Quadratic/Linear Rational Spline Interpolation*

Erge Ideon and Peeter Oja

University of Tartu
J. Liivi 2, 50409 Tartu, Estonia
E-mail(corresp.): Erge.Ideon@ut.ee
E-mail: Peeter.Oja@ut.ee

Received September 17, 2012; revised February 21, 2013; published online April 1, 2013

Abstract

We describe the construction of an interpolating quadratic/linear rational spline S of smoothness class C^{2} for a strictly convex (or strictly concave) function y on $[a, b]$. On uniform mesh $x_{i}=a+i h, i=0, \ldots, n$, in the case of sufficiently smooth function y the expansions of S and its derivatives are obtained. They give the superconvergence of order h^{4} for the first derivative, of order h^{3} for the second derivative and of order h^{2} for the third derivative of S in certain points. Corresponding numerical examples are given.

Keywords: rational spline, interpolation, superconvergence.
AMS Subject Classification: 65D07.

1 Introduction

For a strictly convex (or strictly concave) smooth function y and interpolating quadratic/linear rational spline S it is known that $\|S-y\|_{\infty}=O\left(h^{4}\right)$, see, e.g., $[7,8]$. A quadratic/linear rational spline interpolant of class C^{2} exists and is unique and strictly convex for any strictly convex data [10]. It should be effective to use these splines in seeking the solutions with singularities of differential and integral equations. As for nonconvex data such a rational spline interpolant cannot exist, an adaptive interpolation procedure is investigated in [11] which uses cubic polynomial and quadratic/linear rational pieces to retain strict convexity in the regions of strict convexity of data. The existence of such a coconvex spline interpolant is proved if data have weak alternation of second order divided differences on cubic sections. The problem of shape preserving interpolation has been considered by several authors [1, 2, 3, 4, 9, 12].

Quadratic/linear rational interpolating splines of class C^{2} have the same accuracy as the classical cubic interpolating splines [8]. In some cases, the error is less for the cubic splines and in some cases, the error is less for the

[^0]quadratic/linear rational splines. For the cubic splines, the expansions on subintervals via the derivatives of the smooth function to interpolate could be found, e.g., in [13]. For the linear/linear rational splines, such expansions could be found, e.g., in [5] and for quadratic splines, e.g., in [6]. They give the superconvergence of the spline values and its derivatives in certain points. We will study such a problem in the case of quadratic/linear rational spline interpolation. This needs expansions of a quadratic/linear rational spline interpolant with special boundary conditions and the establishment of them is the main purpose of our paper.

While the interpolation problem is a linear one, the quadratic/linear rational spline interpolation as well as linear/linear rational spline interpolation is, in nature, a nonlinear method because it leads to a nonlinear system with respect to the spline parameters. Nevertheless, the complexity of these rational spline interpolation methods is the same as in polynomial spline case.

2 Representation of Quadratic/Linear Rational Splines and Interpolation Problem

Consider a uniform partition of the interval $[a, b]$ with knots $x_{i}=a+i h$, $i=0, \ldots, n, h=(b-a) / n, n \in \mathbb{N}$. Quadratic/linear rational spline on each particular subinterval $\left[x_{i-1}, x_{i}\right]$ is a function S of the form

$$
\begin{equation*}
S(x)=a_{i}+b_{i}\left(x-x_{i-1}\right)+\frac{c_{i}}{1+d_{i}\left(x-x_{i-1}\right)}, \quad x \in\left[x_{i-1}, x_{i}\right] \tag{2.1}
\end{equation*}
$$

where $1+d_{i}\left(x-x_{i-1}\right)>0$. This gives for $x \in\left[x_{i-1}, x_{i}\right]$

$$
S^{\prime}(x)=b_{i}-\frac{c_{i} d_{i}}{\left(1+d_{i}\left(x-x_{i-1}\right)\right)^{2}}
$$

and

$$
S^{\prime \prime}(x)=\frac{2 c_{i} d_{i}^{2}}{\left(1+d_{i}\left(x-x_{i-1}\right)\right)^{3}},
$$

which means that S or $-S$ is convex.
Using the notation $S\left(x_{i}\right)=S_{i}$ and $S^{\prime \prime}\left(x_{i}\right)=M_{i}, i=0, \ldots, n$, we get from (2.1)

$$
\begin{array}{ll}
S_{i-1}=a_{i}+c_{i}, & S_{i}=a_{i}+b_{i} h+\frac{c_{i}}{1+d_{i} h} \\
M_{i-1}=2 c_{i} d_{i}^{2}, & M_{i}=\frac{2 c_{i} d_{i}^{2}}{\left(1+d_{i} h\right)^{3}} \tag{2.2}
\end{array}
$$

Consider at first the case $M_{i} \neq 0$. Then also $M_{i-1} \neq 0$ and $d_{i} \neq 0$. From (2.2) it follows

$$
\begin{aligned}
c_{i} & =\frac{M_{i-1}}{2 d_{i}^{2}}, \quad a_{i}=S_{i-1}-\frac{M_{i-1}}{2 d_{i}^{2}} \\
b_{i} & =\frac{1}{h}\left(S_{i}-S_{i-1}\right)+\frac{M_{i-1}}{2 d_{i}\left(1+d_{i} h\right)} .
\end{aligned}
$$

