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Abstract. In this paper we consider a discrete dynamical system

xn+1 = βxn − g(xn), n = 0, 1, . . . ,

arising as a discrete-time network of a single neuron, where 0 < β ≤ 1 is an internal
decay rate, g is a signal function. A great deal of work has been done when the
signal function is a sigmoid function. However, a signal function of McCulloch–
Pitts nonlinearity described with a piecewise constant function is also useful in the
modelling of neural networks. We investigate a more complicated step signal function
(function that is similar to the sigmoid function) and we will prove some results about
the periodicity of solutions of the considered difference equation. These results show
the complexity of neurons behaviour.
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1 Introduction

Dynamical characteristics of neural networks recently have become a subject
of intense research activities. Neural networks have been constructed from a
wide range of different views and this has been reflected in a variety of results
as well as in mathematical techniques used in their derivation. Although many
models have been constructed, the task of modelling neural networks is not
complete yet and being able to understand human behaviour and brain func-
tions is still a great motivation for modelling and analyzing neural networks.
In the last decades scientists have found that oscillations are an important fea-
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ture in the brain processing. Oscillations are temporal periodic changes in the
state of a system. In nonlinear systems like brain, oscillations define a stable
state.

In the literature [8] a delay differential equation

x′(t) = −g
(
x(t− τ)

)
(1.1)

is used as a model for a single neuron with no internal decay where g : R→ R
is either a sigmoid or a piecewise linear signal function and τ ≤ 0 is a synaptic
transmission delay. From (1.1) we obtain a model for a single neuron with no
internal decay as the following equation

x′(t) = −g
(
x
(
[t]
))
, (1.2)

where [t] denotes a greatest integer function. When we integrate (1.2) from n
to t ∈ [n, n+ 1[ we get

x(t) = x(n)−
∫ t

n

g
(
x
(
[s]
))
ds = x(n)− g

(
x(n)

)
(t− n).

Letting t→ n+ 1 and denoting x(n) = xn, we obtain a difference equation

xn+1 = xn − g(xn).

Typical signal functions (activation functions, amplification functions or
input–output functions) are of the following types: a) step functions, b) piece-
wise linear functions, c) sigmoid functions.

A step function can be defined as follows

g(x) =

{
1, x ≥ 0,

0, x < 0.

Models involving such signal function are referred as McCulloch–Pitts models,
in recognition of the pioneering work of McCulloch and Pitts, 1943. This
function describes an all-or-none property of a neuron.

A piecewise linear function is given by formula

g(x) =


0, x ≤ 0,

µx, 0 < x < 1/µ,

1, x ≥ 1/µ.

This function describes the nonlinear off–on characteristics of neurons. Param-
eter µ is called a neural gain. Note that a piecewise linear function can be
reduced to the step function if µ tends to infinity. Such a function has been
widely used in cellular neural network models.

A sigmoid function is the most common form of a signal function. It is
defined as a strictly increasing smooth bounded function satisfying certain
concavity and asymptotic properties. Examples of a sigmoid function are an
arctangent function and a logistic function given by formula

g(x) =
1

1 + e−4µx
, x ∈ R,
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where µ is a neuron gain. A step function takes only two values 0 or 1, whereas
a sigmoid function takes a continuous range of values in ]0, 1[. But as µ→∞,
a sigmoid function becomes a step function. Therefore we can consider signal
functions as step functions. In the literature several types of such functions
have been considered.

The signal function

g(x) =

{
1, x ∈ ]0, σ[,

0, x ∈ ]−∞, 0] ∪ ]σ,+∞[

shows that if the activation of one neuron is between 0 and σ, then it has a
constant active affection to another neuron, or else it has no affection to another
neuron [12]. The function

g(x) =

{
−ρ, x > σ,

ρ, x ≤ σ

is a McCulloch–Pitts signal function with the threshold σ and the synaptic
weight ρ > 0 [11]. In [2, 7, 9] the signal function

g(x) =

{
1, x > σ,

−1, x ≤ σ

has been considered. Here, σ ∈ R is referred as the threshold. The McCulloch–
Pitts nonlinearity reflects the fact that the signal transmission is of digital
nature: a neuron is either fully active or completely inactive.

In [10] a single neuron model has been considered

xn+1 = βxn − g(xn), n = 0, 1, 2, . . . , (1.3)

with a signal function given in the very simple form

g(x) =

{
1, x ≥ 0,
−1, x < 0.

(1.4)

Equation (1.3) arises as a discrete-time network of single neuron, where β is the
internal decay rate, g is a signal function. In our work we consider the single
neuron model (1.3) but we propose to consider a more complicated step signal
function (a function that is similar to the sigmoid function). We will prove some
results about the periodicity of solutions of difference equation (1.3). These re-
sults were also presented in the International Conference on Differential Equa-
tions, Loughborough, UK, 2011 and International Conference Mathematical
Modelling and Analysis, Tallinn, Estonia, 2012. They generalize results of [10]
and show the complexity of neurons behaviour.

2 Basic Concepts and Definitions of Difference Equations

To analyze the behaviour of the model (1.3) some basic concepts of difference
equation theory (see [4, 5, 10]) are required.

Math. Model. Anal., 18(3):325–345, 2013.
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We consider a first-order difference equation

xn+1 = f(xn), n = 0, 1, . . . , (2.1)

where f : R→ R is a given function. A solution of equation (2.1) is a sequence
(xn)n∈N that satisfies equation (2.1) for all n = 0, 1, . . . . If an initial condition
x0 ∈ R is given, then the orbit O(x0) of a point x0 is defined as a set of points

O(x0) =
{
x0, x1 = f(x0), x2 = f(x1) = f2(x0), x3 = f(x2) = f3(x0), . . .

}
.

Definition 1. A point xs is said to be a fixed point of the map f or a stationary
state of equation (2.1) if f(xs) = xs.

Note that for a stationary state xs the orbit consists only of the point xs.

Definition 2. A stationary state of (2.1) is stable if

∀ε > 0 ∃δ > 0 ∀x0 ∈ R ∀n ∈ N |x0 − xs| < δ ⇒
∣∣fn(x0)− xs

∣∣ < ε.

Otherwise, the stationary state xs is called unstable.

