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Abstract. In the present study, numerical solutions of the fractional diffusion and
fractional diffusion-wave equations where fractional derivatives are considered in the
Caputo sense have been obtained by a Galerkin finite element method using quadratic
B-spline base functions. For the fractional diffusion equation, the L1 discretizaton
formula is applied, whereas the L2 discretizaton formula is applied for the fractional
diffusion-wave equation. The error norms L2 and L∞ are computed to test the accu-
racy of the proposed method. It is shown that the present scheme is unconditionally
stable by applying a stability analysis to the approximation obtained by the proposed
scheme.
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1 Introduction

Recently, it has turned out that many phenomena in engineering, physics,
chemistry and other sciences can be described very successfully by models
using mathematical tools from fractional calculus, i.e. the theory of deriva-
tives and integrals of fractional (non-integer) order [10]. In fact, the concept
of differentiation and integration to non-integer order is by no means new. In-
terest in this subject was evident almost as soon as the ideas of the classical
calculus were known [12]. However, in the last few decades many authors have
pointed out that derivatives and integrals of non-integer order are very suitable
for the description of the behavior of various materials, e.g. polymers. It has
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been shown that new fractional-order models are more adequate than previ-
ously used integer-order models. The growing number of fractional derivative
applications in various fields of science and engineering indicates that there is
a significant demand for better mathematical models of real objects, and that
the fractional calculus provides one possible approach on the way to more ade-
quate mathematical modelling of real objects and processes. For example, the
modelling of diffusion in a specific type of porous medium (in fractal media) is
one of the most significant applications of fractional-order derivatives [13], and
the fractional diffusion-wave equations have been proposed to deal with vis-
coelastic problems such as propagation of stress waves in viscoelastic solids [9].
Although there are several analytical techniques [6, 16] for dealing with these
fractional equations, as also happens with ordinary (non-fractional) partial dif-
ferential equations, in many cases the initial condition, and/or the external
force are such that the only reasonable option is to resort to numerical meth-
ods. However, although there have been an increasing number of works on this
topic during the last few years [2,4,5,7,8,11], this field of applied mathematics
is by far much less developed and understood than its non-fractional counter-
part [20]. Although there have been many methods applied to solve fractional
partial differential equations, there is still a long way to go in this field.

Many of the numerical methods for solving fractional partial differential
equations that have been proposed differ essentially in the way in which the
normal and fractional derivatives are discretized [20]. In this paper, the finite
element method is applied to solve fractional differential equations, namely
fractional diffusion and fractional diffusion-wave equations.

There are several studies about the fractional equations in the literature.
For example, Sun et al. [18] have used a semi-analytical finite element method
for a class of time-fractional diffusion equations. Sweilam et al. [19] solved time-
fractional diffusion equation by using Crank-Nicolson finite difference method.
Monami and Adibat [10] have implemented relatively new analytical tech-
niques, the variational iteration method and the Adomian decomposition me-
thod, for solving linear fractional partial differential equations arising in fluid
mechanics. Celik and Duman [1] have used Crank-Nicolson method for the
fractional diffusion equation with the Riesz fractional derivative and obtained
numerical results using fractional centered difference approach. Murillo and
Yuste [15] constructed the difference schemes using the L1 discretization for-
mula for the fractional diffusion equation and the L2 discretization for the
fractional diffusion wave equation.

The general form of the fractional diffusion and fractional diffusion-wave
equations which are going to be used as a model is given by

∂γu

∂tγ
= K

∂2u

∂x2
for a < x < b and t ≥ 0, (1.1)

where

∂γ

∂tγ
f(t) =

1

Γ (n− γ)

∫ t

0

(t− τ)n−γ−1
∂nf(τ)

∂τn
dτ, n− 1 < γ < n

is the fractional derivative in the Caputo’s sense [6, 13], K is the diffusion
coefficient and n is an integer. In the present paper, diffusion coefficient K
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is going to be taken as 1. For 0 < γ ≤ 1, Eq. (1.1) is called the fractional
diffusion equation or sub-diffusion equation, and for 1 < γ ≤ 2 it is called the
fractional diffusion-wave equation. Although various homogeneous and non-
homogeneous boundary conditions can be taken, in the present study, for the
diffusion equation, we will take the boundary conditions of the model problem
(1.1) given in the interval 0 ≤ x ≤ π as

u(0, t) = 0, u(π, t) = 0 (1.2)

and the initial condition as

u(x, 0) = sinx (1.3)

and for the diffusion-wave equation, along with the above boundary and the
initial conditions, the following additional initial condition