Now the representation (2.1) is following

$$
\begin{align*}
S(x)= & S_{i-1}-\frac{M_{i-1}}{2 d_{i}^{2}}+\left(\frac{S_{i}-S_{i-1}}{h}+\frac{M_{i-1}}{2 d_{i}\left(1+d_{i} h\right)}\right)\left(x-x_{i-1}\right) \\
& +\frac{M_{i-1}}{2 d_{i}^{2}\left(1+d_{i}\left(x-x_{i-1}\right)\right)}, \quad x \in\left[x_{i-1}, x_{i}\right] . \tag{2.3}
\end{align*}
$$

This gives for $x \in\left[x_{i-1}, x_{i}\right]$

$$
\begin{align*}
S^{\prime}(x) & =\frac{S_{i}-S_{i-1}}{h}+\frac{M_{i-1}}{2 d_{i}\left(1+d_{i} h\right)}-\frac{M_{i-1}}{2 d_{i}\left(1+d_{i}\left(x-x_{i-1}\right)\right)^{2}}, \tag{2.4}\\
S^{\prime \prime}(x) & =\frac{M_{i-1}}{\left(1+d_{i}\left(x-x_{i-1}\right)\right)^{3}}, \tag{2.5}\\
S^{\prime \prime \prime}(x) & =-\frac{3 d_{i} M_{i-1}}{\left(1+d_{i}\left(x-x_{i-1}\right)\right)^{4}} . \tag{2.6}
\end{align*}
$$

While the continuity of S and $S^{\prime \prime}$ is guaranteed by the representation (2.3), the continuity of S^{\prime}, i.e., $S^{\prime}\left(x_{i}-0\right)=S^{\prime}\left(x_{i}+0\right), i=1, \ldots, n-1$, with the help of (2.4), leads to the equations

$$
\frac{S_{i}-S_{i-1}}{h}+\frac{M_{i-1} h}{2\left(1+d_{i} h\right)^{2}}=\frac{S_{i+1}-S_{i}}{h}-\frac{M_{i} h}{2\left(1+d_{i+1} h\right)} .
$$

From last two equations of (2.2) we get

$$
1+d_{i} h=\left(\frac{M_{i-1}}{M_{i}}\right)^{1 / 3}
$$

and, thus, we have

$$
\begin{equation*}
M_{i}^{2 / 3}\left(M_{i-1}^{1 / 3}+M_{i+1}^{1 / 3}\right)=\frac{2}{h^{2}}\left(S_{i-1}-2 S_{i}+S_{i+1}\right), \quad i=1, \ldots, n-1 \tag{2.7}
\end{equation*}
$$

These interior equations of the quadratic/linear rational spline of class C^{2} hold naturally in the case $M_{i}=0$ (then $M_{i-1}=0$ and $M_{i+1}=0$) because then the spline is a linear function and (2.7) expresses the fact that its second order divided difference is equal to zero.

In interpolation problem, for given data $y_{i}, i=0, \ldots, n$, we look for a spline S such that

$$
\begin{equation*}
S\left(x_{i}\right)=y_{i}, \quad i=0, \ldots, n \tag{2.8}
\end{equation*}
$$

In addition, we set the boundary conditions

$$
\begin{equation*}
S^{\prime}(a)=\alpha_{1}, \quad S^{\prime}(b)=\alpha_{2} \tag{2.9}
\end{equation*}
$$

or

$$
\begin{equation*}
S^{\prime \prime}(a)=\alpha_{1}, \quad S^{\prime \prime}(b)=\alpha_{2} \tag{2.10}
\end{equation*}
$$

for given α_{1} and α_{2}, which we will specify later.
Actually, interpolating quadratic/linear rational spline is completely determined via the parameters M_{0}, \ldots, M_{n}. They could be found from a nonlinear system consisting of internal equations (2.7) where the values S_{0}, \ldots, S_{n} are replaced from (2.8) and two boundary conditions from (2.9), (2.10) in different endpoints.

3 Second Moments of the Interpolant

In this section we study the nonlinear system with respect to the unknowns M_{0}, \ldots, M_{n}.

Suppose that we have a sufficiently smooth function $y:[a, b] \rightarrow \mathbb{R}$ to interpolate. Denote $y_{i}=y\left(x_{i}\right), i=0, \ldots, n$, similar notation will be used in the case of derivatives.