Definition 3. An orbit O(x0), x0 ∈ R, is said to be eventually stationary
state if

∃N ∀n ≥ N xn+1 = xn.

Definition 4. An orbit O(x0) = {x0, x1, x2, . . .} of an initial point x0 of equa-
tion (2.1) is said to be periodic of period p ≥ 2 if

xp = x0 and xi 6= x0, 1 ≤ i ≤ p− 1.

Definition 5. A periodic orbit {x0, x1, x2, . . . , xp−1, . . .} of period p is stable
if each point xi, i = 0, 1, . . . , p− 1, is a stable stationary state of the difference
equation xn+1 = fp(xn). A periodic orbit of period p which is not stable is
said to be unstable.

Definition 6. A point z is said to be a limit point of O(x0) if there exists a
subsequence (xnk

)k=0,1,2,... of O(x0) such that limk→+∞ |xnk
− z| = 0. The

limit set L(x0) of the orbit O(x0) is the set of all limit points of the orbit.

Definition 7. An orbit O(x0) is said to be asymptotically periodic if its limit
set is a periodic orbit. An orbit O(x0) such that xn+p = xn for some n ≥ 1
and some p ≥ 2 is said to be eventually periodic.

3 Results

In [10] a single neuron model (1.3)

xn+1 = βxn − g(xn)

with a signal function (1.4) has been considered. Z. Zhou has proved two
theorems about the periodicity.
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Theorem A. [10] Assume that β ∈ ]0, 1[. Then the periodic orbit O( 1
β+1 ) is

a stable periodic orbit with period 2. And for every x0 ∈ R, the orbit O(x0) is
asymptotically periodic with L(x0) = { 1

β+1 ,
−1
β+1}.

Theorem B. [10] Assume that β = 1. Then for every x0 ∈ R the orbit O(x0)
is eventually periodic with period 2.

We consider a model (1.3) with a new signal function in the following form

g(x) =


−b, x ≤ −α,
−a, −α < x < 0,

0, x = 0,
a, 0 < x < α,
b, α ≤ x,

(b > a > 0 and α > 0), (3.1)

where −α, 0, α are three thresholds. Accordingly to the signal functions given
in the Introduction constants a and b could be in the interval ]0, 1[, but in
this paper we consider arbitrary large constants a and b that satisfy conditions
0 < a < b. This signal function (3.1) is more similar to the sigmoid func-
tion (see Figure 1) than simple step functions that have been discussed in the
Introduction.

a) b)

Figure 1. Simple step functions: a) sigmoid function g(x) = 2
π

arctanx, b) step signal
function g(x).

Further we analyze model (1.3) with a signal function (3.1) depending on
the internal decay rate β. We consider two situations: β = 1 and 0 < β < 1.

3.1 Model with β = 1

In this part we prove two theorems, one about periodicity and one about sta-
bility.

Theorem 1. Assume that β = 1. Then

1) 0 is a stationary state.

Math. Model. Anal., 18(3):325–345, 2013.
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2) If there exists a positive integer k1 such that 0 < x0 = k1a < α, then the
point x0 is an eventually stationary state, i.e.,

O(x0) =
{
k1a, (k1 − 1)a, . . . , 2a, a, 0, 0, . . .

}
.

3) If there exists positive integers k1 and k2 such that x0 = k1a + k2b ≥ α
and k1a < α but α ≤ k1a+b, then the point x0 is an eventually stationary
state, i.e.,

O(x0) =
{
k1a+ k2b, k1a+ (k2 − 1)b, . . . , k1a+ b, k1a, (k1 − 1)a, . . . ,

2a, a, 0, 0, . . .
}
.

4) The cases −α < x0 = −k1a < 0 and x0 = −k1a − k2b ≤ −α are similar
to Statement 2) and Statement 3) respectively.

5) If 1)–4) are not fulfilled, then the orbit O(x0) is periodic with period 2 or
eventually periodic with period 2.

Proof. The first four statements are obvious. We will prove the Statement 5).
Case 1. We assume that 0 < x0 < α. Then g(x0) = a and x1 = x0 − a.

Three cases are possible:
Case A. 0 < x1 = x0 − a < α. Since 0 < x0 < α and 0 < x0 − a < α then

a < α. Therefore if we consider x2 = x0− a− a = x0− 2a, then only two cases
are possible: −α < x2 = x0 − 2a < 0 or 0 < x2 = x0 − 2a < α. In the first
case x3 = x0−2a+a = x0−a = x1 and we obtain an eventually periodic orbit
with period 2:

O(x0) = {x0, x0 − a, x0 − 2a, x0 − a, x0 − 2a, . . .}.

In the second case x3 = x0 − 3a. Similar to the previous case we have two
possibilities: −α < x3 < 0 or 0 < x3 < α. In the first case we obtain an
eventually periodic orbit with period 2:

O(x0) = {x0, x0 − a, x0 − 2a, x0 − 3a, x0 − 2a, x0 − 3a, . . .}.

In the second case x4 = x0 − 4a. Since 0 < x0 < α is fixed then ∃n0 ∈ N:

0 < xn0−1 = x0 − (n0 − 1)a < α and −α < xn0 = x0 − n0a < 0.

This means that in Case A the orbit of a point x0 is eventually periodic with
period 2:

O(x0) =
{
x0, x0 − a, . . . , x0 − (n0 − 1)a, x0 − n0a, x0 − (n0 − 1)a,

x0 − n0a, . . .
}
.

Case B. −α < x1 = x0− a < 0. In this case x2 = x0− a+ a = x0. We have
a periodic orbit with period 2: O(x0) = {x0, x0 − a, x0, x0 − a, . . .}.

Case C. x1 = x0 − a ≤ −α. If x1 = x0 − a ≤ −α, then a > α. But since
b > a and x0 > 0 then x2 = x0 − a+ b > 0. Two cases are possible: α ≤ x2 or
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0 < x2 < α. If α ≤ x2, then x3 = x0 − a+ b− b = x0 − a = x1 and we obtain
an eventually periodic orbit with period 2:

O(x0) = {x0, x0 − a, x0 − a+ b, x0 − a, x0 − a+ b, . . .}.