∂u(x, t)

∂t

∣∣∣∣
t=0

= 0 (1.4)

will be taken. The exact solution of the problems is found as follows [10,16]

u(x, t) = Eγ
(
−tγ

)
sinx,

where Eγ is the Mittag-Leffler function [13]. Fujita [3] has shown the existence
and uniqueness of the solution of the Cauchy problem of the following form

∂γu

∂tγ
=
∂βu

∂xβ
for 1 ≤ α, β ≤ 2.

If we take β = 2, it results in fractional diffusion and fractional diffusion-wave
equations given by Eq. (1.1).

In our numerical solutions, to obtain a finite element scheme for solving
the fractional diffusion equation (0 < γ ≤ 1), we will discretize the Caputo
derivative by means of the so-called L1 formula [12]

∂γf

∂tγ

∣∣∣∣
tn

=
(∆t)−γ

Γ (2− γ)

n−1∑
k=0

bγk
[
f(tn−k)− f(tn−1−k)

]
+O(∆t),

where
bγk = (k + 1)1−γ − k1−γ

and to solve the fractional diffusion-wave equation (1 < γ ≤ 2), we will dis-
cretize the Caputo derivative by means of the so-called L2 formula [12]

∂γf

∂tγ

∣∣∣∣
tn

=
(∆t)−γ

Γ (3− γ)

n−1∑
k=0

bγk
[
f(tn−k)− 2f(tn−1−k) + f(tn−2−k)

]
+O(∆t)2,

where
bγk = (k + 1)2−γ − k2−γ .
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2 Quadratic B-Spline Galerkin Finite Element Solutions

Before starting to solve Eq. (1.1) with the boundary conditions (1.2) and the
initial conditions (1.3)–(1.4) using Galerkin finite element method, we firstly
define quadratic B-spline functions. Let us partition the interval [a, b] into M
finite elements of uniformly equal length by the knots xm, m = 0, 1, 2, . . . ,M
such that a = x0 < x1 · · · < xM = b and h = xm+1 − xm. Since a quadratic B-
spline covers three elements, we also introduce four additional grid points x−2,
x−1, xM+1 and xM+2 such that x−2−x−1 = x−1−x0 = h and xM+2−xM+1 =
xM+1 − xM = h. The quadratic B-splines φm(x) (m = −1(1)M), at the knots
xm are defined over the interval [a, b] by [14]

φm(x) =
1

h2


(x− xm−1)2, [xm−1, xm],

(x− xm−1)2 − 3(x− xm)2, [xm, xm+1],

(x− xm−1)2 − 3(x− xm)2 + 3(x− xm+1)2, [xm+1, xm+2],

0, otherwise.
(2.1)

The set of splines {φ−1(x), φ0(x), . . . , φM (x)} forms a base for the func-
tions defined over [a, b]. Therefore, an approximation solution UM (x, t) can be
written in terms of the quadratic B-splines trial functions as follows

UM (x, t) =

M∑
m=−1

δm(t)φm(x),

where δm(t)’s are unknown, time dependent parameters to be determined from
the boundary and weighted residual conditions. Each quadratic B-spline func-
tion covers three elements so that each element [xm, xm+1] is covered by three
quadratic B-spline functions. For this problem, the finite elements are identi-
fied with the interval [xm, xm+1] and the element knots xm, xm+1. Using the
nodal values Um and U

′

m given in terms of the parameter δm(t)

UM (xm) = Um = δm−1 + δm,

U
′

M (xm) = U
′

m = (−2δm−1 + 2δm)/h

the variation of UM (x, t) over the typical element [xm, xm+1] is given by

UM =

m+1∑
j=m−1

δjφj .

