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Abstract. We describe the construction of an interpolating quadratic/linear ratio-
nal spline S of smoothness class C? for a strictly convex (or strictly concave) func-
tion y on [a,b]. On uniform mesh z; = a 4+ ih, i =0,...,n, in the case of sufficiently
smooth function y the expansions of S and its derivatives are obtained. They give the
superconvergence of order h* for the first derivative, of order h® for the second deriva-
tive and of order h? for the third derivative of S in certain points. Corresponding
numerical examples are given.
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1 Introduction

For a strictly convex (or strictly concave) smooth function y and interpolating
quadratic/linear rational spline S it is known that ||S — y|lec = O(h%), see,
e.g., [7,8]. A quadratic/linear rational spline interpolant of class C? exists
and is unique and strictly convex for any strictly convex data [10]. It should
be effective to use these splines in seeking the solutions with singularities of
differential and integral equations. As for nonconvex data such a rational spline
interpolant cannot exist, an adaptive interpolation procedure is investigated
in [11] which uses cubic polynomial and quadratic/linear rational pieces to
retain strict convexity in the regions of strict convexity of data. The existence
of such a coconvex spline interpolant is proved if data have weak alternation
of second order divided differences on cubic sections. The problem of shape
preserving interpolation has been considered by several authors [1,2,3,4,9,12].

Quadratic/linear rational interpolating splines of class C? have the same
accuracy as the classical cubic interpolating splines [8]. In some cases, the
error is less for the cubic splines and in some cases, the error is less for the
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quadratic/linear rational splines. For the cubic splines, the expansions on
subintervals via the derivatives of the smooth function to interpolate could
be found, e.g., in [13]. For the linear/linear rational splines, such expansions
could be found, e.g., in [5] and for quadratic splines, e.g., in [6]. They give
the superconvergence of the spline values and its derivatives in certain points.
We will study such a problem in the case of quadratic/linear rational spline
interpolation. This needs expansions of a quadratic/linear rational spline in-
terpolant with special boundary conditions and the establishment of them is
the main purpose of our paper.

While the interpolation problem is a linear one, the quadratic/linear ra-
tional spline interpolation as well as linear/linear rational spline interpolation
is, in nature, a nonlinear method because it leads to a nonlinear system with
respect to the spline parameters. Nevertheless, the complexity of these rational
spline interpolation methods is the same as in polynomial spline case.

2 Representation of Quadratic/Linear Rational Splines
and Interpolation Problem

Consider a uniform partition of the interval [a,b] with knots z; = a + ih,
i=0,...,n, h = (b—a)/n, n € N. Quadratic/linear rational spline on each
particular subinterval [x;_1, ;] is a function S of the form

¢

S([L‘) = a; =+ bz(fL' — "L'ifl) + m

, T E [xi,l,xi], (21)

where 1+ d;(x — x;—1) > 0. This gives for x € [x;_1, 2]
Cidi

S/(i) - bl N (1 + dz(l‘ — Jii_l))Q

and
261d12
(1 + dl(m — .’L‘ifl))?”
which means that S or —S is convex.
Using the notation S(x;) = S; and S”(z;) = M;, i = 0,...,n, we get
from (2.1)

S”(«I) _

¢
Si—1 = a; + ¢, Si—ai+bih+7l+dih7
2¢;d?
M;,_1 =2¢;d?, M;= —"% . 2.2
LT (L+dih)? (22)

Consider at first the case M; # 0. Then also M;_; # 0 and d; # 0.
From (2.2) it follows

M;_y M;_y
W? a; = Si—1 — Td?’
M;_y
2d;(1+d;h)’

C; =

1
by = —(5; — Si—
h(S Si—1) +
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Now the representation (2.1) is following

B M;_4 Si — Si—1 Mi—y
S(z) = Si—1 2 ( 3 + 24,(1 +dih)>(m Ti1)
M;_1
i1, T 2.
+2d?(1+di($—xi—1))’ x € [xi—1, 2] (2.3)
This gives for © € [x;_1, ;]
S; —S;_1 M;_y Mi—y
by _ 2.4
5(@) W 3t dh) 2t die —zi))? 24
M;_4
S// _ v 2.5
(@) (1 +di(z — 24-1))% 22)
d; M,
SW(IE) — 3 1 (26)

(1 +di(z —z-1))*
While the continuity of S and S” is guaranteed by the representation (2.3), the
continuity of S’, i.e., S'(x; —0) = S’(x; +0), ¢ = 1,...,n — 1, with the help
of (2.4), leads to the equations

Si — Si—1 Mi1h  Siga =S M;h
h 2(1 + dlh)2 a h 2(1 + dH_lh) '
From last two equations of (2.2) we get
Mo\ 3
1+d;h=
’ ( M; )

and, thus, we have

M (M2 M = %(sH —28+8it1), i=1,....n—1. (2.7
These interior equations of the quadratic/linear rational spline of class C? hold
naturally in the case M; = 0 (then M;_; = 0 and M;;1 = 0) because then
the spline is a linear function and (2.7) expresses the fact that its second order
divided difference is equal to zero.

