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Abstract. The aim of this paper is to investigate some motivated geometrical as-
pects and properties of polyharmonic functions (PH) including starlikeness, convexity
and univalence. A polyharmonicity preserving complex operator is also introduced.
Further, a new subclass of polyharmonic functions (CPH) is defined and certain char-
acteristics of elements of this subclass are examined and obtained. In particular, we
extend Landau’s theorem to functions in this subclass, and consider the Goodman–
Saff conjecture and prove that the conjecture is true for mappings belonging to CPH.
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1 Introduction

Complex-valued harmonic functions that are univalent and sense preserving
in the unit disk U can be written in the form f = g + h, where h and g are
analytic in U . A C2 continuous complex-valued function F = u+iv in a domain
D ⊂ C is biharmonic if the Laplacian of F is harmonic, that is ∆F is harmonic

in D if F satisfies the biharmonic equation ∆(∆F ) = 0, where ∆ = 4 ∂2

∂z∂z is
the Laplacian operator. The class of biharmonic functions includes the class
of harmonic functions and is a subclass of the class of polyharmonic functions.
More generally, a 2p-continuously differentiable complex-valued function F =
u + iv in a domain D ⊂ C is p-harmonic (polyharmonic) if F satisfies the
p-harmonic equation

∆pF := ∆∆p−1F = 0.

When p = 1 the mapping is basically harmonic, while the case p = 2 yields the
biharmonic mapping. If F is a biharmonic function then it has the representa-
tion

F = r2G+H = |z|2G+H,
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whereG(z) andH(z) are complex-valued harmonic functions inD. Throughout
this paper we consider p-harmonic mappings of the unit disk U = {z ∈ C :
|z| < 1}.

Concerning p-harmonic mappings, we have the following characterization
which is crucial in our investigations (see [8]).

Proposition. If F is a p-harmonic function in a stardomain D with center 0
then it has the representation:

F = F (z, z) =

p−1∑
n=0

r2nFn, (1.1)

where Fn(z)’s are complex-valued harmonic functions in D, and r2n = |z|2n =
(zz)n.

A harmonic function F is locally univalent if the Jacobian of F , JF ,

JF = |Fz|2 − |Fz|2 6= 0.

A function F is orientation preserving if

JF = |Fz|2 − |Fz|2 > 0.

A set E ⊂ C is said to be starlike with respect to a point w0 ∈ E if and only
if the linear segment joining w0 to every other point w ∈ E lies entirely in E,
while a set E is said to be convex if and only if it is starlike with respect to each
of its points, that is, if and only if the linear segment joining any two points of E
lies entirely in E. A sense-preserving harmonic mapping f is said to be starlike
if its range is starlike with respect to the origin. In other words, if some point
w0 = f(z0) is in the range of f , then so is the entire radial segment from 0 to
w0. If f has a smooth extension to the closed disk, an equivalent requirement is
that arg{f(eiθ)} be a nondecreasing function of θ, or that d

dθ arg{f(eiθ)} ≥ 0.

For analytic function f , this condition takes the form Re{ zf
′(z)

f(z) } > 0 for z ∈ U .

We say that a univalent polyharmonic (harmonic) function F , with F (0) = 0,
is starlike if the curve F (reit) is starlike with respect to the origin for each

0 < r < 1. In other words, F is starlike if ∂ arg F (reit)
∂t = Re zFz−zFz

F > 0 for
z 6= 0. For accuracy, it is worth noting that p-harmonic function is a function
of z and z, that is, F = F (z, z) and therefore F = F (reit, re−it).

A univalent polyharmonic (harmonic) function, F , with F (0) = 0 and also
∂F (reit)

∂t 6= 0 whenever 0 < r < 1, is said to be convex if the curve F (reit) is

convex for each 0 < r < 1. In other words, F is convex if
∂ arg ∂

∂tF (reit)

∂t > 0 for
z 6= 0.

This paper is motivated by the recent work and development on the subject
of biharmonic functions [1, 2, 3, 4, 5, 6, 13, 16]. These are solutions to the bihar-
monic equation that arises in physical applications including linear elasticity
theory, Stokes flow and radar imaging problems (see [12] and the references
within). The purpose of this article is to extend such results to a class of
polyharmonic functions (see [14, 17]); some characteristics and geometrically



Polyharmonic Functions 221

motivated properties related to starlikeness, convexity and univalence are ex-
amined. A complex operator that preserves polyharmonicity is introduced.
Furthermore, we generalize Landau’s theorem to functions belonging to this
class and show that the Goodman–Saff conjecture [6,18] is valid for such func-
tions as well. Recently Landau’s theorem has been extended to biharmonic
mappings [1], for planar p-harmonic mappings [7], as well as to log-p-harmonic
mappings [15]. For more details on harmonic mappings and the various defini-
tions introduced see [9, 10,11].

