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Abstract. A feature of the brain processing the visualization of objects is such that
objects that are much farther away from the eye look smaller than closer objects to
the eye. We show that a family of nonlinear transformations, also to be called com-
pactifications, simulate qualitatively this property of keeping objects in perspective.
These transformations project objects in a plane on a spherical shell. It is shown
then that an observer located at a fixed point on the axis of the sphere visualizes the
projected objects on the sphere in perspective. Namely, that objects that are farther
away from the observation point seem smaller. Examples are provided. This is a
departure from the traditional approaches using linearity and projections of objects
from one plane into another plane.
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1 Introduction

The manner that the eye views objects requires a better understanding of per-
ception and perspective viewing. Geometries that take this into consideration
are important. It is noteworthy, that in perspective and projective geometry,
some basic mathematical objects are lines and planes. This is understandable
as the light is assumed to travel in straight lines. However, the light does not
pass through and does not get collected on plane shaped objects. The eye is
an organ that detects light and converts it into electro-chemical impulses. It
employs nonlinear objects and structures. The eye has a shape of a ball, the
surface of the lens in the eye is approximated by two portions of two spherical
surfaces and the receptive part of the eye, the retina, is located on an idealized

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2013.804887
mailto:ygingold@cs.gmu.edu
mailto:gingold@math.wvu.edu


Simulation of Perspective by Nonlinear Transformations 347

spherical bowl. It therefore behooves us to look for nonlinear mathematical
tools that could result in a better or different understanding of perspective
viewing. The retina is just one example, where images of objects are created
on a spherical like shape. A planetarium and certain special theaters are two
more examples where images of objects are viewed on a spherical surface.

It should come as no surprise if the geometry of a sphere plays a unique role
in mathematics and its applications. The mapping of the plane onto a sphere
leads to the celebrated compactification known as the stereographic projection.
Compare e.g. with [12], and the texts [3, 11,13].

One of the main characteristics of perspective viewing is an approximate
representation on a surface of images as seen by the eye. A main characteristic
of such drawing is that objects are perceived as smaller if their distance from the
observer increases. The thrust of this article is to present a family of nonlinear
transformations that mimic this phenomenon. Such transformations are to be
called compactifications for reasons that will be apparent in the sequel. Using
one of these transformations we project objects in a plane onto a spherical
Bowl. We provide quantitative measures for the rate of decrease of sizes of
images of objects projected on a spherical bowl.

This perspective could be useful to certain designs. A user could draw
manually or with the help of a computer various objects or animations in a
plane. For example a backdrop of a scene, could be programmed to draw a
large number of objects on a real scale on a plane and then we could use these
nonlinear transformations to obtain a perspective from a distance. For example,
non-linear projection knowingly used in classical art forms such as ukiyo-e [9].
Non-linear projection has also been studied in the context of adjusting linear
projection to appear more natural [16].

It is noteworthy that projective geometry tools are a well accepted mean in
viewing projected images on a plane. Della Pittura (1435) and Girard Desar-
gues (1591–1661) are credited respectively for the stimulation and the creation
of seminal work in perspective and projective geometry. For references on pro-
jective geometry see e.g. [10,14,15]. Projective geometry differs in the following
fundamental manners from the geometry proposed in here. Projective geome-
try does not distinguish among all directions at infinity. For example, the point
−∞ and +∞ are considered the same point in projective geometry. Projective
geometry uses projections of objects from a plane into another plane rather
than from a plane into a sphere.

It is interesting to note the similarities and differences between the fam-
ily of compactifications studied in here and other compactifications related to
the venerable sphere that are given in the literature. Poincaré’s compactifica-
tion [12] uses the projection of R2 on a half sphere. Poincaré’s half sphere is also
utilized in the realization of non-Euclidean Geometry. See [7]. The relevance
of these transformations to dynamical systems is documented e.g. in [2,11,13].
For different families of radial compactifications and their relevance to approx-
imation theory and to dynamical systems, see [4, 5].

This family of compactifications that is studied in [6] serves as a main tool
in this article. The compactifications act as bijections (one to one mapping)
as well as projections of a certain extension of R2 onto certain spherical bowls.

Math. Model. Anal., 18(3):346–357, 2013.
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A fixed projection point P is utilized to simulate the location of the eye of an
observer.