Let us write equations (2.7) with replaced values S_{i} from (2.8) in the form

$$
\begin{align*}
& \varphi_{i}\left(M_{i-1}, M_{i}, M_{i+1}\right)=M_{i}^{2 / 3}\left(M_{i-1}^{1 / 3}+M_{i+1}^{1 / 3}\right)-\frac{2}{h^{2}}\left(y_{i-1}-2 y_{i}+y_{i+1}\right)=0 \\
& \quad i=1, \ldots, n-1 \tag{3.1}
\end{align*}
$$

introducing at the same time functions φ_{i}. Using at (3.1) the Taylor expansion and considering the boundary conditions (2.10) we have the system

$$
\left\{\begin{array}{l}
M_{0}-\alpha_{1}=0 \tag{3.2}\\
\varphi_{i}\left(y_{i-1}^{\prime \prime}, y_{i}^{\prime \prime}, y_{i+1}^{\prime \prime}\right)+\frac{\partial \varphi_{i}}{\partial M_{i-1}}\left(y_{i-1}^{\prime \prime}, y_{i}^{\prime \prime}, y_{i+1}^{\prime \prime}\right)\left(M_{i-1}-y_{i-1}^{\prime \prime}\right) \\
\quad+\frac{\partial \varphi_{i}}{\partial M_{i}}\left(y_{i-1}^{\prime \prime}, y_{i}^{\prime \prime}, y_{i+1}^{\prime \prime}\right)\left(M_{i}-y_{i}^{\prime \prime}\right) \\
\quad+\frac{\partial \varphi_{i}}{\partial M_{i+1}}\left(y_{i-1}^{\prime \prime}, y_{i}^{\prime \prime}, y_{i+1}^{\prime \prime}\right)\left(M_{i+1}-y_{i+1}^{\prime \prime}\right)+\frac{\varphi_{i}^{\prime \prime}}{2!}\left(\xi_{\lambda}\right) \bar{h}^{2}=0 \\
\quad i=1, \ldots, n-1 \\
M_{n}-\alpha_{2}=0
\end{array}\right.
$$

with the difference vector $\bar{h}=\left(M_{i-1}-y_{i-1}^{\prime \prime}, M_{i}-y_{i}^{\prime \prime}, M_{i+1}-y_{i+1}^{\prime \prime}\right)$, some number $\lambda \in(0,1)$ and $\xi_{\lambda}=\left(y_{i-1}^{\prime \prime}, y_{i}^{\prime \prime}, y_{i+1}^{\prime \prime}\right)+\lambda \bar{h}$. From (3.1) we calculate for $i=1, \ldots, n-1$

$$
\begin{align*}
\frac{\partial \varphi_{i}}{\partial M_{i-1}}\left(M_{i-1}, M_{i}, M_{i+1}\right) & =\frac{1}{3}\left(\frac{M_{i}}{M_{i-1}}\right)^{2 / 3} \\
\frac{\partial \varphi_{i}}{\partial M_{i}}\left(M_{i-1}, M_{i}, M_{i+1}\right) & =\frac{2}{3}\left(\left(\frac{M_{i-1}}{M_{i}}\right)^{1 / 3}+\left(\frac{M_{i+1}}{M_{i}}\right)^{1 / 3}\right) \\
\frac{\partial \varphi_{i}}{\partial M_{i+1}}\left(M_{i-1}, M_{i}, M_{i+1}\right) & =\frac{1}{3}\left(\frac{M_{i}}{M_{i+1}}\right)^{2 / 3} \tag{3.3}
\end{align*}
$$

Suppose in the following that $y \in C^{4}[a, b]$. We assume that $y^{\prime \prime}(x)>0$ for all $x \in[a, b]$ or $y^{\prime \prime}(x)<0$ for all $x \in[a, b]$ which means that y or $-y$ is strictly convex. Let us expand $y_{i-1}, y_{i+1}, y_{i-1}^{\prime \prime}$ and $y_{i+1}^{\prime \prime}$ at the point x_{i} by Taylor formula up to the forth derivative as

$$
y_{i-1}=y_{i}-h y_{i}^{\prime}+\frac{h^{2}}{2} y_{i}^{\prime \prime}-\frac{h^{3}}{6} y_{i}^{\prime \prime \prime}+\frac{h^{4}}{24} y_{i}^{I V}+o\left(h^{4}\right)
$$

$$
\begin{aligned}
& y_{i+1}=y_{i}+h y_{i}^{\prime}+\frac{h^{2}}{2} y_{i}^{\prime \prime}+\frac{h^{3}}{6} y_{i}^{\prime \prime \prime}+\frac{h^{4}}{24} y_{i}^{I V}+o\left(h^{4}\right), \\
& y_{i-1}^{\prime \prime}=y_{i}^{\prime \prime}-h y_{i}^{\prime \prime \prime}+\frac{h^{2}}{2} y_{i}^{I V}+o\left(h^{2}\right), \\
& y_{i+1}^{\prime \prime}=y_{i}^{\prime \prime}+h y_{i}^{\prime \prime \prime}+\frac{h^{2}}{2} y_{i}^{I V}+o\left(h^{2}\right) .
\end{aligned}
$$

First two expansions give us

$$
\frac{2}{h^{2}}\left(y_{i-1}-2 y_{i}+y_{i+1}\right)=2 y_{i}^{\prime \prime}+\frac{1}{6} h^{2} y_{i}^{I V}+o\left(h^{2}\right)
$$