If 0 < x2 < α, then x3 = x2− a = x0− 2a+ b. Since a > α then x3 = x2− a <
α − a < 0. Again we have two possibilities: −α < x3 < 0 or x3 ≤ −α. If
−α < x3 < 0, then x4 = x0 − 2a + b + a = x0 − a + b = x2. We obtain an
eventually periodic orbit with period 2:

O(x0) = {x0, x0 − a, x0 − a+ b, x0 − 2a+ b, x0 − a+ b, x0 − 2a+ b, . . .}.

If x3 ≤ −α, then x4 = x0 − 2a+ 2b. Since b > a then

0 < x2 = x0 + b− a < x4 = x0 + 2(b− a).

Again two cases are possible: α ≤ x4 or 0 < x4 < α. If α ≤ x4, then
x5 = x0−2a+b = x3 and we obtain an eventually periodic orbit with period 2:

O(x0) = {x0, x0 − a, x0 − a+ b, x0 − 2a+ b, x0 − 2a+ 2b,

x0 − 2a+ b, x0 − 2a+ 2b, . . .}.

If 0 < x4 < α, then x5 = x0 − 3a + 2b < 0 (note that a > α). Two cases
are possible: −α < x5 < 0 or x5 ≤ −α. If −α < x5 < 0, then we obtain an
eventually periodic orbit with period 2:

O(x0) = {x0, x0 − a, x0 − a+ b, x0 − 2a+ b, x0 − 2a+ 2b, x0 − 3a+ 2b,

x0 − 2a+ 2b, x0 − 3a+ 2b, . . .}.

If x5 ≤ −α, then we consider x6 and sort two possibilities. We have observation:
the orbit O(x0) is not eventually periodic orbit with period 2 only if

0 < x2 = x0 + b− a < x4 = x0 + 2(b− a) < x6 = x0 + 3(b− a) < · · · < α and

x1 = x0 − a < x3 = x0 − a+ (b− a) < x5 = x0 − a+ 2(b− a) < · · · ≤ −α.

Since b− a > 0 there are n1, n2 ∈ N such that

x2n1
= x0 + n1(b− a) ≥ α or −α < x2n2+1 = x0 − a+ n2(b− a) < 0.

Therefore we obtain an eventually periodic orbit with period 2 in both cases:

O(x0) =
{
x0, x0 − a, x0 − a+ b, x0 − 2a+ b, . . . , x0 − n1a+ (n1 − 1)b,

x0 + n1(b− a), x0 − n1a+ (n1 − 1)b, x0 + n1(b− a), . . .
}

or

O(x0) =
{
x0, x0 − a, x0 − a+ b, x0 − 2a+ b, . . . , x0 + n2(b− a),

x0 − a+ n2(b− a), x0 + n2(b− a), x0 − a+ n2(b− a), . . .
}
.

Case 2. Now we assume that α ≤ x0. Then g(x0) = b and x1 = x0 − b.
Four cases are possible:

Case A. x1 = x0 − b ≤ −α. In this case x2 = x0 − b+ b = x0 and we have
a periodic orbit with period 2: O(x0) = {x0, x0 − b, x0, x0 − b, . . .}.

Math. Model. Anal., 18(3):325–345, 2013.
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Case B. −α < x1 = x0−b < 0. Since b > a, then −α < x2 = x0−b+a < x0
and three situations are possible: −α < x2 < 0 or 0 < x2 < α, or α ≤ x2 < x0.

Case B1. Inequalities −α < x2 < 0 hold only if b > α > a. Therefore
−α < x3 = x0 − b+ 2a < 0 or 0 < x3 = x0 − b+ 2a < α. If 0 < x3 < α, then
x4 = x0− b+ a = x2 and we obtain an eventually periodic orbit with period 2:

O(x0) = {x0, x0 − b, x0 − b+ a, x0 − b+ 2a, x0 − b+ a, x0 − b+ 2a, . . .}.

If −α < x3 < 0, then x4 = x0 − b + 3a. Two cases are possible: −α < x4 < 0
or 0 < x4 < α. If 0 < x4 < α, then x5 = x0 − b+ 2a = x3 and again we obtain
an eventually periodic orbit with period 2:

O(x0) = {x0, x0 − b, x0 − b+ a, x0 − b+ 2a, x0 − b+ 3a,

x0 − b+ 2a, x0 − b+ 3a, . . .}.

If −α < x4 < 0, then x5 = x0 − b + 4a and we have two cases. Since a > 0
there is k0 ∈ N such that

−α < xk0−1 < 0 and 0 < xk0 = x0 − b+ k0a < α.

Therefore we obtain an eventually periodic orbit with period 2:

O(x0) =
{
x0, x0 − b, x0 − b+ a, x0 − b+ 2a, . . . , x0 − b+ (k0 − 1)a,

x0 − b+ k0a, x0 − b+ (k0 − 1)a, x0 − b+ k0a, . . .
}
.

Case B2. If 0 < x2 < α, then x3 = x0 − b = x1 and we obtain a periodic
orbit with period 2: O(x0) = {x0, x0 − b, x0, x0 − b, . . .}.

Case B3. If α ≤ x2 < x0 then we consider next element x3 = x0 − 2b + a.
Since b > a and b > α then two cases are possible: x3 ≤ −α or −α < x3 < 0.
If x3 ≤ −α, then x4 = x0 − b + a = x2 and we obtain an eventually periodic
orbit with period 2:

O(x0) = {x0, x0 − b, x0 − b+ a, x0 − 2b+ a, x0 − b+ a, x0 − 2b+ a, . . .}.

If x3 ≤ −α, then x4 = x0 − 2b + 2a and we have two cases: 0 < x4 < α or
α ≤ x4. If 0 < x4 < α, then x5 = x0−2b+a = x3 and we obtain an eventually
periodic orbit with period 2:

O(x0) = {x0, x0 − b, x0 − b+ a, x0 − 2b+ a, x0 − 2b+ 2a,

x0 − 2b+ a, x0 − 2b+ 2a, . . .}.

If α ≤ x4, then x5 = x0 − 3b + 2a and again we have two possibilities. The
orbit O(x0) is not eventually periodic orbit with period 2 only if

0 > x1 = x0 − b > x3 = x0 − b+ (a− b) > x5 = x0 − b+ 2(a− b) > · · · > −α

and

x0 > x2 = x0 − b+ a > x4 = x0 − 2b+ 2a > x6 = x0 − 3b− 3a > · · · ≥ α.
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Since b− a > 0 there are k1, k2 ∈ N such that

x2k1+1 = x0 − b+ k1(a− b) ≤ −α or x2k2 = x0 + k2(a− b) < α.

