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1 Introduction

Let the numbers 0 < t1 < t2 < · · · < tm < π be fixed throughout the paper;
0 < m is a fixed integer. Let Ij : R→ R be continuous functions j = 1, 2, . . . ,m
and let f : [0, π] × R × R → R be a Caratheodory function. Let p ∈ C(0, π),
s ∈ L∞+ (0, π), where

L∞+ (0, π) =
{
v ∈ L∞(0, π)

∣∣ ess inf
x∈[0,π]

v(x) ≥ 1
}
.

We assume p− = inft∈[0,π] p(t) > 1, s− > 1. We will consider parameters

u ∈ Ls(t)(0, π) such that ‖u‖Ls(t) ≤M for some fixed M > 0.

In this paper we consider the following impulsive BVP in X = W
1,p(t)
0 (0, π)

− d

dt

(∣∣∣∣ ddtx(t)

∣∣∣∣p(t)−2 ddtx(t)

)
+ f

(
t, x(t), u(t)

)
= g(t),

x(0) = x(π) = 0 (1.1)
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subject also to the impulsive condition∣∣∣∣ ddtx(t+j )

∣∣∣∣p(t)−2 d

dt
x(t+j )−

∣∣∣∣ ddtx(t−j )

∣∣∣∣p(t)−2 d

dt
x(t−j )

= Ij
(
x(tj)

)
for j = 1, 2, . . . ,m, (1.2)

where it is assumed that both limits

lim
t→t+j

∣∣∣∣ ddtx(t)

∣∣∣∣p(t)−2 d

dt
x(t), lim

t→t−j

∣∣∣∣ ddtx(t)

∣∣∣∣p(t)−2 d

dt
x(t)

exist.
Dirichlet problems with a p(·)-Laplacian arise naturally in mathematical

models in elastic mechanics (see [29]), electrorheological fluids (see [19]) and
image restoration (see [6]). It is of interest to know conditions which guarantee

a) existence of solutions,

b) uniqueness,

c) continuous dependence of the solutions on parameters.

Problems satisfying all three conditions are called well-posed. To study
well-posed problems with rather mild assumptions we apply a direct variational
method. Let us consider the following simple example taken from [10]. The
non-impulsive problem

−ẍ(t) + λx(t) = f(t), x ∈ H1
0 (0, π)

for any f ∈ L1(0, π) has a unique classical solution with λ > −1. On the other
hand let us consider problem

− ẍ(t) = 0, x(0) = x(π) = 0,

ẋ(1+)− ẋ(1−) =
1

3
x3(1)− 4x(1) (1.3)

with one impulse at t1 = 1. We see that the solution to −ẍ(t) = 0 on [0, 1)
satisfying x(0) = 0 is x(t) = αt and on (1, π] the solution is x(t) = βt + γ.
Since x is continuous we obtain

βπ + γ = 0 and α = β + γ

taking into account the boundary conditions. This results in α = − 1
π (γ − πγ),

β = − 1
πγ and x(1) = − 1

π (γ − πγ). From the impulsive condition we get

−γ =
1

3

(
1

π
(γ − πγ)

)3

− 4

(
1

π
(γ − πγ)

)
. (1.4)

One can show that equation (1.4) has three solutions in [−6, 6] and we see that
these solutions are

γ = 0, γ = −
√

3π

√
3π − 4

(π − 1)
3
2

, γ =
√

3π

√
3π − 4

(π − 1)
3
2

. (1.5)
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Summarizing, the solution to (1.3) is a function

x(t) =


− 1

π
(γ − πγ)t for t ∈ [0, 1],

− 1

π
γt+ γ for t ∈ (1, π]

with any γ satisfying (1.5). In this case

v →
∫ v

0

(1

3
w3 − 4w

)
dw =

1

12
v4 − 2v2,

which is an antiderivative of an impulsive function and it is not a convex func-
tion. It is well known that convexity is related to uniqueness in variational
problems. We are interested to study well posed impulsive variational prob-
lems when the relevant properties of the non-impulsive problems are retained.

The study of impulsive boundary value problems is important because of
its applications to problems in which abrupt changes appear at certain times
in the evolution process, see for example [1, 7, 13, 16, 21, 27]. Such problems
arise in medicine, ecology and chemistry. While the literature on impulsive
differential equations is rather vast, there are only a few papers concerning
the variational approach. Periodic solutions with impulses are considered by
critical point theory in [28] within the framework sketched in [17]. Moreover, in
[18,25] impulsive Duffing type equations with Dirichlet boundary conditions are
considered. Multiplicity results are investigated for example in [4] with the aid
of Clark’s Theorem and in [22] by the fountain theorem. In [11] the variational
framework for the Sturm–Liouville boundary value problem is developed for
the second order impulsive ordinary differential equation of p-Laplacian type
independently from [17]. In [5] existence results for boundary value problem
with a p-Laplacian type operator are obtained by using the least action principle
and the saddle point theorem, with or without impulsive effects improving
some existing results in the literature. Our results deal with more complicated
differential operators and thus they are different from those of [5]. In [23] the
authors study the existence of infinitely many solutions for a class of second-
order impulsive Hamiltonian systems. They obtain some new existence criteria.
Using the ideas of Ricceri, in [24] the authors obtain results guaranteeing that
the impulsive Hamiltonian systems with a perturbed term have at least three
solutions. In [2] the author considers the case when impulses are superlinear.
The existence of solutions is reached via mountain pass technique. New types
of impulsive problems have been started in [7] where the impulse depends also
on a current state of the problem under consideration. In [20] the abstract
framework applicable for impulsive problems is sketched in terms of variational
inequalities.