2 Properties of the Class PH

In this section, we will consider a subclass of polyharmonic functions:

PH =

{
F : F =

p−1∑
n=0

r2nFn, where Fn(z)’s are complex-valued harmonic

functions in the unit disk U

}
.

Some general properties of polyharmonic functions that are elements in PH are
obtained, most importantly, a complex operator that preserves polyharmonicity
is also introduced.

First, define the linear operator L by L = z ∂
∂z − z

∂
∂z . The definition leads

to the following two properties:

• L[αf + βg] = αL[f ] + βL[g],

• L[fg] = fL[g] + gL[f ],

where f , g are C1 functions and α, β are complex constants.

Theorem 1. Let F ∈ PH, where F =
∑p−1
n=0 r

2nFn. Then

a. L[r2n] = 0 for n ≥ 0,

b. L[F ] =
∑p−1
n=0 r

2nL[Fn],

c. Lm[F ] =
∑p−1
n=0 r

2nLm[Fn],

where m ≥ 2 is an integer.

Proof. Let F =
∑p−1
n=0 r

2nFn ∈ PH.
a. The case n = 0 is trivial. For n ≥ 1 we have

L
[
r2n
]

= L
[(
r2
)n]

= z
[(
r2
)n]

z
− z
[(
r2
)n]

z

= z
[
nr2n−2z

]
− z
[
nr2n−2z

]
= nr2n − nr2n = 0.

b. Using the result in part (a) and the product rule property of the opera-
tor L, we get

L[F ] = L
[ p−1∑
n=0

r2nFn

]
=

p−1∑
n=0

L
[
r2n
]
Fn +

p−1∑
n=0

r2nL[Fn] =

p−1∑
n=0

r2nL[Fn].

Math. Model. Anal., 18(2):219–235, 2013.
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c. Using part (a) and (b) repeatedly (namely, mathematical induction),
part (c) follows. ut

Corollary 1. The operator L is a p-harmonicity preserving operator.

Proof. This obviously follows from part (b) of Theorem 1 and the fact that
L[Fn] is harmonic since Fn’s are harmonic; it was proven in Lemma 3 (a)
reference [2] that L is a harmonicity preserving operator. To preserve self-
sufficiency one can easily prove that ∆L = L∆. Then

∆pF = 0 ⇒ ∆pLF = L∆pF = 0 ⇒ LF is polyharmonic. ut

Theorem 2. If F is polyharmonic of order p, then Fz and Fz are polyharmonic
of order at most p.

Proof. Let F =
∑p−1
n=0 r

2nFn ∈ PH, where the Fn’s are harmonic. Then,

Fz =

p−1∑
n=0

[
n
(
r2
)n−1

zFn +
(
r2
)n

(Fn)z
]

=

p−1∑
n=0

[
nr2n−2zFn + r2n(Fn)z

]
, (2.1)

Fz =

p−1∑
n=0

[
n
(
r2
)n−1

zFn +
(
r2
)n

(Fn)z
]

=

p−1∑
n=0

[
nr2n−2zFn + r2n(Fn)z

]
. (2.2)

Since Fn is harmonic, that is (Fn)zz = 0, therefore we have

(zFn)zz =
(
z(Fn)z

)
z

= z(Fn)zz + (Fn)z = (Fn)z,

and hence
(zFn)zzzz =

(
(Fn)z

)
zz

=
(
(Fn)zz

)
z

= 0.

This means that zFn is biharmonic and therefore it can be expressed in the
form

zFn = r2Kn +Gn,

where Fn andGn are harmonic. Substituting the latter expression into equation
(2.1) yields

Fz =

p−1∑
n=0

[
nr2nKn + nr2n−2Gn + r2n(Fn)z

]
=

p−1∑
n=0

r2n
(
nKn + (Fn)z

)
+

p−1∑
n=0

r2n−2nGn. (2.3)

Since Kn, Gn and Fn are harmonic so nGn, nKn, (Fn)z and (nKn + (Fn)z)
are also harmonic. Therefore, the first term on the right-hand side of equa-
tion (2.3), namely, the term

∑p−1
n=0 r

2n(nKn + (Fn)z), is polyharmonic of order

at most p while the second term
∑p−1
n=0 r

2n−2nGn is polyharmonic of order
p − 1. This means that the sum of both series, which is Fz, yields a polyhar-
monic function of order at most p. A similar argument can be used to show
that Fz is polyharmonic of order at most p.

Alternatively, we can prove the theorem in the following way:

∆pF = 0 ⇒
(
∆pF

)
z

= 0 ⇒ ∆pFz = 0. ut
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3 Properties of the Subclass CPH

In this section, we will consider the following subclass of polyharmonic func-
tions:

CPH =

{
G : G =

p−1∑
n=0

λnr
2nF,where F (z) is a complex-valued harmonic

mapping in the unit disk U and λn, n = 0, 1, . . . , p− 1(
λ20 + λ21 + · · ·+ λ2p−1 6= 0

)
, are constants

}
.