Therefore we obtain an eventually periodic orbit with period 2 in both cases

O(x0) =
{
x0, x0 − b, x0 − b+ a, x0 − 2b+ a, . . . , x0 + k1(a− b),
x0 − b+ k1(b− a), x0 + k1(a− b), x0 − b+ k1(a− b), . . .

}
or

O(x0) =
{
x0, x0 − b, x0 − b+ a, x0 − 2b+ a, . . . , x0 − b+ k2(a− b),
x0 + k2(a− b), x0 − b+ k2(a− b), x0 + k2(a− b), . . .

}
.

Case C. 0 < x1 < α. This case can be reduced to the case that is considered
at the beginning of the proof with 0 < x0 < α (Case 1).

Case D. α ≤ x1. In this case

∃k3 ∈ N xk3−1 = x0 − (k3 − 1)b ≥ α and xk3 = x0 − k3b < α.

Therefore xk3 ≤ −α or −α < xk3 < 0, or 0 < xk3 < α. These three situations
are discussed above.

Case 3. Situations with fixed x0 ≤ −α or −α < x0 < 0 are similar to the
previously considered. ut

Theorem 2. Assume that β = 1. Then

1) 0 is an unstable stationary state.

2) Periodic orbit {x0, x0 − a, x0, x0 − a, . . .} with 0 < x0 < α is stable if
−α < x0 − a < 0.

3) Periodic orbit {x0, x0 + a, x0, x0 + a, . . .} with −α < x0 < 0 is stable if
0 < x0 + a < α.

4) Periodic orbit {x0, x0− b, x0, x0− b, . . .} with α < x0 is stable if x0− b <
−α.

5) Periodic orbit {x0, x0+b, x0, x0+b, . . .} with x0 < α is stable if α < x0+b.

Proof. Proof of 1). We need to prove that there exists some ε > 0 such that
for any δ > 0 there is some |x0| < δ satisfying |xn| ≥ ε for some n ≥ 1. We fix
ε = a

2 . For an arbitrary chosen δ > 0 we fix x0 such that

|x0| < δ and 0 < x0 < α and 0 < x0 <
a

2
.

Then x1 = x0 − a < a
2 − a = −a2 , that is, for n = 1 we have |x1| > a

2 = ε.
Proof of 2). We fix 0 < x0 < α. For an arbitrary chosen ε > 0 we fix

δ < min{ε, x0, α− x0, a− x0, x0 − a+ α}.

Then the orbit for every x′0 ∈ [x0−δ, x0 +δ] is periodic with period 2: O(x′0) =
{x′0, x′0 − a, x′0, x′0 − a, . . .} and therefore

x′0 = x′2n, x′1 = x′0 − a = x′2n+1, n = 1, 2, . . . .

Math. Model. Anal., 18(3):325–345, 2013.
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This leads to

|x′0 − x0| = |x′2n − x0| < δ < ε and |x′1 − x1| = |x′2n+1 − x1| < δ < ε.

The proof of cases 3)–5) is similar. ut

3.2 Model with 0 < β < 1

The situation with 0 < β < 1 is much more complicated. We begin with the
study of the stability of periodic points.

Theorem 3. Let us assume that 0 < β < 1. Then

1) 0 is an unstable stationary state.

2) If 0 < a
β+1 < α, then the periodic orbit O( a

β+1 ) is a stable periodic orbit
with period 2.

3) If α < b
β+1 , then the periodic orbit O( b

β+1 ) is a stable periodic orbit with
period 2.

Proof. Proof of 1). The proof is similar as in Theorem 2 for Statement 1).
Proof of 2). Let h(x) = βx− g(x). Since 0 < a

β+1 < α and g( a
β+1 ) = a then

h

(
a

β + 1

)
=

βa

β + 1
− a =

βa− βa− a
β + 1

=
−a
β + 1

.

Since −α < −a
β+1 < 0 and g( −aβ+1 ) = −a then

h

(
−a
β + 1

)
=
−βa
β + 1

+ a =
−βa+ βa+ a

β + 1
=

a

β + 1
.

This implies that O( a
β+1 ) = { a

β+1 ,
−a
β+1 , . . .} is a periodic orbit with period 2.

Next we show that O( a
β+1 ) is stable. For an arbitrary chosen ε > 0 let

0 < δ < min

{
a

β + 1
, α− a

β + 1
, ε

}
≤ ε.

If x0 satisfies the inequality |x0 − a
β+1 | < δ then x0 ∈ ]0, α[ and therefore

g(x0) = a. Then

x1 = h(x0) = βx0 − a = βx0 −
a(β + 1)

β + 1

= β
(
x0 −

a

β + 1

)
− a

β + 1
∈
] −a
β + 1

− βδ, −a
β + 1

+ βδ
[
.

We conclude that −α < x1 < 0. Then g(x1) = −a and

x2 = h(x1) = h2(x0) = βx1 + a = β2x0 − βa+ a

= β2x0 +
a(1− β)(1 + β)

1 + β
= β2x0 +

a(1− β2)

β + 1

= β2
(
x0 −

a

β + 1

)
+

a

β + 1
∈
] a

β + 1
− β2δ,

a

β + 1
+ β2δ

[
.
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We conclude that 0 < x2 < α. Then g(x2) = a and

x3 = h(x2) = h3(x0) = β3x0 − β2a+ βa− a

= β3x0 − a(β2 − β + 1) = β3x0 − a
β3 + 1

β + 1

= β3
(
x0 −

a

β + 1

)
− a

β + 1
∈
] −a
β + 1

− β3δ,
−a
β + 1

+ β3δ
[
.

We conclude that −α < x3 < 0. Further we obtain that

h2n(x0) = x2n = β2nx0 − β2n−1a+ β2n−2a− · · ·+ a = β2nx0 + a
1− β2n

β + 1

= β2n
(
x0 −

a

β + 1

)
+

a

β + 1
∈
] a

β + 1
− β2nδ,

a

β + 1
+ β2nδ

[
⇒ 0 < x2n < α, n = 1, 2, . . . ,

h2n+1(x0) = x2n+1 = β2n+1x0 − β2na+ · · · − a = β2n+1x0 − a
β2n+1 + 1

β + 1

= β2n+1
(
x0 −

a

β + 1

)
− a

β + 1
∈
] −a
β + 1

− β2n+1δ,
−a
β + 1

+ β2n+1δ
[

⇒ −α < x2n+1 < 0, n = 0, 1, 2, . . . .