Before starting to apply the Galerkin method to the Eq. (1.1) with the
appropriate boundary conditions, first of all we need to construct the weak
form of the Eq. (1.1). For this purpose, all terms in Eq. (1.1) are taken to the
right hand side of the equation and then multiplied by the weight function Ψ(x).
Finally, by integrating the resulting equation over the region [0, π] and setting
it to zero, we get ∫ π

0

(
∂γU

∂tγ
− ∂2U

∂x2

)
Ψ dx = 0,

Math. Model. Anal., 18(2):260–273, 2013.
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where Ψ(x) is the weighted function taken as quadratic B-spline functions.
When the differentiation is distributed between the approximate solution U and
the weight function Ψ , it results in an integral form requiring weaker continuity
conditions on trial base functions, and we obtain∫ π

0

(
∂γU

∂tγ
Ψ +

∂U

∂x

∂Ψ

∂x

)
dx = Ψ

∂U

∂x

∣∣∣∣π
0

. (2.2)

Since the weak form (2.2) is valid on the whole region, particularly it is valid
over the typical element [xm, xm+1], thus Eq. (2.2) can be rewritten as follows∫ xm+1

xm

(
∂γU

∂tγ
Ψ +

∂U

∂x

∂Ψ

∂x

)
dx = Ψ

∂U

∂x

∣∣∣∣xm+1

xm

. (2.3)

To change from the global coordinate system to the local one, we use the
transformation ξ = x − xm. Thus, the weak form (2.3) transforms into the
form ∫ h

0

(
∂γU

∂tγ
Ψ +

∂U

∂ξ

∂Ψ

∂ξ

)
dξ = Ψ

∂U

∂ξ

∣∣∣∣h
0

. (2.4)

The newly obtained Eq. (2.4) is the element equation for a typical ele-
ment “e”. Now, Eqs. (2.1) can be rewritten as follows

φm−1

φm

φm+1

=
1

h2


(h− ξ)2,
h2 + 2hξ − 2ξ2,

ξ2.

(2.5)

Inserting Eqs. (2.5) into Eq. (2.4), we have

Aeδ̇(t) +Beδ(t) = Ceδ(t), (2.6)

where dot denotes γth fractional derivative with respect to time and Aeij , B
e
ij

and Ceij are element matrices given by the following statements:

Aeij =

∫ h

0

φiφj dξ, Beij =

∫ h

0

φ
′

iφ
′

j dξ, Ceij = φiφ
′

j

∣∣h
0
,

where i, j = m − 1,m,m + 1, where m = 0(1)M . The element matrices are
calculated as follows

Aeij =
h

30

 6 13 1
13 54 13
1 13 6

 , Beij =
2

3h

 2 −1 −1
−1 2 −1
−1 −1 2

 , Ceij =
2

h

1 −1 0
1 −2 1
0 −1 1

 .
By combining the coefficient matrix for each element in terms of global

element parameters, Eq. (2.6) yields the system

Aδ̇(t) +Bδ(t) = Cδ(t), (2.7)
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where δ(t)’s are unknown parameters and A, B and C are (M + 2)× (M + 2)
global matrices with the generalized mth row given as follows, respectively

A :
h

30
(1 26 66 26 1), B :

2

3h
(−1 −2 6 −2 −1),

C : (0 0 0 0 0).

For the fractional diffusion equation (0 < γ ≤ 1), if time parameters δ(t)’s
and its fractional time derivatives δ̇(t)’s in Eq. (2.7) are discretized by the
Crank–Nicolson formula and L1 formula, respectively:

δm =
1

2

(
δnm + δn+1

m

)
,

δ̇m =
dγδ

dtγ
=

(∆t)−γ

Γ (2− γ)

n−1∑
k=0

[
(k + 1)1−γ − k1−γ

][
δn−km − δn−k−1m

]
,

we obtain a recurrence relationship between successive time levels relating un-
known element parameters δn+1

m (t)

(3− α)δn+1
m−2 + (78− 2α)δn+1

m−1 + (198 + 6α)δn+1
m

+ (78− 2α)δn+1
m+1 + (3− α)δn+1

m+2

= (3 + α)δnm−2 + (78 + 2α)δnm−1 + (198− 6α)δnm + (78 + 2α)δnm+1

+ (3 + α)δnm+2 − 3

n∑
k=1

[
(k + 1)1−γ − k1−γ

][(
δn−k+1
m−2 − δn−km−2

)
+ 26

(
δn−k+1
m−1 − δn−km−1

)
+ 66

(
δn−k+1
m − δn−km

)
+ 26

(
δn−k+1
m+1 − δn−km+1

)
+
(
δn−k+1
m+2 − δn−km+2

)]
, (2.8)

where α = 30(∆t)γΓ (2− γ)/h2.
Next, for fractional diffusion-wave equation (1 < γ ≤ 2), if element pa-

rameters δm(t)’s and its fractional time derivatives δ̇m(t)’s in Eq. (2.6) are
discretized by the Crank–Nicolson formula and L2 formula, respectively