The λi’s are real constants and are not all zero. Though we need to empha-
size that some of the theorems and results included in this paper can be easily
generalized and are true for complex values of λi’s. Some geometrical prop-
erties related to starlikeness, convexity and univalence for elements in CPH
are obtained. Further, we extend Landau’s theorem to functions belonging to
this subclass, and show that the Goodman–Saff conjecture is true for mappings
belonging to CPH.

Theorem 3. Let G =
∑p−1
n=0 λnr

2nF ∈ CPH. Then

a)
L[G]

G
=
L[F ]

F
, b)

Lm[G]

G
=
Lm[F ]

F
, c)

Lm[G]

L[G]
=
Lm[F ]

L[F ]
,

where m ≥ 2 is an integer.

Proof. From part (b) of Theorem 1 we have L[G] =
∑p−1
n=0 λnr

2nL[F ]. Divid-
ing both sides by G, part (a) follows. The following result can be obtained by
mathematical induction:

Lm[G] =

p−1∑
n=0

λnr
2nLm[F ],

hence part (b) follows. The proof of part (c) is similar to part (b). ut

Theorem 4. Let G =
∑p−1
n=0 λnr

2nF ∈ CPH be univalent, where F is harmonic
and F (0) = 0. Then

a. G is starlike if F is starlike.

b. Assume L[G] 6= 0 and L[F ] 6= 0 for z 6= 0. Then G is convex if F is
convex.

c. If F is convex and L[G] is univalent then L[G] is starlike.

Proof. From the definition of the operator L and that for starlikeness, F is
starlike if and only if

Re

(
zFz − zFz

F

)
= Re

(
L[F ]

F

)
> 0.

Math. Model. Anal., 18(2):219–235, 2013.
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From Theorem 3.a and the fact that F is starlike implies that

Re

(
L[G]

G

)
= Re

(
L[F ]

F

)
> 0.

This proves part (a). We have

∂

∂t
F
(
reit
)

= Fz
∂z

∂t
+ Fz

∂z

∂t
= izFz − izFz = iL[F ].

Therefore

∂

∂t

(
arg

∂F (reit)

∂t

)
= Im

( ∂2F (reit)
∂t2

∂
∂tF (reit)

)
= Im(

∂
∂tL[F ]

L[F ]
) = Im

(L[ ∂∂tF ]

L[F ]

)
= Im

L[iL[F ]]

L[F ]
= Re

L2[F ]

L[F ]
.

Alternatively we have

∂

∂t

(
arg

∂F (reit)

∂t

)
= Re

L[iL[F ]]

iL[F ]
= Re

L2[F ]

L[F ]
.

From the definition of convexity and the latter equation it follows that F is con-

vex if and only if Re L
2[F ]
L[F ] > 0 provided L[F ] 6= 0 for z 6= 0. From Theorem 3.c

and the fact that F is convex we conclude that

Re

(
L2[G]

L[G]

)
= Re

(
L2[F ]

L[F ]

)
> 0.

This means that G is convex and so the proof of part (b) is complete.

F is convex implies that Re(L
2[F ]
L[F ] ) > 0. Therefore from Theorem 3.c we

have Re(L
2[G]
L[G] ) > 0 as well. This means that L[G] is starlike and the proof is

complete. ut

Theorem 5. Let G =
∑p−1
n=0 λnr

2nF ∈ CPH where λn’s are real. Then the
Jacobian of G, denoted by JG, is given by

JG =

( p−1∑
n=0

λnr
2n

)2

JF + 2

( p−1∑
n=0

nλnr
2n−2

)( p−1∑
n=0

λnr
2n

)
|F |2Fst,

where Fst = Re( zFz−zFz

F ) denotes the measure of starlikeness.

Proof. Let G =
∑p−1
n=0 λnr

2nF ∈ CPH. Then

Gz =

p−1∑
n=0

[
nλnr

2n−2zF + λnr
2nFz

]
, Gz =

p−1∑
n=0

[
nλnr

2n−2zF + λnr
2nFz

]
.
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Hence we have

|Gz|2 =

( p−1∑
n=0

[
nλnr

2n−2zF + λnr
2nFz

])( p−1∑
n=0

[
nλnr

2n−2zF + λnr
2nFz

])

=

( p−1∑
n=0

nλnr
2n−1

)2

|F |2 +

( p−1∑
n=0

nλnr
2n−2

)( p−1∑
n=0

λnr
2n

)
zFFz

+

( p−1∑
n=0

λnr
2n

)( p−1∑
n=0

nλnr
2n−2

)
zFFz +

( p−1∑
n=0

λnr
2n

)2

|Fz|2

=

( p−1∑
n=0

nλnr
2n−1

)2

|F |2 + 2

( p−1∑
n=0

nλnr
2n−2

)( p−1∑
n=0

λnr
2n

)
Re(zFFz)

+

( p−1∑
n=0

λnr
2n

)2

|Fz|2. (3.1)