Therefore∣∣∣h2n(x0)− a

β + 1

∣∣∣ =
∣∣∣β2n

(
x0 −

a

β + 1

)
+

a

β + 1
− a

β + 1

∣∣∣ < β2nδ < δ < ε,∣∣∣h2n+1(x0) +
a

β + 1

∣∣∣ =
∣∣∣β2n+1

(
x0 −

a

β + 1

)
− a

β + 1
+

a

β + 1

∣∣∣
< β2n+1δ < δ < ε.

We obtain that O( a
β+1 ) = { a

β+1 ,
−a
β+1 , . . .} is a stable periodic orbit with pe-

riod 2.
Proof of 3). Since

h
( b

β + 1

)
=

βb

β + 1
− b =

−b
β + 1

and h
( −b
β + 1

)
=
−βb
β + 1

+ b =
b

β + 1
,

then O( b
β+1 ) = { b

β+1 ,
−b
β+1 , . . .} is a periodic orbit with period 2.

Next we show that O( b
β+1 ) is stable. For an arbitrary chosen ε > 0 we fix

0 < δ < min
{ b

β + 1
− α, ε

}
.

The δ is chosen such that α < b
β+1 − δ, therefore an arbitrary fixed

x0 ∈ ] b
β+1 − δ,

b
β+1 + δ[ satisfies the inequality α < x0 and g(x0) = b. Then

x1 = h(x0) = βx0 − b = βx0 −
b(β + 1)

β + 1

= β
(
x0 −

b

β + 1

)
− b

β + 1
∈
] −b
β + 1

− βδ, −b
β + 1

+ βδ
[
⇒ x1 < −α.
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Then

x2 = h2(x0) = β2x0 − βb+ b = β2x0 + b(1− β) = β2x0 +
b(1− β2)

β + 1

= β2
(
x0 −

b

β + 1

)
+

b

β + 1
∈
] b

β + 1
− β2δ,

b

β + 1
+ β2δ

[
⇒ α < x2.

Further we get

x3 = h3(x0) = β3x0 − β2b+ βb− b = β3x0 − b
β3 + 1

β + 1

=
−b
β + 1

+ β3
(
x0 −

b

β + 1

)
∈
] −b
β + 1

− β3δ,
−b
β + 1

+ β3δ
[
⇒ x3 < −α.

We conclude that

h2n(x0) = x2n = β2nx0 + b
1− β2n

β + 1
=

b

β + 1
+ β2n

(
x0 −

b

β + 1

)
∈
] b

β + 1
− β2nδ,

b

β + 1
+ β2nδ

[
⇒ α < x2n n = 1, 2, . . . ,

h2n+1(x0) = x2n+1 = β2n+1x0 − b
β2n+1 + 1

β + 1
= − b

β + 1
+ β2n+1

(
x0 −

b

β + 1

)
∈
] −b
β + 1

− β2n+1δ,
−b
β + 1

+ β2n+1δ
[
⇒ x2n+1 < −α, n = 0, 1, 2, . . . .

Therefore∣∣∣h2n(x0)− b

β + 1

∣∣∣ < β2nδ < δ < ε,
∣∣∣h2n+1(x0) +

b

β + 1

∣∣∣ < β2n+1δ < δ < ε.

The orbit O( b
β+1 ) = { b

β+1 ,
−b
β+1 , . . .} is a stable periodic orbit with period 2.

ut

Corollary 1. If a
β+1 < α < b

β+1 then exists two stable periodic orbits with
period 2.

Corollary 2. There exists at least one stable periodic orbit with period 2.

In case 0 < β < 1 parameters a, b, α play a very important role. Depending
on these parameters, all real numbers are divided into three sets: points whose
orbits are asymptotically periodic with the limit set L(x0) = { a

β+1 ,
−a
β+1}, points

whose orbits are asymptotically periodic with the limit set L(x0) = { b
β+1 ,

−b
β+1}

and points whose orbits are an eventually stationary state 0.

Theorem 4. Assume that 0 < β < 1.
1) If 0 < a

β+1 < α < b
β+1 , then for every

x0 ∈ Ωb =

[
α− b
β

,−α
]
∪
∞⋃
k=0

[
α− b

∑k+1
s=0 β

s

βk+2
,
−α− b

∑k
s=0 β

s

βk+1

]

∪
[
α,
b− α
β

]
∪
∞⋃
k=0

[
α+ b

∑k
s=0 β

s

βk+1
,
−α+ b

∑k+1
s=0 β

s

βk+2

]
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the orbit O(x0) is asymptotically periodic with the limit set L(x0) = { b
β+1 ,

−b
β+1}.

2) If 0 < a
β+1 < α < b

β+1 and min{ a
β+1 , α−

a
β+1} = a

β+1 , then for every

x0 ∈ Ωa =

∞⋃
k=0

]
−α− b

∑k
s=0 β

s

βk+1
,
α− b

∑k
s=0 β

s

βk+1

[
∪ ]−α, 0[

∪ ]0, α[ ∪
∞⋃
k=0

]
−α+ b

∑k
s=0 β

s

βk+1
,
α+ b

∑k
s=0 β

s

βk+1

[
\Ω0

the orbit O(x0) is asymptotically periodic with the limit set L(x0) = { a
β+1 ,

−a
β+1}

and

Ω0 =
{
− b
β
,
b

β
,−b+ βb

β2
,
b+ βb

β2
, . . . ,−

b
∑k
s=0 β

s

βk+1
,
b
∑k
s=0 β

s

βk+1
, . . .

∣∣∣
k = 0, 1, 2, . . .

}
is a set of points whose orbits are eventually stationary state 0.