In interpolation problem, for given data y;, ¢ = 0,...,n, we look for a
spline S such that

S(z;)=vyi, 1=0,...,n. (2.8)
In addition, we set the boundary conditions

S'(a) = a1, S'(b) = ay (2.9)
or

§"(a) = a1, S8"(b) = az (2.10)

for given 1 and as, which we will specify later.

Actually, interpolating quadratic/linear rational spline is completely deter-
mined via the parameters My, ..., M,. They could be found from a nonlinear
system consisting of internal equations (2.7) where the values Sy, ..., S, are
replaced from (2.8) and two boundary conditions from (2.9), (2.10) in different
endpoints.
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3 Second Moments of the Interpolant

In this section we study the nonlinear system with respect to the unknowns
My, ..., M,.

Suppose that we have a sufficiently smooth function y : [a,b] — R to inter-
polate. Denote y; = y(z;), i = 0,...,n, similar notation will be used in the
case of derivatives.

Let us write equations (2.7) with replaced values S; from (2.8) in the form

2
@i(Mz;la M;, Mi+1) = Mf/g (le_/f + Mllff) - ﬁ(yifl —2y; + yi+1) =0,

i=1,...,n—1, (3.1)

introducing at the same time functions ;. Using at (3.1) the Taylor expansion
and considering the boundary conditions (2.10) we have the system

Mo—a1:0,

i

@
iy vi i) + g Wil 9 v (Mimy = yi)
k2

-1

0p;
+ Wy i) (M — i)

oM (3.2)
8% 410;/ -
+ DM, (yglflay;’,yz{;l)(Mi—i-l - y;/Jrl) + y(f,\)h =0,
i=1,....,n—1,
M, —a;=0

with the difference vector h = (M;—1 — y;" 1, M; — y;', Miy1 — y;', ), some
number A € (0,1) and & = (y;_1,vi, i 1) + Ah. From (3.1) we calculate for
i=1,...,n—1

i L/ M P
6]\;0 1(Mi1;Mi7Mi+1):3<M' 1) )
0, o/ (MNP M\
afw'(MilaMiaMiJrl):g(( M?) +( ]\;1) >7
6@1' 1 Mi 2/3
My oy, My, Myy) = = —) 3.3
S Mo, 0 ) = 5 (57 ) (33)

Suppose in the following that y € C*[a,b]. We assume that y”(x) > 0 for all
z € [a,b] or y'(z) < 0 for all € [a,b] which means that y or —y is strictly
convex. Let us expand y;—1, ¥i+1, y;_; and y;’,, at the point z; by Taylor
formula up to the forth derivative as

h? h3 h*

7yg/ _ 7%/// + 7yJV —|—0(h4),

yz—l yl hyz+ 2 6 24 7

Math. Model. Anal., 18(2):250-259, 2013.
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—|—h/+h2 //+h3 ///_|_h4 IV_|_ (h4>
i = ; . —Y —Y —Y: o s
Yi+1 Y Yi 9 Y; 6 Y 24yl

2
vl =ui = byl + !V +o(h?),

h2
v =9 + by + Sl + o(h?).
First two expansions give us

2 1
ﬁ(yi,l — 2y + yiv1) =2y + éhzyilv + o(h?).

Then by (3.3) direct calculations yield

dpi p 12y 1yulV 5,y 2
y » i 2 ~h= — —h"=t =hol = h ’
aMl 1 (yz 1YY +1> 3 + 9 y;/ 9 y;/ + 27 y;/ + 0( )
a@l " 4 2 2y‘IV 4 2 y/‘” ? 2
-+ -h*2— — —h*| 2 h
M, (yz 1, Y; 7y2+1) 3 + 9 ygl 27 y’// + 0( )7
dp;i 12y 1oulV 5y 2
O v = 5 g — gt e () et

and also by (3.1)

2 v 2 2(?/’”)2 2
%(y;/qu;/’yéﬁrl) =-h Yi — oh : + O(h )

which we replace in (3.2). We look for the solution of the obtained system such
that

M; =y + B2 [Y@)], + B i=0,...,n,

where we suppose the function ¥(y) to be continuous. Then

Wi = [0 +o(1), W)t =[] +o(1).