The equalities in the previous equations as well as the subsequent ones are true
for real λn’s only. Similarly

|Gz|2 =

( p−1∑
n=0

[
nλnr

2n−2zF + λnr
2nFz

])( p−1∑
n=0

[
nλnr

2n−2zF + λnr
2nFz

])

=

( p−1∑
n=0

nλnr
2n−1

)2

|F |2 + 2

( p−1∑
n=0

nλnr
2n−2

)( p−1∑
n=0

λnr
2n

)
Re(zFFz)

+

( p−1∑
n=0

λnr
2n

)2

|Fz|2. (3.2)

Therefore

JG = |Gz|2 − |Gz|2 = 2

( p−1∑
n=0

nλnr
2n−2

)( p−1∑
n=0

λnr
2n

)
Re(zFFz − zFFz)

+

( p−1∑
n=0

λnr
2n

)2(
|Fz|2 − |Fz|2

)
= 2

( p−1∑
n=0

nλnr
2n−2

)( p−1∑
n=0

λnr
2n

)
|F |2Fst +

( p−1∑
n=0

λnr
2n

)2

JF . ut

Corollary 2. Let G =
∑p−1
n=0 λnr

2nF ∈ CPH. Assume the function F is starlike,
orientation preserving and λn > 0, n = 0, 1, . . . , p−1, thenG is locally univalent
in U .

Proof. F is starlike implies that Fst > 0. Further we have JF > 0 which
follows from the fact that F is orientation preserving. Since it is assumed that
λn > 0, n = 0, 1, . . . , p − 1, it follows from Theorem 5 that JG(z) > 0, that is
G is orientation preserving and hence JG(z) 6= 0 which means that G is locally
univalent. ut

Math. Model. Anal., 18(2):219–235, 2013.
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Theorem 6. Let G =
∑p−1
n=0 λnr

2nF ∈ CPH. Then

a. −i∂G(reit)

∂t
=

p−1∑
n=0

λnr
2n[zFz − zFz],

b. −∂
2G(reit)

∂t2
=

p−1∑
n=0

λnr
2n
[
zFz + zFz + z2Fzz + z2Fzz

]
.

Proof. We have

Gz =

p−1∑
n=0

[
λnr

2nFz + nλnr
2n−2zF

]
, Gz =

p−1∑
n=0

[
λnr

2nFz + nλnr
2n−2zF

]
,

zGz =

p−1∑
n=0

λnr
2n[zFz + nF ], zGz =

p−1∑
n=0

λnr
2n[zFz + nF ].

Applying the chain rule and manipulating the previous equations yields

∂G(reit)

∂t
= izGz − izGz = i(zGz − zGz)

= i

p−1∑
n=0

λnr
2n[zFz + nF ]− i

p−1∑
n=0

λnr
2n[zFz + nF ]

= i

p−1∑
n=0

λnr
2n[zFz − zFz],

and therefore part (a) follows. This result is a consequence of Theorem 3.a and
can be proved as follows:

−i∂G(reit)

∂t
= L[G] = L[F ]G/F =

p−1∑
n=0

λnr
2nL[F ].

Further calculation and noting that F is harmonic, that is Fzz = 0, it follows
that

Gzz =

p−1∑
n=0

[
nλnr

2n−2zFz + n(n− 1)λnr
2n−4zzF

+ nλnr
2n−2F + nλnr

2n−2zFz
]
,

2r2Gzz =

p−1∑
n=0

2nλnr
2n[zFz + zFz + nF ].

Gzz =

p−1∑
n=0

[
nλnr

2n−2zFz + λnr
2nFzz + n(n− 1)λnr

2n−4z2F + nλnr
2n−2zFz

]
,

z2Gzz =

p−1∑
n=0

λnr
2n
[
2nzFz + z2Fzz + n(n− 1)F

]
,
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and

Gzz =

p−1∑
n=0

[
nλnr

2n−2zFz + λnr
2nFzz + n(n− 1)λnr

2n−4z2F + nλnr
2n−2zFz

]
,

z2Gzz =

p−1∑
n=0

λnr
2n−2[2nzFz + z2Fzz + n(n− 1)F

]
.

Again, using the chain rule and the above equations, we have

∂2G(reit)

∂t2
=

∂

∂t
[izGz − izGz] =

∂

∂z
[izGz − izGz]

∂z

∂t
+

∂

∂z
[izGz − izGz]

∂z

∂t

= −zGz − zGz + 2|z|2Gzz − z2Gzz − z2Gzz

= −
p−1∑
n=0

λnr
2n
[
(zFz + nF ) + (zFz + nF )− 2n(zFz + zFz + nF )

+
(
2nzFz + z2Fzz + n(n−1)F

)
+
(
2nzFz + z2Fzz + n(n−1)F

)]
= −

p−1∑
n=0

λnr
2n
[
zFz + zFz − 2nzFz − 2nzFz + 2nzFz + z2Fzz

+ 2nzFz + z2Fzz
]

= −
p−1∑
n=0

λnr
2n
[
zFz + zFz + z2Fzz + z2Fzz

]
.