3) If 0 < a
β+1 < α < b

β+1 , min{ a
β+1 , α−

a
β+1} = α− a

β+1 and α < a ≤ b−α
β ,

then

(i) for every x0 ∈ [α−aβ , 0[ ∪ ]0, a−αβ ] and in general for every x0 ∈ Ωb ∪
Ωbb the orbit O(x0) is asymptotically periodic with the limit set L(x0) =
{ b
β+1 ,

−b
β+1} where

Ωbb =
[α− a

β
, 0
[
∪
]
0,
a− α
β

]
∪
∞⋃
k=1

([α− a+ b
∑k
s=1 β

s

βk+1
,
b
∑k−1
s=0 β

s

βk

[
∪
]b∑k−1

s=0 β
s

βk
,
a− α+ b

∑k
s=1 β

s

βk+1

])
∪
∞⋃
k=1

([
α− a− b

∑k
s=1 β

s

βk+1
,
−b
∑k−1
s=0 β

s

βk

[

∪
]−b∑k−1

s=0 β
s

βk
,
a− α− b

∑k
s=1 β

s

βk+1

])
.

(ii) for every x0 ∈ ]−α, α−aβ [ ∪ ]a−αβ , α[ and in general for every x0 ∈ (Ωa \
Ωbb) \ Ω0 the orbit O(x0) is asymptotically periodic with the limit set
L(x0) = { a

β+1 ,
−a
β+1}. Ω0 is a set of points whose orbits are eventually

stationary state 0.

Proof. Proof of 1). At first we show that for every x0 ∈ [α, b−αβ ] the orbit

O(x0) is asymptotically periodic with the limit set { b
β+1 ,

−b
β+1}.

If α ≤ x0 ≤ b−α
β then x1 = βx0 − b, that is

βα− b ≤ x1 ≤ β
b− α
β
− b = −α.
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We notice that α−b
β < βα− b holds if

0 < β2α− α− βb+ b = α
(
β2 − 1

)
+ b(1− β).

Since α < b
β+1 and β2 − 1 < 0, then

α
(
β2 − 1

)
+ b(1− β) >

b

β + 1

(
β2 − 1

)
+ b(1− β) = b(β − 1) + b(1− β) = 0.

Since α−b
β < x1 ≤ −α then

x2 = βx1 + b = β2x0 − βb+ b

= β2x0 +
b(1− β2)

β + 1
= β2

(
x0 −

b

β + 1

)
+

b

β + 1
.

But on the other hand

α =
β(α− b)

β
+ b < x2 = βx1 + b ≤ β(−α) + b <

b− α
β

.

In general, we have

α < x2n = β2n
(
x0 −

b

β + 1

)
+

b

β + 1
<
b− α
β

, n = 1, 2, . . . ,

α− b
β

< x2n+1 = β2n+1
(
x0 −

b

β + 1

)
− b

β + 1
≤ −α, n = 0, 1, 2, . . . .

Therefore

lim
n→+∞

x2n =
b

β + 1
and lim

n→+∞
x2n+1 =

−b
β + 1

.

This means that L(x0) = { b
β+1 ,

−b
β+1}.

Proof for initial values x0 ∈ [α−bβ ,−α] is similar. If inequality b−α
β < x0

holds and x0 belongs to the interval[α+ b
∑k
s=0 β

s

βk+1
,
−α+ b

∑k+1
s=0 β

s

βk+2

]
, k ∈ {0, 1, 2, . . .},

then x1 = βx0 − b:

β(α+ b
∑k
s=0 β

s)

βk+1
− b =

α+ b
∑k
s=0 β

s − βkb
βk

=
α+ b

∑k−1
s=0 β

s

βk
≤ x1

≤
β(b

∑k+1
s=0 β

s − α)

βk+2
− b =

b
∑k+1
s=0 β

s − α− βk+1b

βk+1
=
b
∑k
s=0 β

s − α
βk+1

,

that is, if x0 belongs to the k-th interval, then x1 belongs to the (k − 1)-th
interval, x2 belongs to the (k − 2)-th interval, . . . , xk ∈ [α, b−αβ ]. Therefore

orbit of x0 is asymptotically periodic with the limit set { b
β+1 ,

−b
β+1}.
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Similarly, orbits of initial values that satisfy the inequality x0 <
α−b
β and

belong to intervals[α− b∑k+1
s=0 β

s

βk+2
,
−α− b

∑k
s=0 β

s

βk+1

]
, k = 0, 1, 2, . . . ,

are asymptotically periodic with the limit set { b
β+1 ,

−b
β+1}.

Remark. The before mentioned intervals are not empty. We can make the
following evaluations:

α <
b

β + 1
⇔ α(β + 1) < b ⇔ α <

b− α
β

⇔ b− α− αβ > 0.

The length of the k-th (k = 0, 1, 2, . . .) interval is

−α+ b
∑k+1
s=0 β

s

βk+2
−
α+ b

∑k
s=0 β

s

βk+1
=

1

βk+2

(
− α+ b+ βb+ · · ·+ βk+1b

− αβ − βb− β2b− · · · − βk+1b
)

=
b− α− αβ

βk+2
> 0.

Since 0 < β < 1 then length of intervals tend to infinity as k tends to infinity.
Spacings between intervals are 2α

βk+1 , k = 0, 1, 2, . . . that also go to infinity as k
goes to infinity.

Figure 2. Illustration of Statement 1) of Theorem 4. Presentation of set Ωb.

In Figure 2 some intervals of the set Ωb are presented. The set Ωb is
symmetric with respect to 0. Points of bold intervals in Figure 2 belong to
Ωb and orbits of these points are asymptotically periodic with the limit set
L(x0) = { b

β+1 ,
−b
β+1}.

Proof of 2). Since min{ a
β+1 , α−

a
β+1} = a

β+1 then a
β+1 ≤

α
2 (or 2a

β+1 ≤ α).
If a

β+1 ≤
α
2 , then

a ≤ α(β + 1)

2
<
α · 2

2
= α.

Let x0 ∈ ]0, α[. Then x1 = βx0 − a and −α < −a < x1 < βα − a. We can
not guarantee that βα− a < 0 but

∃k ∈ N xk = βkx0 − a
(
1 + β + β2 + · · ·+ βk−1

)
< 0.
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Then −a < xk < 0 and therefore

0 < −βa+ a < xk+1 = βxk + a < a < α,

− α < −a < −β2a+ βa− a < xk+2 = βxk+1 − a < βa− a < 0.