Details are provided in the following order. In Section 2 we elaborate on
the family of compactifications that map R2 on a spherical bowl. In Section 3
we elaborate on the Euclidean metric induced by a compactification. The
metric is then used to prove that the Euclidean distance between the images
of the end points of a fixed Euclidean distance D in R2, appears smaller to
a viewer, as the line segment of length D is moved farther away from the
viewing point. In Section 4 we consider a family of concentric circles in the set
{(x, y) : x2 + y2 > 1}. We show that the length of the image of a circle on a
spherical bowl that is farther away from the viewing point P , appears smaller
to the viewer. We calculate the rate of decrease of the length of the image.
In Section 5 we consider a family of parallel lines in a plane. We show that
the length of the image of a line on a spherical bowl, that is farther away from
the viewing point P , appears smaller to the viewer. We calculate the rate of
decrease.

It is noteworthy that the derivations here uncover an abundance of expres-
sions that are “invariant with respect to independent rotations”. Essentially,
these are mappings that are functions of certain moduli. Quite a few of them
turn out to be positive definite. Thanks to these, a generalization of the theo-
rem that asserts the similarity of two triangles in the setting of the stereographic
projection is obtained. A discussion of these can be found in [6].

2 A Family of Nonlinear Transformations

The following adaptation from [6] is brought for the sake of a self contained
presentation. Denote by Z = (x1, x2, x3) a point in the Euclidean (3 dimen-
sional) space R3, where xj satisfy −∞ < xj < ∞, j = 1, 2, 3. Denote by ID
the continuum of ideal points ID := {∞(cos θ, sin θ) | 0 ≤ θ < 2π}. Call the set
C ∪ ID the ultra extended complex plane. Denote by z = (x, y) ∈ C a point in
the (plane) R2 which is to be identified with the point Q = (x, y, 0) in R3.

Let P = (0, 0, γ) be a fixed point on the x3 coordinate, 0 < γ ≤ 1. Consider
γ as a parameter giving rise to a family of nonlinear transformations that
contain the so called stereographic projection, namely, γ = 1, see e.g. [3,11,13],
as a particular case.

Put r2 = x2 + y2, R2 = x21 + x22 and ω = γ2 + (1− γ2)r2. The word Bowl
stands for the following set of points:

Bowl :=
{

(x1, x2, x3)
∣∣ x21 + x22 + x23 = 1 and −1 ≤ x3 ≤ γ

}
.

Denote by G(z) a mapping that matches each point z ∈ C∪ ID with a point
Z on the Bowl. Its derivation is as follows. If P , Z, and Q lie on the same

straight line, then the vectors
−→
PZ and

−−→
PQ are collinear. This is if and only if−→

PZ = t
−−→
PQ for some real number t. Namely, iff

x1 = tx, x2 = ty, x3 = (1− t)γ. (2.1)

Since x1, x2, and x3 are points on the unit sphere, we have

x21 + x22 + x23 = 1. (2.2)
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We substitute the values of x1, x2, and x3 from Equations (2.1) into Equa-
tion (2.2) to obtain t2x2 + t2y2 + (1− t)2γ2 = 1. Solving for t, we obtain

t+,− =
γ2 ±

√
γ4 − (γ2 − 1)(r2 + γ2)

γ2 + r2
.

Because we want Z = G(z) to map to the “lower” Bowl, so that x3 ≤ γ, we
put

ω = γ2 + (1− γ2)r2, t =
γ2 +

√
ω

γ2 + r2
= 1−

√
1−R2

γ
.

We now define a mapping from C ∪ ID into the Bowl as follows.

Definition 1. The mapping G(z) from C ∪ ID into the Bowl is defined by

G(z) =


(x1 = tx, x2 = ty, x3 = γ(1− t)) if z ∈ Cx1 =

√
1− γ2 cos θ,

x2 =
√

1− γ2 sin θ,

x3 = γ

 if z =∞(cos θ, sin θ)

 . (2.3)

The following theorem formalizes the previous discussion.

Theorem 1. G is a bijection (a one to one transformation) from the ultra
extended R2 to the Bowl.