The entries in the matrix ¢} as second order partial derivatives of ¢; could be
calculated from (3.3). They contain a multiplier Mj_l, j=1i—1,4,i+1, of
the expressions in (3.3) and are of order O(1) provided we suppose, e.g., that
B; = O(h). Then, in the case 3; = O(h?), due to the three-diagonality of the
matrix ¢!, we have ¢ (£x)h? = O(h*) and the system (3.2) could be written
as

Yo + h? [1/1(3/)] + B0 —a; =0,

1 2,0 )"
*hQ v _ *h (]
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RV INGY
(5o - () ) ebwls )

K3

1 9 y;// leV 5 yg// 2
" (3 _ §hy7’ o2 7 + ﬁhQ o (P[], + Bis1)  (3.4)

+0o(h?) =0, i=1,...,n—1,
yn + W2 [U(y)] + Bn — a2 = 0.

Determine the function 9 (y) so that the coefficient at h? in interior equa-
tions is equal to 0. This gives

ot = (s - 200

12 3y

Let us choose a1 and as so that By = o(h?) and B, = o(h?) (e.g., it may
be By = B, = 0), thus, we pose the boundary conditions (2.10) in the form

h2 4 (y///(a))Q
" M - v _ = 2
5"(@) =o/@) 35 (" (@) - 05 + o).
h2 4 (y///(b))2
" o o v = 2
S"(b) = y"(b) 13 <y (b) 37y”(b) ) + O(h ) (3.5)
Finally, we get from (3.4) a system of the form AS = &(8) with respect to the
unknowns 8 = (B, ..., Sn) having the matrix A with diagonal dominance in

rows and the components of @ depending continuously on 5. The equivalent
system 3 = A~'®(B) has a solution by Bohl-Brouwer fixed point principle
because A71® maps a set K = [—ch?, ch?|"*! for some ¢ > 0 into itself due
to the fact that, for 8 = O(h?), we have &(3) = o(h?). Recall that the
solution of the interpolation problem is unique and, consequently, 3 is uniquely
determined. Thus, it holds 3; = o(h?), i = 0,...,n, and we arrive at the
estimate
2 111\2
M,»:yg'—h(yfv—“;,,) >—|—0(h2), i=0,...,n. (3.6)

12 3

i
Note that in the case y'V € Lipa, 0 < a < 1, we have the error terms
O(h?**) instead of o(h?) in all earlier expansions and estimates.

4 Expansions of the Interpolant

In this section the expansions of interpolants on the whole particular interval
will be established.

We still assume that y € C*[a,b]. In the interval [z;_1,z;] let © = x;_1 +th,
t € [0,1]. Replacing S;_; and S; in (2.3) and (2.4) by y;—1 and y;, respectively,
we write them in the form
t(1 —t)h2M,;_,

S(x) =yi1— 2(1 + d;h) (1 + d;th)

(4.1)

Math. Model. Anal., 18(2):250-259, 2013.
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and

. —14+t(1+d; -
S/(l'): Yi Yi—1 + (t +t( +dzth))th 1

h 2(1 + d;h)(1 + d;th)? (42)

Using also 1+ d;h = (M;_1/M;)*/? and (3.6) we establish with the help of
Taylor formula the expansion

h 7 1 v 1 my 2
1+dith1+t<3z+h (62’;{, 9(3;’ ) )>+0(h2).

?

This allows to express similarly (1+d;th)?, (14+d;th)3, (1+d;th)* and d; needed
n (4.1), (4.2), (2.5), (2.6). Finally, the Taylor expansion in = € [x;_1, z;] gives

S(x) = y(x) - W}# <yfv(x) - 3%((?))2) +o(h?), (4.3)
(a) = /(o) - L2 (v ) - JCMEY 4 o),
() =) - e () - R o), s

§"(x) = 4" (x) + - _22th<yfv(x) - §W> + o(h). (4.6)

Note that (4.5) at = x; coincides with (3.6

We specified boundary conditions (2.10) by (3.5). Conditions (2.9) have to
be used in the form

=

S'(a) =y'(a) +o(h*),  S'(b) =y (b) + o(h?). (4.7)

Suppose that y € C®[a, b]. The reasoning of Section 3 gives then (3.6) with
the rest term o(h3) instead of o(h?). Now we obtain

hy/// 1y[V 1 y/// 2
L+dith=1+t -2 4?2 25— -~ 2o
* i ( 3yi s v 9\
1yV 1 y///yIV 1 y/// 3 )
h3 = di i Ji Ji h3
w1 (g5 + o e 1 () ) +el)

and then for z € [z;_1, 7]