In this paper employing direct variational method we consider the existence
and uniqueness of solutions to (1.1)–(1.2) and next we investigate what hap-
pens as the parameter function u varies. In doing so we consider both the case
of strongly and weakly convergent sequence of parameters. Concerning the
continuous dependence on parameters we adopt an iterative procedure which
is quite different from ideas in [14]. Some ideas which we use come from [10],

Math. Model. Anal., 18(2):161–175, 2013.
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where these were applied for a second order semilinear impulsive BVP. Since
p(t)-Laplacian has more complicated nonlinearity we had to use different tech-
nical tools in this paper.

2 Mathematical Preliminaries

For some background material concerning Orlicz–Sobolev spaces we refer to [8]
and [12,15]. Let a ∈ L∞+ (0, π). Following [8] and we define the Lebesgue–Orlicz
space

La(t)(0, π) =

{
x
∣∣∣ x : [0, π]→ R is measurable,

∫ π

0

∣∣x(t)
∣∣a(t) dt < +∞

}
equipped with a norm

‖x‖La(t) = inf

{
λ > 0

∣∣∣ ∫ π

0

|x(t)/λ|a(t) dt ≤ 1

}
.

We note if a− = ess inft∈[0,π] p(t) > 1 and a+ = ess supt∈[0,π] a(t) < +∞
then [8] La(t)(0, π) is a reflexive uniformly convex Banach space.

Let p, q ∈ C([0, π]), 1/p(t) + 1/q(t) = 1 for t ∈ [0, π] and we assume p− > 1.
Then W 1,p(t)(0, π) is the generalized Orlicz–Sobolev space, namely

W 1,p(t)(0, π) =

{
x
∣∣∣ x ∈ Lp(t)(0, π),

∫ π

0

∣∣∣∣ ddtx(t)

∣∣∣∣p(t) dt < +∞

}
,

where the derivative d
dt stands for the weak one – compare with [3] – i.e. d

dtx

is an element of Lp(t)(0, π) which satisfies∫ π

0

d

dt
x(t)y(t) dt = −

∫ π

0

x(t)
d

dt
y(t) dt

for all y ∈ C∞0 (0, π). Any function belonging to W 1,p(t)(0, π) is in fact abso-
lutely continuous and so the weak derivative is considered as an a.e. derivative.
W 1,p(t)(0, π) has the following norm:

‖x‖W 1,p(t) =

√∥∥∥∥dxdt
∥∥∥∥
Lp(t)

+ ‖x‖Lp(t) . (2.1)

Now W
1,p(t)
0 (0, π) is the closure of C∞0 (0, π) in W 1,p(t)(0, π), see [8]. We will

let X = W
1,p(t)
0 (0, π). The norm in X is

‖x‖X =

∥∥∥∥dxdt
∥∥∥∥
Lp(t)

,

which is equivalent to (2.1). Note X is a uniformly convex, reflexive Banach
space. Moreover, from [8] we see that there exist constants Cp1 , C

p
2 > 0 de-

pending on the interval [0, π] and on the function p, such that (Poincaré type
inequality)

‖x‖Lp(t) ≤ C1 ‖x‖X for all x ∈W 1,p(t)
0 (0, π)
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and (Sobolev’s type inequality)

max
t∈[0,π]

∣∣x(t)
∣∣ ≤ C2

∥∥∥∥dxdt
∥∥∥∥
Lp(t)

for all x ∈W 1,p(t)
0 (0, π). (2.2)

The functional x→
∫ π
0

∣∣ d
dtx(t)

∣∣p(t) dt is called a modular for X. Its Gâteaux

derivative L : X → X∗ at any x ∈W 1,p(t)
0 (0, π) is given by

〈
L(x), y

〉
=

∫ π

0

∣∣∣∣dx(t)

dt

∣∣∣∣p(t)−2 dx(t)

dt

dy(t)

dt
dt for all y ∈ X.

We have the following relation between a modular and a norm

min
{
‖u‖p

−

X , ‖u‖p
+

X

}
≤
∫ π

0

∣∣∣∣du(t)

dt

∣∣∣∣p(t) dt ≤ max
{
‖u‖p

−

X , ‖u‖p
+

X

}
. (2.3)

In proving that a weak solution is a classical one we shall use the following
version of the Fundamental Theorem of the Calculus of Variation.

Lemma 1. [26] If g, h ∈ L1(0, π) and∫ π

0

(
g(t)y(t) + h(t)

dy(t)

dt

)
dt = 0

for all y ∈ C∞0 (0, π), then d
dth = g a.e. on [0, π] and d

dth ∈ L
1(0, π).