Remark 1. For γ = 1, we obtain in (2.3), ω ≡ 1, t = 2
1+r2 , x1 = tx, x2 = ty,

and x3 = 1− t, the formulas of the stereographic projection.
The definition of G given above is consistent with asymptotics and continu-

ity. Indeed, let 0 < γ < 1. Given a sequence zn = rn(cos θn, sin θn) = (xn, yn)
where rn → ∞ and (cos θn, sin θn) → (cos θ, sin θ) as n → ∞, the sequence is

such that ωn = γ2 + (1− γ2)r2n and tn =
γ2+
√
ωn

γ2+r2n
, we have

√
ωn ∼

√
1− γ2rn,

tn ∼
√

1−γ2

rn
as n→∞. Hence x1n ∼

√
1− γ2 cos θn, x2n ∼

√
1− γ2 sin θn.

For γ = 1 and z = ∞(cos θ, sin θ) we obtain t = 0, x1 = 0, x2 = 0 and
x3 = 1. This is consistent with the sequence Zn = G(zn) being such that
tn → 0, x1n → 0, x2n → 0, x3n → 1, as n → ∞. For γ = 0 we obtained a
translation of the Poincaré half sphere. Compare e.g. with the texts, Ahlfors [1]
and Hille [8].

Remark 2. The difference between each member of our family of compactifica-
tions, with 0 < γ2 < 1 and the stereographic projection, that corresponds to
γ2 = 1, is substantial indeed. First and foremost, the stereographic projection
of R2 is obtained by adding a single ideal point infinity. Our compactification
augments R2 with a continuum of points ID. The stereographic projection treats
the point infinity like any other finite point. Our compactification recognizes
among all the different arguments or directions of infinity.

It is noteworthy that the stereographic projection preserves angles, namely,
it is conformal. An angle between any two curves in the plane is the same
as the angle that is mapped on images of these curves on the sphere. This

Math. Model. Anal., 18(3):346–357, 2013.
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property does not hold if 0 < γ2 < 1. The interested reader may want to verify
this by an independent calculation. Geometrically, a mapping with 0 < γ2 < 1
may be classified as a diffeomorphism that takes unbounded sets into bounded
sets.

3 The Induced Metric and the Image of a Fixed Length

The manner that we show that objects that are farther from the viewing point P
appear smaller on the spherical bowl requires the introduction of a certain
metric that is associated with the compactification. This metric, to be denoted
by χ(z, ẑ), for the ultra extended R2 is provided below.

We denote by ‖G(z) − G(ẑ)‖ the Euclidean distance between two points
on the spherical bowl. Denote by Ẑ = (x̂1, x̂2, x̂3) a point in the Euclidean
space R3, where x̂j satisfy −∞ < x̂j < ∞, j = 1, 2, 3. Denote by ẑ = (x̂, ŷ)

a point in the ultra extended R2 which is identified with the point Q̂ = (x̂, ŷ, 0)
such that G(ẑ) = Ẑ. We also put

r̂2 = x̂2 + ŷ2, ω̂ = γ2 +
(
1− γ2

)
r̂2, and t̂ =

γ2 +
√
ω̂

γ2 + r̂2
.

The following theorem, [6], plays an important role in this article.

Theorem 2. The ultra extended R2 is a complete metric space with respect to
the chordal metric χ defined below as the Euclidean distance ‖G(z)−G(ẑ)‖.

χ(z, ẑ) ≡
∥∥G(z)−G(ẑ)

∥∥ =

√
(x1 − x̂1)

2
+ (x2 − x̂2)

2
+ (x3 − x̂3)

2
.

Specifically, the square of the metric χ2 is given by

χ2(z, ẑ) = F
(
D2 −∆

)
, (3.1)

where F is a contraction (dilation) factor

F =
(γ2 +

√
ω)(γ2 +

√
ω̂)

(γ2 + r2)(γ2 + r̂2)
.

D2 is the square of the Euclidean distance between z and ẑ

D2 = (x− x̂)2 + (y − ŷ)2.