δm =
1

2

(
δnm + δn+1

m

)
,

δ̇=
dγδ

dtγ
=

(∆t)−γ

Γ (3− γ)

n−1∑
k=0

[
(k + 1)2−γ − k2−γ

][
δn−km − 2δn−k−1m + δn−k−2m

]
,

we obtain a recurrence relationship between successive time levels relating ele-
ment parameters δn+1

m (t)

(3− α)δn+1
m−2 + (78− 2α)δn+1

m−1 + (198 + 6α)δn+1
m

+ (78− 2α)δn+1
m+1 + (3− α)δn+1

m+2

= (6 + α)δnm−2 + (156 + 2α)δnm−1 + (396− 6α)δnm + (156 + 2α)δnm+1

+ (6 + α)δnm+2 − 3
(
δn−1m−2 + 26δn−1m−1 + 66δn−1m + 26δn−1m+1 + δn−1m+2

)
Math. Model. Anal., 18(2):260–273, 2013.
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− 3

n∑
k=1

[
(k + 1)2−γ − k2−γ

][(
δn−k+1
m−2 − 2δn−km−2 + δn−k+1

m−2
)

+ 26
(
δn−k+1
m−1 − 2δn−km−1 + δn−k+1

m−1
)

+ 66
(
δn−k+1
m − 2δn−km + δn−k+1

m

)
+ 26

(
δn−k+1
m+1 − 2δn−km+1 + δn−k+1

m+1

)
+
(
δn−k+1
m+2 − 2δn−km+2 + δn−k+1

m+2

)]
, (2.9)

where α = 30(∆t)γΓ (3− γ)/h2.
Both the systems (2.8) and (2.9) consist of M+2 linear equations including

M+2 element parameters (δ−1, . . . , δM )T . Applying boundary conditions (1.2)
to the system (2.7), we obtain an M ×M penta-diagonal matrix system. In
fact we have started with Eq. (1.1), but ended up with the solution of Eq.
(2.8). Since the operator A is positive definite, the solutions of Eqs. (1.1) and
Eq. (2.8) are consistent, i.e., the solution of Eq. (1.1) is also the solution of
Eq. (2.8) and vice versa [17].

2.1 Initial state

The starting vector d0 = (δ−1, δ0, δ1, . . . , δM−2, δM−1, δM )T is determined from
the initial condition U(x, 0) by interpolating quadratic splines. Using relations
at the knots UM (xi, 0) = U(xi, 0) (i = 0, . . . ,M) together with U

′

M (xM , 0) =

U
′
(xM , 0), initial vector d0 can be determined from the following matrix equa-

tion 

1 1
1 1

1 1
. . .

1 1
−2
h

2
h





δ0−1
δ00
δ01
...

δ0M−1
δ0M


=



U0
0

U0
1

U0
2

...

U0
M

U
′

M


.

2.2 Stability analysis

The investigation of the stability of the approximation obtained by the scheme
will be based on the von Neumann stability analysis. In the stability analysis,
the growth factor of a typical Fourier mode is defined as:

δnm = ξneimϕ, (2.10)

where i =
√
−1. First of all, substituting the Fourier mode (2.10) into the

recurrence relationship (2.8), we obtain

ξn+1
(
(3−α)e−2iϕ+(78− 2α)e−iϕ + (198 + 6α) + (78−2α)eiϕ + (3− α)e2iϕ

)
= ξn

(
(3 + α)e−2iϕ + (78 + 2α)e−iϕ + (198− 6α) + (78 + 2α)eiϕ

+ (3 + α)e2iϕ
)
− 3

n∑
k=1

[
(k + 1)1−γ − k1−γ

][(
ξn−k+1 − ξn−k

)
×
(
e−2iϕ + 26e−2iϕ + 66 + 26eiϕ + e2iϕ

)]
. (2.11)
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a) b)

Figure 1. Numerical solutions of the diffusion problem: a) numerical solutions of
u(π/2, t) for ∆t = 0.00007 and M = 40 at different time levels, b) for γ = 0.50 and M = 40

at different time levels.