Consequently, the proof of part (b) is complete. This result can be proven in a
different fashion with the help of Theorem 3.b as follows:

−∂
2G(reit)

∂t2
= L2[G] = L2[F ]G/F =

(
zFz + zFz + z2Fzz + z2Fzz

)
G/F. ut

Corollary 3. Let G =
∑p−1
n=0 λnr

2nF ∈ CPH. Then

∂

∂t

(
arg

∂G(reit)

∂t

)
=

∂

∂t

(
arg

∂F (reit)

∂t

)
.

Proof. Using Theorem 6 yields

∂

∂t

(
arg

∂G(reit)

∂t

)
Im

( ∂2G(reit)
∂t2

∂G(reit)
∂t

)

= Im

(
−
∑p−1
n=0 λnr

2n[zFz + zFz + z2Fzz + z2Fzz]

i
∑p−1
n=0 λnr

2n[zFz − zFz]

)

= Re

(
zFz + zFz + z2Fzz + z2Fzz

zFz − zFz

)
= Im

( ∂2F (reit)
∂t2

∂F (reit)
∂t

)
=
∂

∂t

(
arg

∂F (reit)

∂t

)
.ut

The Goodman–Saff conjecture is valid for functions belonging to the class
CPH. This is the statement of the next theorem.

Math. Model. Anal., 18(2):219–235, 2013.



228 S.A. Khuri

Theorem 7. Any non-constant complex-valued function G ∈ CPH sends the
subdisk |z| < r onto a convex region for r ≤

√
2− 1.

Proof. Let G =
∑p−1
n=0 λnr

2nF ∈ CPH, where F is harmonic. We need the
following theorem by Ruscheweyh and Salinas [18] (see Theorem 1), namely
the Goodman–Saff conjecture for harmonic functions:

Let KH denote the class of all complex-valued harmonic univalent functions
f on the unit disk U with f(U) convex in the direction eiφ. If f ∈ KH(φ),
0 < r ≤ r0 =

√
2− 1, then f(rz) ∈ KH(φ).

Now we can prove the result: since G being convex, it follows from the
definition of convexity that

G is convex ⇐⇒ ∂

∂t

(
arg

∂G(reit)

∂t

)
> 0.

Since F is harmonic and if we further assume that it is convex in 0 < r ≤ r0 =√
2− 1, then Corollary 3 implies that G is also convex because

∂

∂t

(
arg

∂G(reit)

∂t

)
=

∂

∂t

(
arg

∂F (reit)

∂t

)
> 0.

Thus the conclusion of the theorem follows. ut

In the subsequent theorem, we show that Landau’s theorem extends to
bounded polyharmonic mappings on the unit disk belonging to the class CPH.

Theorem 8. Let G =
∑p−1
n=0 λnr

2nF ∈ CPH, z = reiθ, be a p-harmonic map-
ping of the unit disk U , where F is harmonic, such that F (0) = 0, λ0 6= 0,
JG(0) = 1 and |F | is bounded by M . Then there is a constant 0 < ρ1 < 1 so
that G is univalent in |z| < ρ1, where ρ1 is the unique solution of the equation

π

4 |λ0|M
− 2ρ1M

p−1∑
n=1

n |λn| ρ2n−21 − 2Mρ21
(1− ρ1)2

p−1∑
n=1

|λn| ρ2n1

− 2M |λ0|
(

1

(1− ρ1)2
− 1

)
= 0,

and G(Uρ1) contains a disk UR1
where

R1 =
π

4 |λ0|M
ρ1 −

2Mρ1
1− ρ1

( p−1∑
n=1

|λn| ρ2n1 + |λ0| ρ1
)
.

Proof. Let G ∈ CPH. We have

G =

p−1∑
n=0

λnr
2nF =

p−1∑
n=1

λnr
2nF + λ0F ,



Polyharmonic Functions 229

where F is harmonic, so that F = f1(z) + f2(z) where f1 and f2 are analytic
in D. Therefore

Gz =

p−1∑
n=1

[
nλnr

2n−2zF + λnr
2nFz

]
+ λ0Fz,

Gz =

p−1∑
n=1

[
nλnr

2n−2zF + λnr
2nFz

]
+ λ0Fz.