In general, we have

−a < −β2na+ β2n−1a− · · · − β2a+ βa− a < xk+2n

< β2n−1a− β2n−2a+ · · ·+ βa− a < 0,

0 < −β2n+1a+ β2na− · · ·+ β2a− βa+ a < xk+2n+1

< β2na− β2n−1a+ · · · − βa+ a < a.

Since

lim
n→+∞

(−a)
(
1− β + β2 − · · ·+ β2n

)
= lim
n→+∞

(−a)
(
1− β + β2 − β3 + · · · − β2n−1) =

−a
β + 1

,

lim
n→+∞

a
(
1− β + β2 − · · · − β2n+1

)
= lim
n→+∞

a
(
1− β + β2 − β3 + · · ·+ β2n

)
=

a

β + 1
,

then

lim
n→+∞

xk+2n =
−a
β + 1

, lim
n→+∞

xk+2n+1 =
a

β + 1
.

This means that the orbit O(x0) is asymptotically periodic with the limit set
{ a
β+1 ,

−a
β+1}.

Proof for x0 ∈ ]−α, 0[ is similar. Similarly to the Statement 1) we can find
intervals of points whose orbits are asymptotically periodic with the limit set
{ a
β+1 ,

−a
β+1}. However, it should be noted that there is a set of points whose

orbits are eventually stationary state 0, this set is

Ω0 =
{
− b
β
,
b

β
,−b+ βb

β2
,
b+ βb

β2
, . . . ,−

b
∑k
s=0 β

s

βk+1
,
b
∑k
s=0 β

s

βk+1
, . . .

∣∣∣
k = 0, 1, 2, . . .

}
.

Set of points whose orbits are asymptotically periodic with the limit set { a
β+1 ,

−a
β+1} is

x0 ∈ Ωa =

∞⋃
k=0

]
−α− b

∑k
s=0 β

s

βk+1
,
α− b

∑k
s=0 β

s

βk+1

[
∪ ]−α, 0[

∪ ]0, α[ ∪
∞⋃
k=0

]
−α+ b

∑k
s=0 β

s

βk+1
,
α+ b

∑k
s=0 β

s

βk+1

[
\Ω0.
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Proof of 3). Since a
β+1 < α ⇔ a < αβ + α ⇔ a−α

β < α and a > α then in

statements (i) and (ii) considered intervals are not empty.
Proof of (i). We consider points from the interval ]0, a−αβ ]. Proof for points

from interval [α−aβ , 0[ is similar. If 0 < x0 ≤ a−α
β , then

α− b
β
≤ −a < x1 = βx0 − a ≤

β(a− α)

β
− a = −α.

If α−a
β ≤ x0 < 0, then

α =
β(α− a)

β
+ a ≤ x1 = βx0 + a < a ≤ b− α

β
.

Therefore x1 ∈ [α−bβ ,−α] or x1 ∈ [α, b−αβ ] and by Statement 2) of Theorem 4

point x0 is asymptotically periodic with the limit set { b
β+1 ,

−b
β+1}.

Proof of (ii). Let a−α
β < x0 < α. Then

−α =
β(a− α)

β
− a < x1 = βx0 − a < βα− a < α− a

β
.

The last inequality is true by the following equivalences

βα− a < α− a
β

⇔ β2 − βa < α− a

⇔ 0 < α− a− β2α+ βa = α
(
1− β2

)
+ a(β − 1)

= α(1− β)(1 + β) + a(β − 1) = (1− β)
(
α(1 + β)− a

)
and the expression in second brackets is positive because a

β+1 < α ⇔ a <

α(1 + β). Now we can estimate other elements of the orbit O(x0):

(a− α)/β < −βα+ a < x2 = βx1 + a < β2α− βa+ a < α,

−α < −β2α+ βa− a < x3 = βx2 − a < β3α− β2a+ βa− a < (α− a)/β,

· · ·
(a− α)/β < −β2n−1α+ β2n−2a− · · · − βa+ a < x2n

< β2nα− β2n−1a+ · · · − βa+ a < α,

−α < −β2nα+ β2n−1a− · · ·+ βa− a < x2n+1

< β2n+1α− β2na+ · · ·+ βa− a < (α− a)/β.

If we let n go to infinity then for the last two inequalities exist limits that are
equal to a

β+1 and −a
β+1 respectively, then

lim
n→+∞

x2n =
a

β + 1
and lim

n→+∞
x2n+1 =

−a
β + 1

.

This means that the orbit O(x0) is asymptotically periodic with the limit set
{ a
β+1 ,

−a
β+1}.
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Figure 3. Illustration of Statement 3) of Theorem 4. Notations: A1 = α, B1 = b−α
β

,

A2 = b+α
β

, B2 = b+βb−α
β2 .

In Statement 3) of Theorem 4 we need to reduce the set Ωa in comparison
with Statement 2) of Theorem 4. That is, interval ] b−αβ , b+αβ [ = ]B1, A2[ (see

Figure 3) contains a set of points that in the first iteration go to [α−aβ , 0[ ∪
]0, a−αβ ] (orbits of points of this interval are asymptotically periodic with the

limit set { b
β+1 ,

−b
β+1}). This set is

[C1, D1] \
{ b
β

}
=
[α− a+ βb

β2
,
b

β

[
∪
] b
β
,
a− α+ βb

β2

]
.

This is not empty set and not intersect with Ωb: since a
β+1 < α and a > α then

b− α
β

<
α− a+ βb

β2
<
b

β
<
a− α+ βb

β2
<
b+ α

β
.

Then we can find another set of points such first iteration belongs to [C1, D1].
This set is

[C2, D2] \
{b+ βb

β2

}
=
[α− a+ βb+ β2b

β3
,
b+ βb

β2

[
∪
]b+ βb

β2
,
a− α+ βb+ β2b

β3

]
.