The expression for ∆ is given by

∆ =
(1− γ2)(r2 − r̂2)2

(
√
ω +
√
ω̂)(γ2 +

√
ω)(γ2 +

√
ω̂)
A,

where

A =

[
γ2 +

(1− γ2)r2r̂2 + γ4(1 + γ2) + γ2(r2 + r̂2)

(γ2 + r2)
√
ω̂ + (γ2 + r̂2)

√
ω

]
. (3.2)
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F , ∆, and D2 are non negative functions. Specifically, ∆ ≥ 0 for γ2 < 1 and
∆ = 0 iff γ2 = 1 or r2 = r̂2. For z =∞(cos θ, sin θ), ẑ = (x̂, ŷ),

χ2(z, ẑ) = 2γ2
γ2 +

√
ω̂

γ2 + r̂2
+ 2
(
1− γ2

)
− 2

γ2 +
√
ω̂

γ2 + r̂2

√
1− γ2(x̂ cos θ + ŷ sin θ)

and for z =∞(cos θ, sin θ), ẑ =∞(cos θ̂, sin θ̂),

χ2(z, ẑ) = 4
(
1− γ2

)
sin2

(
θ − θ̂

2

)
=

(
2
√

1− γ2
∣∣∣∣sin(θ − θ̂2

)∣∣∣∣)2

. (3.3)

Proof. Details are given in [6]. The interested reader may want to reproduce a
lengthy but straightforward calculation that leads to the desired formulas (3.1)
to (3.2). ut

The image of a distance between two points at infinity on the horizon may be
converted by a viewer to an image of a finite distance. This property is captured
mathematically by the induced metric of the above compactifications. The
distance D =∞ between two points z =∞(cos θ, sin θ) and ẑ =∞(cos θ̂, sin θ̂)

is compacted into the distance 2
√

1− γ2|sin( θ−θ̂2 )| according to formula (3.3)
in Theorem 5 above.

Figure 1. Q and Q̂ projected on the unit sphere. The projected points are z and ẑ,

respectively. zẑ = χ(z, ẑ).

For the next description of the perspective provided by our compactification
we analyze the Euclidean distance ZẐ, where Z and Ẑ correspond to Q and Q̂
in R2 under the compactification (Figure 1). Denote by O the center of the
sphere. We position the line segment QQ̂ = D so that OQQ̂ is an isosceles
triangle. Thus OQ = OQ̂ = r = r̂, and (although the length of the equal sides
vary) the length of the third side of the triangle, QQ̂, has a constant value D.
The formulas developed above show that then r = r̂ =⇒ ∆ = 0 so that∥∥G(z)−G(ẑ)

∥∥2 = χ2(z, ẑ) = F
(
D2 −∆

)
= t2D2.

Math. Model. Anal., 18(3):346–357, 2013.
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Let us determine the rate of change of t with respect to the variable r2. By
the definition of t we have

∂t

∂(r2)
=
∂[γ

2+
√
ω

γ2+r2 ]

∂(r2)
=

[γ2 + r2] (1−γ
2)

2
√
ω
− [γ2 +

√
ω ]

[γ2 + r2]2
.

Expressing r2 in terms of ω as r2 = ω−γ2

(1−γ2) in the numerator of the formula

above yields
∂t

∂(r2)
= − (

√
ω + γ2)2

2
√
ω[γ2 + r2]2

.

The implications of the latter derivation for perspective viewing is the fol-
lowing. Consider an infinite ladder with equally spaced rungs, situated in the
x, y plane, with the middle of the head of the ladder coinciding with the center
of the sphere so that a ray emanating from the origin of the sphere divides
the ladder into two congruent parts. How would the Euclidean distance, as
measured by the above metric, between the projected end points of successive
rungs appear to a viewer situated at the origin of the sphere? The formulas
above confirm that the same length rungs located farther and farther away
from the viewer in the x, y plane will appear smaller and smaller to the viewer.

It is noteworthy, that for γ = 1, the distance between two objects that are
moved far away to the horizon (infinity) become zero. This can be interpreted
as the stereographic projection “blurring” an object or rendering two different
objects situated far away as indistinguishable. In contrast, for any fixed γ,
−1 < γ < 1, there is a lower bound on the amount of potential blurring of an
object that is situated far away. Alternatively, two different objects that are
situated far away will be distinguishable.

4 Images of Concentric Circles

We turn now to yet another demonstration that objects that are farther away
from the viewing point P , look smaller. Consider the continuum of concen-
tric circles situated in R2 with center at the origin (that is the center of the
sphere) and with radii that increase continuously without bound. Geometrical
considerations show that indeed the circumferences of the images of the grow-
ing concentric circles that lie outside the unit circle x2 + y2 = 1 diminish as
the concentric circles grow. We provide a quantitative measure to the rate of
decrease.