Let F (z) =
∑∞

0 anz
n +

∑∞
0 bnzn. For fixed 0 < ρ < 1, choose z1, z2 with

z1 6= z2, |z1| < ρ and |z2| < ρ. Then

G(z1)−G(z2) =

∫
[z1,z2]

Gz(z) dz +Gz(z) dz

=

∫
[z1,z2]

[( p−1∑
n=1

nλnr
2n−2zF +

p−1∑
n=1

λnr
2nf ′1 + λ0Fz

)
dz

+

( p−1∑
n=1

nλnr
2n−2zF +

p−1∑
n=1

λnr
2nf ′2 + λ0f ′2

)
dz

]
,

where [z1, z2] is the line-segment joining z1 with z2. We have

JF = |Fz|2 − |Fz|2 =
(
|Fz| − |Fz|

)(
|Fz|+ |Fz|

)
= λF · ΛF ,

where λF = |Fz| − |Fz| and ΛF = |Fz|+ |Fz|. Note that

1 = JG(0) =
∣∣Gz(0)

∣∣2 − ∣∣Gz(0)
∣∣2 =

(∣∣Fz(0)
∣∣2 − ∣∣Fz(0)

∣∣2)|λ0|2 = |λ0|2JF (0).

Thus

λF (0) =
JF (0)

ΛF (0)
=

JG(0)

|λ0|2ΛF (0)
=

1

|λ0|2ΛF (0)
.

It follows by Schwarz lemma (see Lemma 1 in reference [1]) that

λF (0) =
1

|λ0|2ΛF (0)
≥ π

4|λ0|2M
.

Taking advantage of the triangle inequality∣∣∣∣∫ (f1(z) + f2(z)
)
dz

∣∣∣∣ ≥ ∣∣∣∣∫ ∣∣f1(z)
∣∣ dz − ∫ ∣∣f2(z)

∣∣ dz∣∣∣∣
≥
∫ ∣∣f1(z)

∣∣ dz − ∫ ∣∣f2(z)
∣∣ dz,

we have∣∣∣∣∣
∫

[z1,z2]

λ0
(
Fz(0) dz + Fz(0) dz

)∣∣∣∣∣ ≥
∫

[z1,z2]

∣∣λ0Fz(0) dz
∣∣− ∫

[z1,z2]

∣∣λ0Fz(0) dz
∣∣

= |λ0|
∫

[z1,z2]

∣∣Fz(0)
∣∣ |dz| − |λ0| ∫

[z1,z2]

∣∣Fz(0)
∣∣ |dz|.
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Since |dz| = |dz|, we have∣∣∣∣∣
∫

[z1,z2]

λ0
(
Fz(0) dz + Fz(0) dz

)∣∣∣∣∣ ≥ |λ0|
( ∫

[z1,z2]

∣∣Fz(0)
∣∣ |dz| − ∫

[z1,z2]

∣∣Fz(0)
∣∣ |dz|)

= |λ0|

( ∫
[z1,z2]

∣∣Fz(0)
∣∣− ∣∣Fz(0)

∣∣ |dz|) = |λ0|

( ∫
[z1,z2]

λF (0) |dz|

)

= |z2 − z1| |λ0|λF (0).

Therefore

∣∣G(z1)−G(z2)
∣∣ ≥ ∣∣∣∣∣

∫
[z1,z2]

λ0
(
Fz(0) dz + Fz(0) dz

)∣∣∣∣∣
−

∣∣∣∣∣
∫

[z1,z2]

p−1∑
n=1

nλnr
2n−2F (z)(zdz+zdz) +

∫
[z1,z2]

p−1∑
n=1

λnr
2n
(
f ′1(z)dz+f ′2(z)dz

)

+

∫
[z1,z2]

λ0
(
Fz(z)− Fz(0)

)
dz + λ0

(
Fz(z)− Fz(0)

)
dz

∣∣∣∣∣
≥ |z2 − z1|

(
|λ0|λF (0)− 2ρM

p−1∑
n=1

n |λn| ρ2n−2

−
p−1∑
n=1

|λn| ρ2n
∞∑
n=1

(
|an|+ |bn|

)
nρn−1 −

∞∑
n=2

(
|an|+ |bn|

)
n |λ0| ρn−1

)

≥ |z2 − z1|
(
|λ0|λF (0)− 2ρM

p−1∑
n=1

n |λn| ρ2n−2

− 2M

p−1∑
n=1

|λn| ρ2n
∞∑
n=1

nρn−1 − 2M |λ0|
∞∑
n=2

nρn−1
)

≥ |z2 − z1|
(

π

4|λ0|M
− 2ρM

p−1∑
n=1

n |λn| ρ2n−2

− 2Mρ2

(1− ρ)2

p−1∑
n=1

|λn| ρ2n − 2M |λ0|
(

1

(1− ρ)2
− 1

))
.