Then by (3.3) direct calculations yield

$$
\begin{aligned}
\frac{\partial \varphi_{i}}{\partial M_{i-1}}\left(y_{i-1}^{\prime \prime}, y_{i}^{\prime \prime}, y_{i+1}^{\prime \prime}\right) & =\frac{1}{3}+\frac{2}{9} h \frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}-\frac{1}{9} h^{2} \frac{y_{i}^{I V}}{y_{i}^{\prime \prime}}+\frac{5}{27} h^{2}\left(\frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}\right)^{2}+o\left(h^{2}\right), \\
\frac{\partial \varphi_{i}}{\partial M_{i}}\left(y_{i-1}^{\prime \prime}, y_{i}^{\prime \prime}, y_{i+1}^{\prime \prime}\right) & =\frac{4}{3}+\frac{2}{9} h^{2} \frac{y_{i}^{I V}}{y_{i}^{\prime \prime}}-\frac{4}{27} h^{2}\left(\frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}\right)^{2}+o\left(h^{2}\right) \\
\frac{\partial \varphi_{i}}{\partial M_{i+1}}\left(y_{i-1}^{\prime \prime}, y_{i}^{\prime \prime}, y_{i+1}^{\prime \prime}\right)= & \frac{1}{3}-\frac{2}{9} h \frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}-\frac{1}{9} h^{2} \frac{y_{i}^{I V}}{y_{i}^{\prime \prime}}+\frac{5}{27} h^{2}\left(\frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}\right)^{2}+o\left(h^{2}\right)
\end{aligned}
$$

and also by (3.1)

$$
\varphi_{i}\left(y_{i-1}^{\prime \prime}, y_{i}^{\prime \prime}, y_{i+1}^{\prime \prime}\right)=\frac{1}{6} h^{2} y_{i}^{I V}-\frac{2}{9} h^{2} \frac{\left(y_{i}^{\prime \prime \prime}\right)^{2}}{y_{i}^{\prime \prime}}+o\left(h^{2}\right)
$$

which we replace in (3.2). We look for the solution of the obtained system such that

$$
M_{i}=y_{i}^{\prime \prime}+h^{2}[\psi(y)]_{i}+\beta_{i}, \quad i=0, \ldots, n
$$

where we suppose the function $\psi(y)$ to be continuous. Then

$$
[\psi(y)]_{i-1}=[\psi(y)]_{i}+o(1), \quad[\psi(y)]_{i+1}=[\psi(y)]_{i}+o(1)
$$

The entries in the matrix $\varphi_{i}^{\prime \prime}$ as second order partial derivatives of φ_{i} could be calculated from (3.3). They contain a multiplier $M_{j}^{-1}, j=i-1, i, i+1$, of the expressions in (3.3) and are of order $O(1)$ provided we suppose, e.g., that $\beta_{i}=O(h)$. Then, in the case $\beta_{i}=O\left(h^{2}\right)$, due to the three-diagonality of the matrix $\varphi_{i}^{\prime \prime}$, we have $\varphi_{i}^{\prime \prime}\left(\xi_{\lambda}\right) \bar{h}^{2}=O\left(h^{4}\right)$ and the system (3.2) could be written as

$$
\left\{\begin{array}{l}
y_{0}^{\prime \prime}+h^{2}[\psi(y)]_{0}+\beta_{0}-\alpha_{1}=0 \\
\frac{1}{6} h^{2} y_{i}^{I V}-\frac{2}{9} h^{2} \frac{\left(y_{i}^{\prime \prime \prime}\right)^{2}}{y_{i}^{\prime \prime}} \\
\quad+\left(\frac{1}{3}+\frac{2}{9} h \frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}-\frac{1}{9} h^{2} \frac{y_{i}^{I V}}{y_{i}^{\prime \prime}}+\frac{5}{27} h^{2}\left(\frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}\right)^{2}\right)\left(h^{2}[\psi(y)]_{i}+\beta_{i-1}\right)
\end{array}\right.
$$

$$
\left\{\begin{align*}
& +\left(\frac{4}{3}+\frac{2}{9} h^{2} \frac{y_{i}^{I V}}{y_{i}^{\prime \prime}}-\frac{4}{27} h^{2}\left(\frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}\right)^{2}\right)\left(h^{2}[\psi(y)]_{i}+\beta_{i}\right) \tag{3.4}\\
& +\left(\frac{1}{3}-\frac{2}{9} h \frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}-\frac{1}{9} h^{2} \frac{y_{i}^{I V}}{y_{i}^{\prime \prime}}+\frac{5}{27} h^{2}\left(\frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}\right)^{2}\right)\left(h^{2}[\psi(y)]_{i}+\beta_{i+1}\right) \\
& +o\left(h^{2}\right)=0, \quad i=1, \ldots, n-1 \\
y_{n}^{\prime \prime} & +h^{2}[\psi(y)]_{n}+\beta_{n}-\alpha_{2}=0
\end{align*}\right.
$$