We conclude that the set

Ωbb =
[α− a

β
, 0
[
∪
]
0,
a− α
β

]
∪
∞⋃
k=1

([α− a+ b
∑k
s=1 β

s

βk+1
,
b
∑k−1
s=0 β

s

βk

[
∪
]b∑k−1

s=0 β
s

βk
,
a− α+ b

∑k
s=1 β

s

βk+1

])
∪
∞⋃
k=1

([α− a− b∑k
s=1 β

s

βk+1
,
−b
∑k−1
s=0 β

s

βk

[
∪
]−b∑k−1

s=0 β
s

βk
,
a− α− b

∑k
s=1 β

s

βk+1

])
consists of points whose orbits are asymptotically periodic with the limit set
{ b
β+1 ,

−b
β+1}. This implies that all orbits of points in the set Ωb ∪ Ωbb are

asymptotically periodic with the limit set { b
β+1 ,

−b
β+1}. Orbits of points in the

set (Ωa \ Ωbb) \ Ω0 are asymptotically periodic with the limit set { a
β+1 ,

−a
β+1}.

ut
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Unfortunately, we have to admit that here we cannot look at all possible
situations with parameters. For example, one interesting situation arises when
a

β+1 < α = b
β+1 holds. Experiments with initial values x0 show (for example,

a = 9, b = 12, α = 8, β = 0.5) that in this case the set of points whose orbits
are asymptotically periodic with the limit set { b

β+1 ,
−b
β+1} are isolated points

(in the mentioned example such points are {−2, 2,−8, 8,−20, 20,−40, 40, . . .}).

4 Some Illustrative Examples and Conclusions

In this paper we have demonstrated that a step signal function with more than
two steps make the analyze of a neuron model xn+1 = βxn− g(xn), 0 < β ≤ 1,
very complicated. With our signal function (3.1) in this model we have found
many periodic orbits and eventually periodic orbits with period 2 if β = 1.
If 0 < β < 1, then the situation is even more interesting. If a

β+1 < α <
b

β+1 , then we have two stable periodic orbits with period 2 { a
β+1 ,

−a
β+1} and

{ b
β+1 ,

−b
β+1} and all other orbits are asymptotically periodic with the limits sets

{ a
β+1 ,

−a
β+1} or { b

β+1 ,
−b
β+1} or eventually stationary state 0. One interesting

case is considered in the following example.

Example 1. If β = 0.5, α = 8, a = 9, b = 15, then conditions of Statement 3)
of Theorem 4 are satisfied:

min

{
a

β + 1
, α− a

β + 1

}
= min

{
9

1.5
, 8− 9

1.5

}
= min{6, 2} = 2 = α− a

β + 1
,

a

β + 1
< α <

b

β + 1
, that is,

9

1.5
< 8 <

15

1.5
⇔ 6 < 8 < 10,

α < a ≤ b− α
β

: 8 < 9 ≤ 15− 8

0.5
= 14.

In this case a real line is divided in to infinity many intervals. Orbits of points
of these intervals are asymptotically periodic with the limit set { a

β+1 ,
−a
β+1} =

{6,−6} or { b
β+1 ,

−b
β+1} = {10,−10}.

Figure 4. Illustration if x0 ∈ {−12; 30; 64}.

In Figure 4 orbits of bolded intervals are asymptotically periodic with the
limit set {10,−10}, orbits of thin intervals are asymptotically periodic with the
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limit set {6,−6} and orbits of “empty” points are eventually stationary state
0.

We conclude that model (1.3) with our new signal function (3.1) describes
more general situation as considered in [10] (also [2, 7, 9, 11, 12]). The model
with our signal function shows that it is difficult to simulate even a single
neuron behaviour. The reader interested in the other aspects of the neuron
simulations is recommend to [1, 3, 6].
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[3] R. Čiegis and N. Tumanova. Stability analysis of implicit finite-difference schemes
for parabolic problems on graphs. Numerical Functional Analysis and Optimiza-
tion, 33(1):1–20, 2012. http://dx.doi.org/10.1080/01630563.2011.626886.

[4] S.N. Elaydi. Discrete Chaos. With Applications in Science and Engineering.
second ed., Chapman & Hall, CRC, 2008.

[5] M.R.S. Kulenovic and O. Merino. Discrete Dynamical Systems and Difference
Equations with Mathematica. Chapman & Hall, CRC, 2002.

[6] M. Migliore, C. Cannia, W. Lytton, H. Markram and M. Hines. Parallel network
simulations with NEURON. Journal of Computational Neuroscience, 21:110–
119, 2006.

[7] Z. Wei, L. Huang and Y. Meng. Unboundedness and periodicity of solutions for
a discrete-time network model of three neurons. Appl. Math. Model., 32:1463–
1474, 2008. http://dx.doi.org/10.1016/j.apm.2007.06.016.

[8] J. Wu. Introduction to Neural Dynamics and Signal Transmission Delay. De
Gruyter, Berlin, 2001.

[9] Z. Yuan, L. Huang and Y. Chen. Convergence and periodicity of solutions for a
discrete-time network model of two neurons. Math. Comput. Modelling, 35:941–
950, 2002. http://dx.doi.org/10.1016/S0895-7177(02)00061-4.

[10] Z. Zhou. Periodic orbits on discrete dynamical systems. Comput. Math. Appl.,
45:1155–1161, 2003. http://dx.doi.org/10.1016/S0898-1221(03)00075-0.

[11] Z. Zhou and J. Wu. Stable periodic orbits in nonlinear discrete-time neu-
ral networks with delayed feedback. Comput. Math. Appl., 45:935–942, 2003.
http://dx.doi.org/10.1016/S0898-1221(03)00066-X.

http://dx.doi.org/10.1016/S0893-9659(02)00072-1
http://dx.doi.org/10.1080/01630563.2011.626886
http://dx.doi.org/10.1016/j.apm.2007.06.016
http://dx.doi.org/10.1016/S0895-7177(02)00061-4
http://dx.doi.org/10.1016/S0898-1221(03)00075-0
http://dx.doi.org/10.1016/S0898-1221(03)00066-X


Periodic Orbits of Single Neuron Models 345

[12] H. Zhu and L. Huang. Dynamics of a class of nonlinear discrete-time neural
networks. Comput. Math. Appl., 48:85–94, 2004.
http://dx.doi.org/10.1016/j.camwa.2004.01.006.

Math. Model. Anal., 18(3):325–345, 2013.

http://dx.doi.org/10.1016/j.camwa.2004.01.006

	Introduction
	Basic Concepts and Definitions of Difference Equations
	Results
	Model with =1
	Model with 0<<1

	Some Illustrative Examples and Conclusions
	References