In the latter inequality, the function Λ(ρ), defined by

Λ(ρ) =
π

4 |λ0|M
− 2ρM

p−1∑
n=1

n |λn| ρ2n−2 −
2Mρ2

(1− ρ)2

p−1∑
n=1

|λn| ρ2n

− 2M |λ0|
(

1

(1− ρ)2
− 1

)
,
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can be easily shown to be a decreasing function of ρ on the interval (0, 1).
Further, we have limρ→0+ Λ(ρ) = π

4|λ0|M > 0 and limρ→1− Λ(ρ) = −∞. This

implies that there is a unique root ρ1 ∈ (0, 1) of the function Λ(ρ). This
shows that |G(z1)−G(z2)| ≥ |z2 − z1|Λ(ρ) > 0 for any two distinct points
z1, z2 ∈ |z| < ρ1, which proves the univalency of f in the disk Uρ1 . Finally,
proceeding in the same way, we consider any z with |z| = ρ1. Then, we have

∣∣G(z)
∣∣ ≥ |λ0| |a1z + b1z| −

p−1∑
n=1

|λn| ρ2n1
∣∣∣∣ ∞∑
n=1

(
anz

n + bnz
n
)∣∣∣∣

− |λ0|
∣∣∣∣ ∞∑
n=2

(
anz

n + bnz
n
)∣∣∣∣

≥ π

4 |λ0|M
ρ1 −

p−1∑
n=1

|λn| ρ2n1
2Mρ1
1− ρ1

− |λ0|
2Mρ21
1− ρ1

=
π

4 |λ0|M
ρ1 −

2Mρ1
1− ρ1

( p−1∑
n=1

|λn| ρ2n1 + |λ0| ρ1
)
. ut

The result related to Landau’s Theorem 8 was proved for biharmonic func-
tion in reference [1], then Liu [16] improved the results in [1] and obtained
better estimates by establishing better coefficient estimates for bounded and
normalized planar harmonic mappings. In the next theorem, we will modify
the result in Theorem 8 by adopting the method of the proof in [17] in which an
improved result of Landau’s theorem was proved for biharmonic mappings. It is
worth mentioning that we will consider a slightly wider class of functions than
those belonging to CPH. We need first the following two lemmas (see [16]).

Lemma 1. [16] Suppose that f(z) = h(z) + g(z) is a harmonic mapping of
the unit disk U where h(z) =

∑∞
n=1 anz

n and g(z) =
∑∞
n=1 bnz

n are analytic
on U . If |f(z)| ≤M for z ∈ U , then

|an|, |bn| ≤M, n = 1, 2, . . .

Each of the above inequalities is sharp, the extremal functions f1(z) = Mzn

and f2(z) = Mzn yield their equalities.

Lemma 2. [16] Suppose that f(z) = h(z) + g(z) is a harmonic mapping of
the unit disk U with h(z) =

∑∞
n=1 anz

n and g(z) =
∑∞
n=1 bnz

n for z ∈ U . If
Jf (0) = 1 and |f(z)| < M, then

|an|, |bn| ≤
√
M2 − 1, n = 2, 3, . . . ,

and
|an|+ |bn| ≤

√
2M2 − 2, n = 2, 3, . . . ,

and

λf (0) ≥ λ0(M) =


√
2√

M2−1+
√
M2+1

, 1 ≤M ≤M0 = π
2 4√2π2−16 ,

π
4M , M > M0 = π

2 4√2π2−16 ≈ 1.1296,

where λf (z) =
∣∣ |fz(z)| − |fz(z)| ∣∣.
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Theorem 9. Let G(z) =
∑p−1
n=1 γnr

2nF (z) +H(z), where F (z) and H(z) are
complex-valued harmonic mappings in the unit disk U and γn, n = 1, . . . , p− 1
(γ21 + · · ·+γ2p−1 6= 0) are constants, be a p-harmonic mapping of the unit disk U

where z = reiθ. Assume that G(0) = H(0) = JG(0)− 1 = 0 and |F | is bounded
by M1 while |H| is bounded by M2. Then there is a constant 0 < ρ1 < 1 so
that G is univalent in |z| < ρ1, where ρ1 is the minimum positive root of the
following equation

λ0(M2)− 2ρ1M1

p−1∑
n=1

n |γn| ρ2n−21 − 2M1ρ
2
1

(1− ρ1)2

p−1∑
n=1

|γn| ρ2n1

−
√

2M2
2 − 2

(
1

(1− ρ1)2
− 1

)
= 0,

and G(Uρ1) contains a disk UR1
where

R1 = λ0(M2)ρ1 − 2M1

∑p−1
n=1 |γn| ρ

2n+1
1

1− ρ1
− 2M2

ρ21
1− ρ1

,

and λ0(M2) is as defined in Lemma 2.

Proof. Assume G(z) =
∑p−1
n=1 λnr

2nF (z) +H(z) satisfies the hypothesis of this
theorem, where

F (z) = F1(z) + F2(z) =

∞∑
n=0

anz
n +

∞∑
n=0

bnzn,

H(z) = H1(z) +H2(z) =

∞∑
n=1

cnz
n +

∞∑
n=1

dnzn.

Here F1, F2, H1 and H2 are analytic in D. Note that

Gz =

p−1∑
n=1

[
nγnr

2n−2zF + γnr
2nFz

]
+Hz,

Gz =

p−1∑
n=1

[
nγnr

2n−2zF + γnr
2nFz

]
+Hz.