We compare the arc length of two circles C(r) := {(x, y) : x2 + y2 = r2}
and C(r̂) := {(x̂, ŷ) : x̂2 + ŷ2 = r̂2}, r̂ > r > 1 with the length of their images
on the spherical bowl (Figure 2). Since their circumferences are proportional

to their radii, it suffices to compare the radii of the images of C(r) and C(r̂)
on the spherical bowl. The square of the radius of the image of C(r) is readily
found to be

R2 = x21 + x22 = t2r2.

We prove now the following
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Figure 2. Images of the family of concentric circles. The boundary of the bowl is the
circle x21 + x22 = 1− γ2, x3 = γ.

Theorem 3. The radius R(r) := tr = [γ2+
√
ω]r

γ2+r2 of an image circle C(r), is a
monotone decreasing function of r. The rate of decrease is given by

∂R

∂r
=

γ2t(1− γ2)(1− r2)√
ω(1 +

√
ω)(
√
ω − γ2)

.

Proof. Notice that

∂t

∂r
= − rt

2

√
ω

=⇒ ∂R

∂r
= t

[
− r

2t√
ω

+ 1

]
.

We write the above expression in terms of
√
ω. First, we express t in terms

of
√
ω. This yields

r2 =
ω − γ2

(1− γ2)
, t =

(1− γ2)

(
√
ω − γ2)

.

Using the above the reader can find by a straightforward calculation that

∂R

∂r
= γ2t

[
1− ω√

ω(1 +
√
ω)(
√
ω − γ2)

]
.

The fact that 1− ω = (1− γ2)(1− r2) leads to the formula

∂R

∂r
=

γ2t(1− γ2)(1− r2)√
ω(1 +

√
ω)(
√
ω − γ2)

.

Notice that γ2 < 1 =⇒ γ2 > γ4 and hence ω = γ2 + (1− γ2)r2 > γ4 which in
turn implies that √

ω − γ2 > 0.

This in turn implies that the rate of change ∂R
∂r < 0 if r2 > 1 and that

∂R
∂r > 0 if r2 < 1, thus, proving the desired conclusions. ut

Remark 3. Notice that in contrast to circles farther away from the viewing point
P , circles inside the circle r = 1 in R2, that are closer to the viewing point P ,
are magnified as their radii increases.

Math. Model. Anal., 18(3):346–357, 2013.
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5 Images of a Family of Parallel Lines

Consider a continuum of parallel lines that make up half of the plane in R2.
Assume, without loss of generality, that each line contains the same fixed vector
v = (c, d, 0) 6= (0, 0, 0) and passes through a certain point (a, 0, 0) on the x1
axis so that its vector equation is given by(

x1(s), x2(s), x3(s)
)

= (a, 0, 0) + s(c, h, 0), −∞ < s <∞. (5.1)

Consequently, the parametric equation of each line, denoted by l(a), is given
by

x1(s) ≡ a, x2(s) = s, x3(s) ≡ 0, −∞ < s <∞.

Let us determine the point on the sphere that corresponds to the value
s = +∞. Then, if θ is the angle that the vector v makes with the positive x
axis then by (2.1)

Z(∞) = G
(
z(+∞)

)
=
(
x1 =

√
1− γ2 cos θ, x2 =

√
1− γ2 sin θ, x3 = γ

)
.

This is the image of the “vanishing point” at infinity of all parallel rays
with the same direction in the continuum family. It lies on the circle

x21 + x22 = 1− γ2, x3 = γ, (5.2)

and is independent of the points (a, 0, 0). The image of the points at infinity
on each ray passing through the points (a, 0, 0) and containing the vector −v
is independent of a and is given by

Z(−∞) = G
(
z(−∞)

)
= (x1 = −

√
1− γ2 cos θ, x2 = −

√
1− γ2 sin θ, x3 = γ).

Notice that unlike in projective geometry, each line has two points G(z(−∞))
and G(z(+∞)) at infinity, that correspond to two opposite rays emanating
from a point on a given line. Although all lines of this family have in common
the two diametrically opposite points, G(z(−∞)) and G(z(+∞)) on the circle
(5.2), their images Z(s) = G(z(s)), −∞ < s <∞, differ. Each image lies in the
intersection of the plane containing the point P and the line with the spherical
bowl. Therefore, this intersection curve is an arc of a circle that is a common
chord. Two different lines differ by the parameter a in (5.1).