Determine the function $\psi(y)$ so that the coefficient at h^{2} in interior equations is equal to 0 . This gives

$$
\psi(y)=-\frac{1}{12}\left(y^{I V}-\frac{4}{3} \frac{\left(y^{\prime \prime \prime}\right)^{2}}{y^{\prime \prime}}\right)
$$

Let us choose α_{1} and α_{2} so that $\beta_{0}=o\left(h^{2}\right)$ and $\beta_{n}=o\left(h^{2}\right)$ (e.g., it may be $\beta_{0}=\beta_{n}=0$), thus, we pose the boundary conditions (2.10) in the form

$$
\begin{align*}
& S^{\prime \prime}(a)=y^{\prime \prime}(a)-\frac{h^{2}}{12}\left(y^{I V}(a)-\frac{4}{3} \frac{\left(y^{\prime \prime \prime}(a)\right)^{2}}{y^{\prime \prime}(a)}\right)+o\left(h^{2}\right) \\
& S^{\prime \prime}(b)=y^{\prime \prime}(b)-\frac{h^{2}}{12}\left(y^{I V}(b)-\frac{4}{3} \frac{\left(y^{\prime \prime \prime}(b)\right)^{2}}{y^{\prime \prime}(b)}\right)+o\left(h^{2}\right) \tag{3.5}
\end{align*}
$$

Finally, we get from (3.4) a system of the form $A \beta=\Phi(\beta)$ with respect to the unknowns $\beta=\left(\beta_{0}, \ldots, \beta_{n}\right)$ having the matrix A with diagonal dominance in rows and the components of Φ depending continuously on β. The equivalent system $\beta=A^{-1} \Phi(\beta)$ has a solution by Bohl-Brouwer fixed point principle because $A^{-1} \Phi$ maps a set $K=\left[-c h^{2}, c h^{2}\right]^{n+1}$ for some $c>0$ into itself due to the fact that, for $\beta=O\left(h^{2}\right)$, we have $\Phi(\beta)=o\left(h^{2}\right)$. Recall that the solution of the interpolation problem is unique and, consequently, β is uniquely determined. Thus, it holds $\beta_{i}=o\left(h^{2}\right), i=0, \ldots, n$, and we arrive at the estimate

$$
\begin{equation*}
M_{i}=y_{i}^{\prime \prime}-\frac{h^{2}}{12}\left(y_{i}^{I V}-\frac{4}{3} \frac{\left(y_{i}^{\prime \prime \prime}\right)^{2}}{y_{i}^{\prime \prime}}\right)+o\left(h^{2}\right), \quad i=0, \ldots, n \tag{3.6}
\end{equation*}
$$

Note that in the case $y^{I V} \in \operatorname{Lip} \alpha, 0<\alpha \leq 1$, we have the error terms $O\left(h^{2+\alpha}\right)$ instead of $o\left(h^{2}\right)$ in all earlier expansions and estimates.

4 Expansions of the Interpolant

In this section the expansions of interpolants on the whole particular interval will be established.

We still assume that $y \in C^{4}[a, b]$. In the interval $\left[x_{i-1}, x_{i}\right]$ let $x=x_{i-1}+t h$, $t \in[0,1]$. Replacing S_{i-1} and S_{i} in (2.3) and (2.4) by y_{i-1} and y_{i}, respectively, we write them in the form

$$
\begin{equation*}
S(x)=y_{i-1}-\frac{t(1-t) h^{2} M_{i-1}}{2\left(1+d_{i} h\right)\left(1+d_{i} t h\right)} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
S^{\prime}(x)=\frac{y_{i}-y_{i-1}}{h}+\frac{\left(t-1+t\left(1+d_{i} t h\right)\right) h M_{i-1}}{2\left(1+d_{i} h\right)\left(1+d_{i} t h\right)^{2}} \tag{4.2}
\end{equation*}
$$

Using also $1+d_{i} h=\left(M_{i-1} / M_{i}\right)^{1 / 3}$ and (3.6) we establish with the help of Taylor formula the expansion

$$
1+d_{i} t h=1+t\left(-\frac{h}{3} \frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}+h^{2}\left(\frac{1}{6} \frac{y_{i}^{I V}}{y_{i}^{\prime \prime}}-\frac{1}{9}\left(\frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}\right)^{2}\right)\right)+o\left(h^{2}\right) .
$$

This allows to express similarly $\left(1+d_{i} t h\right)^{2},\left(1+d_{i} t h\right)^{3},\left(1+d_{i} t h\right)^{4}$ and d_{i} needed in (4.1), (4.2), (2.5), (2.6). Finally, the Taylor expansion in $x \in\left[x_{i-1}, x_{i}\right]$ gives