For fixed 0 < ρ < 1, choose z1, z2 with z1 6= z2, |z1| < ρ and |z2| < ρ. Then

G(z1)−G(z2) =

∫
[z1,z2]

Gz(z) dz +Gz(z) dz

=

∫
[z1,z2]

[( p−1∑
n=1

nγnr
2n−2zF +

p−1∑
n=1

γnr
2nF ′1 +H ′1

)
dz

+

( p−1∑
n=1

nγnr
2n−2zF +

p−1∑
n=1

γnr
2nF ′2 +H ′2

)
dz

]
,
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where [z1, z2] is the line-segment joining z1 with z2. We have

1 = JG(0) =
∣∣Gz(0)

∣∣2 − ∣∣Gz(0)
∣∣2 =

∣∣Hz(0)
∣∣2 − ∣∣Hz(0)

∣∣2 = JH(0).

It follows by Lemma 2 that λH(0) ≥ λ0(M2). By the hypothesis of Theorem 9
and Lemmas 1 and 2, we have

|an|+ |bn| ≤ 2M1 (n = 1, 2, . . .), |cn|+ |dn| ≤
√

2M2 − 2 (n = 2, 3, . . .).

As in Theorem 8, by using the triangle inequality, we get

∣∣G(z1)−G(z2)
∣∣ ≥

∣∣∣∣∣
∫

[z1,z2]

(
Hz(0) dz +Hz(0) dz

)∣∣∣∣∣
−

∣∣∣∣∣
∫

[z1,z2]

p−1∑
n=1

nγnr
2n−2F (z)(zdz+zdz) +

∫
[z1,z2]

p−1∑
n=1

γnr
2n
(
Fz(z)dz+Fz(z)dz

)

+

∫
[z1,z2]

(
Hz(z)−Hz(0)

)
dz +

(
Hz(z)−Hz(0)

)
dz

∣∣∣∣∣
=

∣∣∣∣∣
∫

[z1,z2]

(
H ′1(0) dz +H ′2(0) dz

)∣∣∣∣∣−
∣∣∣∣∣
∫

[z1,z2]

p−1∑
n=1

nγnr
2n−2F (z)(z dz + z dz)

+

∫
[z1,z2]

p−1∑
n=1

γnr
2n
(
F ′1(z) dz + F ′2(z) dz

)

+

∫
[z1,z2]

(
H ′1(z)−H ′1(0)

)
dz +

(
H ′2(z)−H ′2(0)

)
dz

∣∣∣∣∣
≥ |z2 − z1|

(
λH(0)− 2ρM1

p−1∑
n=1

n |γn| ρ2n−2

−
p−1∑
n=1

|γn| ρ2n
∞∑
n=1

(
|an|+ |bn|

)
nρn−1 −

∞∑
n=2

(
|cn|+ |dn|

)
nρn−1

)

≥ |z2 − z1|
(
λ0(M2)− 2ρM1

p−1∑
n=1

n |γn| ρ2n−2 − 2M1

p−1∑
n=1

|γn| ρ2n
∞∑
n=1

nρn−1

−
√

2M2
2 − 2

∞∑
n=2

nρn−1
)

≥ |z2 − z1|
(
λ0(M2)− 2ρM1

p−1∑
n=1

n |γn| ρ2n−2 −
2M1ρ

2

(1− ρ)2

p−1∑
n=1

|γn| ρ2n

−
√

2M2
2 − 2

(
1

(1− ρ)2
− 1

))
.
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In the last inequality, the function Λ(ρ), defined by

Λ(ρ) = λ0(M2)− 2ρM1

p−1∑
n=1

n |γn| ρ2n−2 −
2M1ρ

2

(1− ρ)2

p−1∑
n=1

|γn| ρ2n

−
√

2M2
2 − 2

(
1

(1− ρ)2
− 1

)
,

is a decreasing function of ρ on the interval (0, 1). Also, limρ→0+ Λ(ρ) =
λ0(M2) > 0 and limρ→1− Λ(ρ) = −∞. Thus there is a unique root ρ1 ∈ (0, 1)
of the function Λ(ρ). This shows that |G(z1)−G(z2)| ≥ |z2 − z1|Λ(ρ) > 0 for
any two distinct points z1, z2 ∈ |z| < ρ1, which proves the univalency of f in
the disk Uρ1 . Following a similar argument as in Theorem 8: for any z with
|z| = ρ1 we have

∣∣G(z)
∣∣ ≥ |c1z + d1z| −

p−1∑
n=1

|γn| ρ2n1
∣∣∣∣ ∞∑
n=1

(
anz

n + bnz
n
)∣∣∣∣− ∣∣∣∣ ∞∑

n=2

(
cnz

n + dnz
n
)∣∣∣∣

≥ λ0(M2)ρ1 −
p−1∑
n=1

|γn| ρ2n1
2M1ρ1
1− ρ1

− 2M2ρ
2
1

1− ρ1
. ut
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