Evidently, as a ≥ 0 increases, the lines in (5.1) are getting farther away
from the viewing point P . As a increases from a = 0 to a = ∞, the image of
the parallel lines on the sphere form a family of arcs of circles with decreasing
length. They decrease from an arc of a large circle with radius 1 to an arc of
the circle with radius

√
1− γ2 that is on the boundary of the Bowl.

It can easily be verified that a normal to the plane containing the vector
(0, 1, 0) and the vector (a, 0,−γ) (corresponding to the arrow with head at
(a, 0, 0) and tail at (0, 0, γ)) is given by K := (γ, 0, a).

The equation of the plane having a normal K and containing the point P
is readily found to be

γx1 + ax3 = aγ, (5.3)
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which implies x1 = γ−1a(γ − x3).
We will determine the center and the radius of the circle that lies in the

intersection of the plane (5.3) and the sphere x21 + x22 + x23 = 1.
The shortest distance S from the center O to the plane (5.3) is given by

S =
|aγ|√
γ2 + a2

.

Hence, the radius λ of the circle that has an arc as the image of the line
(5.1) on the compactification sphere, is given by

λ =
√

1− S2 =

√
1− a2γ2

γ2 + a2
.

Figure 3. The circle determined by the intersection of the unit sphere and a line l(a)
passing through (a, 0, 0) and containing the vector (0, 1, 0). The dashed arc

Z(−∞)WZ(+∞) is an image of l(a).

All arcs have in common the two points Z(−∞) and Z(∞) as the images
of the two points at infinity on each straight line of the family of parallel lines.
Denote by K the center of the circle. The length of each arc is L(a2) :=

2πλ−2αλ where 2α = ̂Z(−∞)KZ(∞) is double the acute angle α, with vertex
at C, in the right angle triangle of KMZ(∞) where M is the middle of the
line segment Z(−∞)Z(∞). See Figures 3 and 4.

Notice that

α = sin−1
(√

1− γ2
λ

)
and

L(a2) := 2λ

[
π − sin−1

(√
1− γ2
λ

)]
.

We wish to calculate the rate of change of L(a2) with respect to a2. To this
end we first find that

∂[ln(λ)]

∂(a2)
=

1

2

[
−γ2

γ2 + a2 − a2γ2

]
< 0.

Math. Model. Anal., 18(3):346–357, 2013.
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Figure 4. The image of the parallel lines l form a family of arcs of circles. The image of
l(0) is an arc of a large circle passing through O.

This fits very well with the geometrical intuition that as a2 grows the radii of
the circles diminishes. Notice that

∂[π − sin−1
(√1−γ2

λ

)
]

∂(a2)
=

√
1−γ2

λ2√
1−

(√1−γ2

λ

)2 ∂λ

∂(a2)
≤ 0.

Putting together the calculations above we have

∂L(a2)

∂(a2)
= 2

∂λ

∂(a2)

[
π − sin−1

(√
1− γ2
λ

)]
+ 2λ

∂[π − sin−1
(√1−γ2

λ

)
]

∂(a2)

= 2
∂λ

∂(a2)

[
π − sin−1

(√
1− γ2
λ

)]
+ 2λ

√
1−γ2

λ2√
1−

(√1−γ2

λ

)2 ∂λ

∂(a2)

= 2
∂λ

∂(a2)

{[
π − sin−1

(√
1− γ2
λ

)]
+

√
1−γ2

λ√
1−

(√1−γ2

λ

)2
}
.

Observe that for the range of variables the following inequalities hold:

0 ≤
√

1− γ2 ≤ λ ≤ 1, 0 ≤ sin−1
(√

1− γ2
λ

)
≤ π

2
,

π

2
≤
{[
π − sin−1

(√
1− γ2
λ

)]
+

√
1−γ2

λ√
1−

(√1−γ2

λ

)2
}
,

so the factor {[
π − sin−1

(√
1− γ2
λ

)]
+

√
1−γ2

λ√
1−

(√1−γ2

λ

)2
}

is positive and consequently ∂L(a2)
∂(a2) < 0 and the result follows.
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