$$
\begin{align*}
S(x) & =y(x)-\frac{t^{2}(1-t)^{2}}{24} h^{4}\left(y^{I V}(x)-\frac{4}{3} \frac{\left(y^{\prime \prime \prime}(x)\right)^{2}}{y^{\prime \prime}(x)}\right)+o\left(h^{4}\right) \tag{4.3}\\
S^{\prime}(x) & =y^{\prime}(x)-\frac{t(1-t)(1-2 t)}{12} h^{3}\left(y^{I V}(x)-\frac{4}{3} \frac{\left(y^{\prime \prime \prime}(x)\right)^{2}}{y^{\prime \prime}(x)}\right)+o\left(h^{3}\right) \tag{4.4}\\
S^{\prime \prime}(x) & =y^{\prime \prime}(x)-\frac{1-6 t(1-t)}{12} h^{2}\left(y^{I V}(x)-\frac{4}{3} \frac{\left(y^{\prime \prime \prime}(x)\right)^{2}}{y^{\prime \prime}(x)}\right)+o\left(h^{2}\right) \tag{4.5}\\
S^{\prime \prime \prime}(x) & =y^{\prime \prime \prime}(x)+\frac{1-2 t}{2} h\left(y^{I V}(x)-\frac{4}{3} \frac{\left(y^{\prime \prime \prime}(x)\right)^{2}}{y^{\prime \prime}(x)}\right)+o(h) . \tag{4.6}
\end{align*}
$$

Note that (4.5) at $x=x_{i}$ coincides with (3.6).
We specified boundary conditions (2.10) by (3.5). Conditions (2.9) have to be used in the form

$$
\begin{equation*}
S^{\prime}(a)=y^{\prime}(a)+o\left(h^{3}\right), \quad S^{\prime}(b)=y^{\prime}(b)+o\left(h^{3}\right) \tag{4.7}
\end{equation*}
$$

Suppose that $y \in C^{5}[a, b]$. The reasoning of Section 3 gives then (3.6) with the rest term $o\left(h^{3}\right)$ instead of $o\left(h^{2}\right)$. Now we obtain

$$
\begin{aligned}
1+d_{i} t h= & 1+t\left(-\frac{h}{3} \frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}+h^{2}\left(\frac{1}{6} \frac{y_{i}^{I V}}{y_{i}^{\prime \prime}}-\frac{1}{9}\left(\frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}\right)^{2}\right)\right. \\
& \left.+h^{3}\left(-\frac{1}{36} \frac{y_{i}^{V}}{y_{i}^{\prime \prime}}+\frac{1}{108} \frac{y_{i}^{\prime \prime \prime} y_{i}^{I V}}{\left(y_{i}^{\prime \prime}\right)^{2}}+\frac{1}{81}\left(\frac{y_{i}^{\prime \prime \prime}}{y_{i}^{\prime \prime}}\right)^{3}\right)\right)+o\left(h^{3}\right)
\end{aligned}
$$

and then for $x \in\left[x_{i-1}, x_{i}\right]$

$$
\begin{aligned}
S(x)= & y(x)-\frac{t^{2}(1-t)^{2}}{24} h^{4}\left(y^{I V}(x)-\frac{4}{3} \frac{\left(y^{\prime \prime \prime}(x)\right)^{2}}{y^{\prime \prime}(x)}\right) \\
& -\frac{t(1-t)(1-2 t)(1+3 t(1-t))}{180} h^{5}\left(y^{V}(x)-\frac{10}{3} \frac{y^{\prime \prime \prime}(x) y^{I V}(x)}{y^{\prime \prime}(x)}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\frac{20}{9} \frac{\left(y^{\prime \prime \prime}(x)\right)^{3}}{\left(y^{\prime \prime}(x)\right)^{2}}\right)+o\left(h^{5}\right), \tag{4.8}\\
S^{\prime}(x)= & y^{\prime}(x)-\frac{t(1-t)(1-2 t)}{12} h^{3}\left(y^{I V}(x)-\frac{4}{3} \frac{\left(y^{\prime \prime \prime}(x)\right)^{2}}{y^{\prime \prime}(x)}\right) \\
& -\frac{2-45 t^{2}(1-t)^{2}}{360} h^{4} y^{V}(x)+\frac{1-24 t^{2}(1-t)^{2}}{54} h^{4} \frac{y^{\prime \prime \prime}(x) y^{I V}(x)}{y^{\prime \prime}(x)} \\
& -\frac{2-51 t^{2}(1-t)^{2}}{162} h^{4} \frac{\left(y^{\prime \prime \prime}(x)\right)^{3}}{\left(y^{\prime \prime}(x)\right)^{2}}+o\left(h^{4}\right), \tag{4.9}\\
S^{\prime \prime}(x)= & y^{\prime \prime}(x)-\frac{1-6 t(1-t)}{12} h^{2}\left(y^{I V}(x)-\frac{4}{3} \frac{\left(y^{\prime \prime \prime}(x)\right)^{2}}{y^{\prime \prime}(x)}\right) \\
& +\frac{t(1-t)(1-2 t)}{6} h^{3}\left(y^{V}(x)-4 \frac{y^{\prime \prime \prime}(x) y^{I V}(x)}{y^{\prime \prime}(x)}+\frac{28}{9} \frac{\left(y^{\prime \prime \prime}(x)\right)^{3}}{\left(y^{\prime \prime}(x)\right)^{2}}\right) \\
& +o\left(h^{3}\right), \tag{4.10}\\
S^{\prime \prime \prime}(x)= & y^{\prime \prime \prime}(x)+\frac{1-2 t}{2} h\left(y^{I V}(x)-\frac{4}{3} \frac{\left(y^{\prime \prime \prime}(x)\right)^{2}}{y^{\prime \prime}(x)}\right) \\
& +\frac{1-6 t(1-t)}{12} h^{2}\left(y^{V}(x)-\frac{16}{3} \frac{y^{\prime \prime \prime}(x) y^{I V}(x)}{y^{\prime \prime}(x)}+\frac{44}{9} \frac{\left(y^{\prime \prime \prime}(x)\right)^{3}}{\left(y^{\prime \prime}(x)\right)^{2}}\right) \\
& +o\left(h^{2}\right) . \tag{4.11}
\end{align*}
$$