Next, by writing ξn+1 = ζξn and assuming that ζ ≡ ζ(ϕ) is independent of
time, we easily get the following expression for the amplification factor ζof the
sub-diffusion mode:

ζn+1
(
(3−α)e−2iϕ+(78−2α)e−iϕ + (198 + 6α)+(78−2α)eiϕ+(3−α)e2iϕ

)
=
(
(3 + α)e−2iϕ + (78 + 2α)e−iϕ + (198− 6α) + (78 + 2α)eiϕ

+ (3 + α)e2iϕ
)
− 3

n∑
k=1

[
(k + 1)1−γ − k1−γ

] [(
ζn−k+1 − ζn−k

)
×
(
e−2iϕ + 26e−2iϕ + 66 + 26eiϕ + e2iϕ

)]
. (2.12)

According to the Fourier stability analysis, for the given scheme to be stable,
the condition |ζ| ≤ 1 must be satisfied. Considering the extreme value ζ = 1,
from the Eqs. (2.11) and (2.12), we obtain the following inequality

α(2 sin2
(
ϕ/2

)
+ sin2(ϕ)) ≥ 0. (2.13)

Substituting the Fourier mode (2.10) into the recurrence relationship (2.12),
and following a similar way, we again obtain (2.13). Since α ≥ 0, both of the
schemes are unconditionally stable.

3 Numerical Examples and Results

Numerical results of the diffusion and diffusion-wave problems are obtained by
Galerkin finite element method using quadratic B-spline base functions. The
accuracy of the method is measured by the discrete norm L2

L2 =
∥∥Uexact − UM

∥∥
2
'

√√√√h

M∑
j=0

∣∣Uexact
j − (UM )j

∣∣2
and the maximum nodal norm L∞

L∞ =
∥∥Uexact − UM

∥∥
∞ ' max

j

∣∣Uexact
j − (UM )j

∣∣.
Math. Model. Anal., 18(2):260–273, 2013.
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In Fig. 1 a, we present numerical solutions of the fractional diffusion prob-
lem at the midpoint for various values of γ and M = 40.

The comparison of the analytical solution and numerical solutions obtained
for diffusion equation for values of γ = 0.25, γ = 0.50 and γ = 0.75 is given in
Table 1.

Table 1. The comparison of solutions and error norms of the diffusion problem for M = 40,
∆t = 0.00007 and tf = 0.35.

x γ = 0.25 γ = 0.50 γ = 0.75
Numerical Exact Numerical Exact Numerical Exact

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 0.164106 0.164109 0.176625 0.176627 0.194620 0.194621
0.628319 0.312151 0.312153 0.335964 0.335965 0.370194 0.370192
0.942478 0.429640 0.429642 0.462416 0.462416 0.509530 0.509525
1.256637 0.505073 0.505074 0.543603 0.543602 0.598989 0.598983
1.570796 0.531065 0.531066 0.571579 0.571577 0.629815 0.629808
1.884956 0.505073 0.505074 0.543603 0.543602 0.598989 0.598983
2.199115 0.429640 0.429642 0.462416 0.462416 0.509530 0.509525
2.513274 0.312151 0.312153 0.335964 0.335965 0.370194 0.370192
2.827433 0.164106 0.164109 0.176625 0.176627 0.194620 0.194621
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.003766 0.003122 0.008343
L∞ × 103 0.004662 0.004853 0.007251

As it is clearly seen from the table, the analytical and numerical solutions
obtained by the present scheme are in good agreement with each other. In
Table 2, we demonstrate the numerical results for γ = 0.5, ∆t = 0.00007 and
tf = 0.35 and for different number of divisions of the region. Table 2 clearly
shows that as the number of division increases, the obtained numerical results
become more accurate. We see this from the decreasing values of the discrete
norm L2 and maximum nodal norm L∞. In Fig. 1b, we demonstrate the graphs
of numerical solutions obtained for γ = 0.50 and M = 40 at different time
levels. In Table 3, it is clearly seen that as the values of time steps decrease, the
agreement between the approximate solutions and analytical solutions becomes
better, and the values of the discrete norm L2 and maximum nodal norm
L∞ become smaller. In Table 4, we demonstrate the discrete norm L2 and
maximum nodal norm L∞ for γ = 0.25, γ = 0.50 and γ = 0.75 at various time
levels.

