue(t, ')||L2(Q) dt + §J1(m7f,g,h), (5.14)

I /\

Using now the inclusion supp o’. C [T, 26T, we get the inequalities
Ot e

e syt [ Ot g
TR R A T

/ ot )yt + 5 022 0. /T Jult, )2yt (5.15)

Observe now that

pia(t, s0) == exp{—2so [e”‘”w”m - e)‘wm]l(t)fl} < exp[2span(t, )] (5.16)
< exp{—2s¢ [GQMWHN - 6’\”w”°°]l(t)_1} =:paa(t,s0), (t,x) € Qr,

where v, = min, ¢ (z). From (4.24), (5.7) and from the inequality

L=1t)p1a(t, s0) () 1ty s0) < 27T Cp1 A(T, 50) (1) 2 p1,a(t, s0)
=: Oz(s0,&, T)(t) 2p1a(t, 80), t€[eT,2eT], € €(0,1/2)

| /\

| /\

we get
2eT 9 2eT s 9
/T ||u(t7)HL2(_Q) dtg 02(80757T) /T l(t) pl,)\(tsz)Hu(tv‘)HLQ(_Q) dt
€ 5
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T 2
§C2(50,€,T)/ l(t)_gle\(t’SO)Hu(t")HL2(Q) dt
0
< 3C105(s0,¢,T)po(s0, f) "
></ ’E(t,x)|2exp[2soa>\(t7x)] dt dx
Qr

< 3C1Ca(s0,8, T)po(s0, £) " [I1Bl3 200y + I9ll72 (5]
= J2(€am,f,ga’fl’)' (517)

Therefore, taking (4.9) and (5.14), (5.15), (5.17) into account, from (5.8) we
easily deduce, for all 7 € (0,T), the following integral inequality:

o M+ 200 90

<2 [ sttt 2 el 0.

2eT
)2 [ ult )3 dt+ im0,
<2 [ et gy 2 [ Rttty
+.J(e,m, f,h), (5.18)

where we have set

J(Evma faﬁ) = Jl(m’ fagvﬁ) + (€T)_2J2(€,m,f,g,ﬁ). (519)

Finally, from (5.18) and (5.17) we deduce the fundamental integro-differential
inequality

22(0) = e gy + 20 | [Tt )3 g
gJ(e,m,f,ﬁ)JrQ/ ze(t)dt+2/ ||l~16(t,~)||L2(Q)zg(t)1/2dt. (5.20)
0 0

Then we need Theorem 4.9 in [2], with p = 1/2, which we report here as a
lemma.

Lemma 3. Let z be a nonnegative C([0, T|)—function and let b, k be nonnega-
tive L*((0,T))—functions satisfying

2(t) §a+/0 b(s)z(s) ds—}—/o k(s)z(s)/2ds, te[0,T),

where a > 0 is a given constant. Then for allt € [0,T]

z(t) < exp(/ot b(s) ds) [al/z + ;/Ot k(s) exp(—% /OS b(o) da) dsr.
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Then from estimate (5.20), Lemma 3 and the elementary inequality (a +
b)? < 2a? 4 202, for 7 € [0, 7], we deduce the estimate

||u5(7—7')H2L2(_Q)+2N0/0 ||Vus(ta')H2LQ(_Q) dt (5.21)

- T - 2
= 2(r) < 20(e,m, £ 9, B) exp(2r) + { 2 / exp (7 = )[Rt )| 2 | -
0
Observe now that

1Pz (@) < Cs(2, Tom){llgllar o.y;22c)) + Igllez(omysm )
+ Ikl L2 @r) + 1Bl (0.1 }- (5.22)
Then from (5.21) and (5.22) we easily deduce the estimate

e 3y 20 [ 19000
< Cule,m, ) {||g||H1((O,T);L2(Q)) + ||9||L2((0,T);H2(Q)

+ 122 0py + 1813 0.1y }- (5.23)

Taking now 7 € [2¢T, T, from (5.23) we obtain the desired estimate (5.5) for .
Then we observe that reasoning as for the proof of estimates (5.11) and
(5.12), both with f =1, we get

/ I(r)? exp[—250a>\ (r, y)] |El (t,ry) |2 dtdr dy
0,T)xQr

< m(®) / 1(r)? exp[—2s0ax(r,y)] dt dr-dy / k(1,6 )| de
0, T)xQr 9]

<m(f2) /Q I(r) exp [—25004)\(1", y)] |k1 (t, & ry) |2 dt d&dr dy

TXQT

Similarly we get

/ I(r)? exp[—2soa>\(7“, y)] ‘Eg(tﬂ“, y)’th dr dy
(0,T)xQT
< 0(69)/ 1(r)? exp[—2soa(r, y)] dt do(z) dr dy/ Va(€)|ka(t, &, my )| de
2rxQr o2
<mo(@2) [ 1) exp[ 2500 ()] ka1, &) dedo(€) drdy
2T XQr
< o (092)Ks.
Hence, from definitions (5.9), (3.3) and (3.4) we deduce the estimate

/ l(r)3 exp [—250cu)\(r7 y)] |E(t, T, Y) |2 dtdr dy
(0,T)xQr

2
< 2/ I(r)3 exp[—2soax(r,y) Z (t,ry ’ dt dr dy
(0,T)xQr j=1

<2 ( (Q)K5+[L10(8.Q)K6) Kg.
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Therefore we obtain the estimate

T

T ~
/0 ‘Au(t)|2 dt <m™? { / 1(r)®/? exp [—soax(r,y)] |k(t,r,y)|

0 ¢
2
x 1(r) "3/ exp [soan (7, y)] |u(7‘, y)| dr dy} dt
T
< m72 / dt/ l(r)3 exp [—280(%)\(7', y)] |E(t’ r, y)|2 dr dy
0 ¢
X I(r) 2 exp [250a>\(r, y)] |u(r, y)‘Zdr dy

Qt
<m 2 Kspo(s0, /) 10172000 + 191172(50]-

Then from (3.7) we easily obtain the final estimate (5.6) for a. O
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