The boundary conditions (2.9) have to be specified now as

$$
\begin{align*}
& S^{\prime}(a)=y^{\prime}(a)-h^{4}\left(\frac{1}{180} y^{V}(a)-\frac{1}{54} \frac{y^{\prime \prime \prime}(a) y^{I V}(a)}{y^{\prime \prime}(a)}+\frac{1}{81} \frac{\left(y^{\prime \prime \prime}(a)\right)^{3}}{\left(y^{\prime \prime}(a)\right)^{2}}\right)+o\left(h^{4}\right) \\
& S^{\prime}(b)=y^{\prime}(b)-h^{4}\left(\frac{1}{180} y^{V}(b)-\frac{1}{54} \frac{y^{\prime \prime \prime}(b) y^{I V}(b)}{y^{\prime \prime}(b)}+\frac{1}{81} \frac{\left(y^{\prime \prime \prime}(b)\right)^{3}}{\left(y^{\prime \prime}(b)\right)^{2}}\right)+o\left(h^{4}\right) \tag{4.12}
\end{align*}
$$

We have proved the following
Theorem 1. Let $y(o r-y)$ be a strictly convex function. If $y \in C^{4}[a, b]$ then the quadratic/linear rational spline S of smoothness class C^{2} satisfying interpolation conditions (2.8) and boundary conditions (3.5) or (4.7) expands as shown in (4.3)-(4.6). In the case $y \in C^{5}[a, b]$ the expansions (4.8)-(4.11) hold provided the boundary conditions (3.5) with the rest terms o(h^{3}) instead of o $\left(h^{2}\right)$ or (4.12) are used.

Remark. If $y^{I V} \in \operatorname{Lip} \alpha$ or $y^{V} \in \operatorname{Lip} \alpha, 0<\alpha \leq 1$, then in previous formulae all the rest terms written as $o\left(h^{k}\right)$ for some k could be replaced by $O\left(h^{k+\alpha}\right)$.

Basing on expansions (4.4)-(4.6) it is now immediate to obtain superconvergence assertions. From (4.4) we get $S^{\prime}(x)=y^{\prime}(x)+O\left(h^{4}\right)$ in points $x=x_{i}$ and $x=\left(x_{i-1}+x_{i}\right) / 2$, (4.5) yields $S^{\prime \prime}(x)=y^{\prime \prime}(x)+O\left(h^{3}\right)$ in points $x=x_{i}+t h$, corresponding to $t=(3 \pm \sqrt{3}) / 6$ and (4.6) gives $S^{\prime \prime \prime}(x)=y^{\prime \prime \prime}(x)+O\left(h^{2}\right)$ in points $\left(x_{i-1}+x_{i}\right) / 2$.

Expansions for cubic spline interpolants were known earlier. They are given, e.g., in [13] in the case $y \in C^{5}[a, b]$, for $x \in\left[x_{i-1}, x_{i}\right]$

$$
\begin{aligned}
S(x)= & y(x)-\frac{t^{2}(1-t)^{2}}{24} h^{4} y^{I V}(x) \\
& -\frac{t(1-t)(1-2 t)(1+3 t(1-t))}{180} h^{5} y^{V}(x)+o\left(h^{5}\right), \\
S^{\prime}(x)= & y^{\prime}(x)-\frac{t(1-t)(1-2 t)}{12} h^{3} y^{I V}(x)-\frac{2-45 t^{2}(1-t)^{2}}{360} h^{4} y^{V}(x)+o\left(h^{4}\right), \\
S^{\prime \prime}(x)= & y^{\prime \prime}(x)-\frac{1-6 t(1-t)}{12} h^{2} y^{I V}(x)+\frac{t(1-t)(1-2 t)}{6} h^{3} y^{V}(x)+o\left(h^{3}\right), \\
S^{\prime \prime \prime}(x)= & y^{\prime \prime \prime}(x)+\frac{1-2 t}{2} h y^{I V}(x)+\frac{1-6 t(1-t)}{12} h^{2} y^{V}(x)+o\left(h^{2}\right) .
\end{aligned}
$$

We see that the superconvergence takes place in the same points as well for quadratic/linear rational and cubic spline interpolants.