In Fig. 2a, the numerical solutions of the fractional diffusion–wave problem
at the midpoint for various values of γ and M = 40 are illustrated. The
comparison of the analytical solution and numerical solutions obtained by the
scheme for diffusion-wave equation for values of γ = 1.25, γ = 1.50 and γ = 1.75
is given in Table 5. The table clearly demonstrates that the obtained numerical
results are satisfactorily in good agreement with the analytical ones. As the
value of γ increases, so the values of the discrete error norm L2 and maximum
nodal norm L∞. In Table 6, the numerical results for γ = 1.5, ∆t = 0.0015 and
tf = 3.75 for various values of M are given. As it is seen from the table, as the
number of division increases, the values of error decrease. Table 7 shows that
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Table 2. The comparison of solutions and error norms of the diffusion problem for γ = 0.5,
∆t = 0.00007 and tf = 0.35.

x M=10 M=20 M=40 M=80 Exact

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 0.176352 0.176605 0.176625 0.176628 0.176627
0.628319 0.335830 0.335947 0.335964 0.335966 0.335965
0.942478 0.462290 0.462403 0.462416 0.462418 0.462416
1.256637 0.543502 0.543592 0.543603 0.543605 0.543602
1.570796 0.571481 0.571568 0.571579 0.571580 0.571577
1.884956 0.543502 0.543592 0.543603 0.543605 0.543602
2.199115 0.462289 0.462403 0.462416 0.462418 0.462416
2.513274 0.335829 0.335947 0.335964 0.335966 0.335965
2.827433 0.176350 0.176605 0.176625 0.176628 0.176627
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.280369 0.033091 0.003122 0.003127
L∞ × 103 0.276990 0.038031 0.004853 0.002604

Table 3. The comparison of solutions and error norms of the diffusion problem for γ = 0.5,
M = 40 and tf = 0.35.

x ∆t = 0.0035 ∆t = 0.0007 ∆t = 0.00035 ∆t = 0.00007 Exact

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 0.176672 0.176633 0.176628 0.176625 0.176627
0.628319 0.336054 0.335979 0.335971 0.335964 0.335965
0.942478 0.462541 0.462437 0.462425 0.462416 0.462416
1.256637 0.543750 0.543628 0.543614 0.543603 0.543602
1.570796 0.571733 0.571605 0.571590 0.571579 0.571577
1.884956 0.543750 0.543628 0.543614 0.543603 0.543602
2.199115 0.462541 0.462437 0.462425 0.462416 0.462416
2.513274 0.336054 0.335979 0.335971 0.335964 0.335965
2.827433 0.176672 0.176633 0.176628 0.176625 0.176627
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.193335 0.033565 0.015105 0.003122
L∞ × 103 0.155276 0.027702 0.012830 0.004853

Table 4. The comparison of the error norms of the diffusion problem for M = 40, ∆t =
0.00007 and tf = 0.35.

t γ = 0.25 γ = 0.50 γ = 0.75
L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

0.07 0.008243 0.007067 0.033635 0.027799 0.042564 0.034832
0.14 0.003202 0.004929 0.013961 0.011900 0.026618 0.022233
0.21 0.003217 0.004846 0.007044 0.006026 0.017889 0.015209
0.28 0.003543 0.004751 0.004079 0.004959 0.012239 0.010563
0.35 0.003766 0.004662 0.003122 0.004853 0.008343 0.00725

as the values of time steps decrease, the agreement between the approximate
solutions and analytical solutions becomes better, and the values of the discrete
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Figure 2. Numerical solutions of the fractional diffusion–wave problem: a) u(π/ 2, t) for
∆t = 0.0015 and M = 40 at different time levels, b) for γ = 1.50 and M = 40 at different

time levels.

Table 5. The comparison of solutions and error norms of the diffusion-wave problem for
M = 40, ∆t = 0.0015 and tf = 3.75.

x γ = 1.25 γ = 1.50 γ = 1.75
Numerical Exact Numerical Exact Numerical Exact

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 −0.030451 −0.030452 −0.073476 −0.073478 −0.137923 −0.137943
0.628319 −0.057923 −0.057923 −0.139761 −0.139763 −0.262348 −0.262384
0.942478 −0.079724 −0.079724 −0.192365 −0.192367 −0.361093 −0.361140
1.256637 −0.093721 −0.093721 −0.226140 −0.226141 −0.424491 −0.424546
1.570796 −0.098544 −0.098545 −0.237777 −0.237779 −0.446336 −0.446394
1.884956 −0.093721 −0.093721 −0.226140 −0.226141 −0.424491 −0.424546
2.199115 −0.079724 −0.079724 −0.192365 −0.192367 −0.361093 −0.361140
2.513274 −0.057923 −0.057923 −0.139761 −0.139763 −0.262348 −0.262384
2.827433 −0.030451 −0.030452 −0.073476 −0.073478 −0.137923 −0.137943
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.000758 0.002714 0.073826
L∞ × 103 0.000890 0.002229 0.057599