S(z) =y(z) — %h (yIV( ) — g(y/l//,((i) )

y
t(1—)(1 —2t)(1 + 3t(1 — 1)) ”’(x)y”/(x)
180 " (yv Yy’ (x)




Quadratic/Linear Rational Spline Interpolation 257
20(1/(17))3> 5
9 wapr) o0 (48)
11 2
S'(z) =y (z) — wfﬁ <yIV($) B 4(y(x))>

12 3y (x)
_ 201 — +)2 _ 201 _ " IV (e
2Ry 100y (y,)f(’m) (@)
_ 251821 - t)? (y”’(x))
162 o (y"(x))? +o(h?), (4.9)
S//(:C):y//(x) 1_6t l_t h2 y ;l(y ((‘Z))) )
t1 -t ) oY@y (@), 28 (y"(2))°
+ =2 (o) -+ )
+o(h%), (4.10)
o e 2
S///( ) y///(x) + 1 22th<ylv(a¢) _ ;l(yy//((x))) >
1— 6t(1 _ t) ) v 2 Ey///(x)yIV(‘r) ﬁ (y///(x))S
e (e - RS S )
o(h?). (4.11)

The boundary conditions (2.9) have to be specified now as

We have proved the following

Theorem 1. Let y (or —y) be a strictly convex function. If y € C*[a,b] then

the quadratic/linear rational spline S of smoothness class C? satisfying inter-

polation conditions (2.8) and boundary conditions (3.5) or (4.7) expands as

shown in (4.3)—(4.6). In the case y € C°[a,b] the expansions (4.8)—(4.11) hold

provided the boundary conditions (3.5) with the rest terms o(h®) instead of o(h?)
r (4.12) are used.

Remark. If y'V € Lipa or y¥ € Lipa, 0 < a < 1, then in previous formulae
all the rest terms written as o(h*) for some k could be replaced by O(h¥*+®).

Basing on expansions (4.4)—(4.6) it is now immediate to obtain supercon-
vergence assertions. From (4.4) we get S’'(z) = ¢/(x) + O(h*) in points z = z;
and x = (v;_1+x;)/2, (4.5) yields S”(x) = y"(z) +O(h?) in points x = z; +th,
corresponding to ¢ = (3 ++/3)/6 and (4.6) gives S”'(x) = y"'(x) + O(h?) in
points (z;—1 + x;)/2.

Math. Model. Anal., 18(2):250-259, 2013.
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Expansions for cubic spline interpolants were known earlier. They are given,
e.g., in [13] in the case y € C5[a, b], for x € [x;_1, )]

S(a) = yla) - Sy v
00200 v 4 o),
(@) = o/ (a) - DL v gy 2L 070w 4 o,
§"(a) = o/ () - LTIy v gy EZOUZ20 vy 4 (7).
5" (2) =" (@) + 2 hy )+ E O )y on).

We see that the superconvergence takes place in the same points as well for
quadratic/linear rational and cubic spline interpolants.

5 Numerical Examples

We interpolated the function y(z) = x=2 on the interval [—2, —0.2] by quad-
ratic/ linear rational spline S as described in Section 2. The boundary condi-
tions (2.10) with

2,1 2,1
= yo + =h®— = o+ h2—
a1 = Yo 3 xg ) Q2 =Y 3" 26

were used. The “three-diagonal” nonlinear system (3.2) to determine the
values M; was solved by Newton’s method and the iterations were stopped
at ||[M*F — MF 1| < 10719 MF being the sequence of approximations to
the vector M = (My,...,M,). The errors &, = S'(z;) — y'(2;) and & =
S"(z;) —y""(z;) were calculated in certain superconvergence points z;. Results

of numerical tests are presented in Tables 1-2.

Table 1. Numerical results for e/, = S’(—1.1) — y/(—1.1).

n 16 32 64 128 256
el 1.1788 1075  7.5539-1077 4.7479-10~% 2.9716-107° 1.8580 10710
el Jel, 15.6055 15.9101 15.9774 15.9938

2

We see from Tables 1 and 2 the superconvergence results predicted by the-
oretical estimates.
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Table 2. Numerical results for /) = S (z;) —y""(z:), i = 1,2.

n

a=eg ot n=tyh

n e jen ey e
16 —6.9813-10~3 : —1.4140 - 102 :

32 —2.1037-10~2 3.3186 —3.0075-10~3 4.7017

64 —5.7679 - 10~4 3.6473 —6.8979 - 10— 4.3600

128 —1.5091-10~% 3.8221 —1.6504 - 104 4.1796

256 —3.8583-10~2 3.9113 —4.0362-10~° 4.0889
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