5 Numerical Examples

We interpolated the function $y(x)=x^{-2}$ on the interval $[-2,-0.2]$ by quadratic/ linear rational spline S as described in Section 2. The boundary conditions (2.10) with

$$
\alpha_{1}=y_{0}+\frac{2}{3} h^{2} \frac{1}{x_{0}^{6}}, \quad \alpha_{2}=y_{n}+\frac{2}{3} h^{2} \frac{1}{x_{n}^{6}}
$$

were used. The "three-diagonal" nonlinear system (3.2) to determine the values M_{i} was solved by Newton's method and the iterations were stopped at $\left\|M^{k}-M^{k-1}\right\|_{\infty} \leq 10^{-10}, M^{k}$ being the sequence of approximations to the vector $M=\left(M_{0}, \ldots, M_{n}\right)$. The errors $\varepsilon_{n}^{\prime}=S^{\prime}\left(z_{i}\right)-y^{\prime}\left(z_{i}\right)$ and $\varepsilon_{n}^{\prime \prime \prime}=$ $S^{\prime \prime \prime}\left(z_{i}\right)-y^{\prime \prime \prime}\left(z_{i}\right)$ were calculated in certain superconvergence points z_{i}. Results of numerical tests are presented in Tables 1-2.

Table 1. Numerical results for $\varepsilon_{n}^{\prime}=S^{\prime}(-1.1)-y^{\prime}(-1.1)$.

n	16	32	64	128	256
ε_{n}^{\prime}	$1.1788 \cdot 10^{-5}$	$7.5539 \cdot 10^{-7}$	$4.7479 \cdot 10^{-8}$	$2.9716 \cdot 10^{-9}$	$1.8580 \cdot 10^{-10}$
$\varepsilon_{\frac{n}{2}}^{\prime} / \varepsilon_{n}^{\prime}$		15.6055	15.9101	15.9774	15.9938

We see from Tables 1 and 2 the superconvergence results predicted by theoretical estimates.

Table 2. Numerical results for $\varepsilon_{n}^{\prime \prime \prime}=S^{\prime \prime \prime}\left(z_{i}\right)-y^{\prime \prime \prime}\left(z_{i}\right), i=1,2$.

	$z_{1}=\frac{a+b}{2}-\frac{h}{2}$		$z_{2}=\frac{a+b}{2}+\frac{h}{2}$	
	$\varepsilon_{n}^{\prime \prime \prime}$		$\varepsilon_{\frac{n}{2}}^{\prime \prime \prime} / \varepsilon_{n}^{\prime \prime \prime}$	

References

[1] R. Delbourgo and J.A. Gregory. C^{2}-rational quadratic spline interpolation to monotonic data. IMA J. Numer. Anal., 3(2):141-152, 1983. http://dx.doi.org/10.1093/imanum/3.2.141.
[2] R. Delbourgo and J.A. Gregory. Shape preserving piecewise rational interpolation. SIAM J. Sci. Stat. Comput., 6(4):967-976, 1985. http://dx.doi.org/10.1137/0906065.
[3] F.N. Fritsch and R.E. Carlson. Monotone piecewise cubic interpolation. SIAM J. Numer. Anal., 17(2):235-246, 1980. http://dx.doi.org/10.1137/0717021.
[4] J.A. Gregory. Shape preserving spline interpolation. Comput. Aided Geom. Design, 18(1):53-57, 1986. http://dx.doi.org/10.1016/S0010-4485(86)80012-4.
[5] E. Ideon and P. Oja. Linear/linear rational spline interpolation. Math. Model. Anal., 15(4):447-455, 2010.
http://dx.doi.org/10.3846/1392-6292.2010.15.447-455.
[6] B.I. Kvasov. Quadratic Spline Interpolation. Acad. Nauk SSSR, Sib. Otdelenie, Inst. Teoret. i Prikl. Mekh., Novosibirsk, Preprint No. 3, 1981. (In Russian)
[7] P. Oja. Second-degree rational spline interpolation. Proc. Estonian Acad. Sci. Phys. Math., 45(1):38-45, 1996.
[8] P. Oja. Low degree rational spline interpolation. BIT, 37(4):901-909, 1997. http://dx.doi.org/10.1007/BF02510359.
[9] E. Passow and J.A. Roulier. Monotone and convex spline interpolations. SIAM J. Numer. Anal., 14(5):904-909, 1977. http://dx.doi.org/10.1137/0714060.
[10] R. Schaback. Spezielle rationale Splinefunktionen. J. Approx. Theory, 7(2):281292, 1973. http://dx.doi.org/10.1016/0021-9045(73)90072-5. (In German)
[11] R. Schaback. Adaptive rational splines. Constr. Approx., 6(2):167-179, 1990. http://dx.doi.org/10.1007/BF01889356.
[12] J.W. Schmidt and W. Hess. Positive interpolation with rational quadratic splines. Computing, 38(3):261-267, 1987.
http://dx.doi.org/10.1007/BF02240100.
[13] Yu.S. Zavyalov, B.I. Kvasov and V.L. Miroshnicenko. Methods of SplineFuctions. Nauka, 1980. (In Russian)

[^0]: * This work was supported by the Estonian Science Foundation grant 8313.