Table 6. The comparison of solutions and error norms of the diffusion-wave problem for
γ = 1.5, ∆t = 0.0015 and tf = 3.75.

x M = 10 M = 20 M = 40 M = 80 Exact

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 −0.073311 −0.073462 −0.073476 −0.073478 −0.073478
0.628319 −0.139619 −0.139745 −0.139761 −0.139763 −0.139763
0.942478 −0.192203 −0.192348 −0.192365 −0.192368 −0.192367
1.256637 −0.225975 −0.226121 −0.226140 −0.226142 −0.226141
1.570796 −0.237611 −0.237759 −0.237777 −0.237780 −0.237779
1.884956 −0.225975 −0.226121 −0.226140 −0.226142 −0.226141
2.199115 −0.192203 −0.192348 −0.192365 −0.192368 −0.192367
2.513274 −0.139619 −0.139745 −0.139761 −0.139763 −0.139763
2.827433 −0.073311 −0.073462 −0.073476 −0.073478 −0.073478
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.270970 0.032053 0.002714 0.001137
L∞ × 103 0.167968 0.019480 0.002229 0.000964
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Table 7. The comparison of solutions and error norms of the diffusion-wave problem for
γ = 1.5, M = 40 and tf = 3.75.

x ∆t = 0.075 ∆t = 0.015 ∆t = 0.0075 ∆t = 0.0015 Exact

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 −0.073627 −0.073489 −0.073480 −0.073476 −0.073478
0.628319 −0.140048 −0.139785 −0.139769 −0.139761 −0.139763
0.942478 −0.192760 −0.192399 −0.192376 −0.192365 −0.192367
1.256637 −0.226603 −0.226178 −0.226152 −0.226140 −0.226141
1.570796 −0.238265 −0.237818 −0.237791 −0.237777 −0.237779
1.884956 −0.226603 −0.226178 −0.226152 −0.226140 −0.226141
2.199115 −0.192760 −0.192399 −0.192376 −0.192365 −0.192367
2.513274 −0.140048 −0.139785 −0.139769 −0.139761 −0.139763
2.827433 −0.073627 −0.073489 −0.073480 −0.073476 −0.073478
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.608719 0.049047 0.014596 0.002714
L∞ × 103 0.486236 0.039665 0.012137 0.002229

Table 8. The comparison of the error norms of the diffusion-wave problem for M = 40,
∆t = 0.0015 and tf = 3.75.

t γ = 1.25 γ = 1.50 γ = 1.75
L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

1.5 0.006280 0.005337 0.080231 0.064100 0.010776 0.007989
3.0 0.003151 0.002686 0.050186 0.039326 0.940729 0.749492
4.5 0.002208 0.001896 0.051431 0.041327 0.280306 0.223881
6.0 0.000265 0.000343 0.030089 0.023971 0.943642 0.752286
7.5 0.000688 0.000498 0.013349 0.010696 0.153869 0.123010

error norm L2 and maximum nodal norm L∞ become smaller. In Fig. 2b, the
numerical solutions for the values of γ = 1.50 and M = 40 at various time levels
are presented. In Table 8, we show the discrete error norm L2 and maximum
nodal norm L∞ for M = 40, ∆t = 0.0015 and tf = 3.75 at different values of
γ and t.

4 Conclusions

In the present study, a Galerkin finite element method has been successfully
used to obtain the numerical solutions of diffusion and diffusion-wave equations.
In these equations, the fractional derivative is considered of the Caputo form.
The fractional derivative appearing in the fractional diffusion and diffusion-
wave equations is approximated, respectively, by means of the so-called L1
and L2 formulae the same as used by Ref. [15] in the explicit finite difference
method solution. One can easily conclude from the presented results that the
applied method is a highly good one to obtain numerical solutions of this kind
fractional partial differential equations.

Math. Model. Anal., 18(2):260–273, 2013.
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