From Lemma 1 it follows that h(t) =
∫ t
0
g(s) ds+ c for some constant c and

for a.e. t ∈ [0, π]. Thus g is a classical almost everywhere derivative.
We will require also the following version of the generalized Krasnosel’skii

Theorem on the continuity of the Niemytskij operator. This result is a special
case of Theorem 2.1 from [9].

Theorem 1. Assume that f : [0, π]× R × R → R is a Caratheodory function.
Let p, s, q ∈ L∞+ (0, π). If for any sequence {(xk, yk)}∞k=1 convergent to (x, y) ∈
Lp(t)(0, π)× Ls(t)(0, π) there exists a function h ∈ Lq(t)(0, π) with∣∣f(t, xk(t), yk(t)

)∣∣ ≤ h(t), for k = 1, 2, . . . and a.e. t ∈ [0, π],

then the Niemytskij operator induced by f

Nf : Lp(t)(0, π)×Ls(t)(0, π) 3 (x, y) 7−→ f
(
·, x(·), y(·)

)
∈ Lq(x)(0, π),

is well defined and continuous.

3 The Assumptions and Variational Framework

Put F (t, x, u) =
∫ x
0
f(t, ξ, u) dξ for a.e. t ∈ [0, π], u ∈ R and assume that

F : [0, π]×R×R→ R is a Caratheodory function. Throughout the paper we
assume that

Math. Model. Anal., 18(2):161–175, 2013.
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H1 the functions Ij : R → R for j = 1, 2, . . . ,m are continuous and nonde-
creasing;

H2 for any fixed u ∈ R and a.e. t ∈ [0, π] the function x → F (t, x, u) is
convex;

H3 for each r > 0 there exist functions fr, gr ∈ L1(0, π) such that for all
(x, u) ∈ X × Ls(t)(0, π) satisfying ‖x‖X ≤ r, ‖u‖Ls(t) ≤ M and for a.e.
t ∈ [0, π] we have∣∣F (t, x(t), u(t)

)∣∣ ≤ fr(t), ∣∣f(t, x(t), u(t)
)∣∣ ≤ gr(t).

Function g ∈ L1(0, π) be fixed and such that g(t) 6= 0 for a.e. t ∈ [0, π].
As it is typical for variational problems, we consider weak and classical

solutions. A function x ∈ X is a weak solution to (1.1)–(1.2) if it satisfies

m∑
j=0

∫ tj+1

tj

∣∣∣∣dx(t)

dt

∣∣∣∣p(t)−2 dx(t)

dt

dv(t)

dt
dt+

m∑
j=1

Ij
(
xj(tj)

)
v(tj)

+

∫ π

0

f
(
t, x(t), u(t)

)
v(t) dt =

∫ π

0

g(t)v(t) dt (3.1)

for all v ∈ X.
A function x ∈ X is called a classical solution to (1.1)–(1.2) if it is a weak

solution such that the function | ddtx(·)|p(·)−2 ddtx(·) is absolutely continuous on
(tj , tj+1) for j = 0, 1, . . . ,m, the limits in (1.2) are defined, and the relation
(1.2) holds together with the boundary condition x(0) = x(π) = 0 and moreover
(1.1) is satisfied for a.e. t ∈ [0, π]\{t1, t2, . . . , tm} and

d

dt

(∣∣∣∣dx(t)

dt

∣∣∣∣p(t)−2 dx(t)

dt

)
∈ L1(0, π).

The action functional J : X → R corresponding to (1.1)–(1.2) is

J(x) =

∫ π

0

1

p(t)

∣∣∣∣dx(t)

dt

∣∣∣∣p(t) dt+

m∑
j=1

∫ x(tj)

0

Ij(t) dt

+

∫ π

0

F
(
t, x(t), u(t)

)
dt−

∫ π

0

g(t)x(t) dt. (3.2)

The idea of taking (3.2) as the action functional originates from [17] and relies
on the fact that one must include the impulsive phenomena into the functional
of action. Broadly speaking the impulses must somehow appear in the Gâteaux
derivative of a functional, so that we must include them into the functional
itself.

4 Auxiliary Results

Lemma 2. Let u ∈ Ls(t)(0, π) be fixed. If x ∈ X is a weak solution to (1.1)–
(1.2), then it is also a classical one.
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Proof. The ideas of the proof come from [17] so we give a sketch only. Let
a function x satisfies (3.1). We take any interval (tj , tj+1) and a function
h ∈ C∞0 (tj , tj+1) extended to C∞0 (0, π) by taking 0 outside (tj , tj+1). Then we
have in (3.1)∫ tj+1

tj

∣∣∣∣dx(t)

dt

∣∣∣∣p(t)−2 dx(t)

dt

dh(t)

dt
dt+

∫ tj+1

tj

(
f
(
t, x(t), u(t)

)
− g(t)

)
h(t) dt = 0.

Since obviously X ⊂ L1(0, π) it follows from H3 that

f
(
·, x(·), u(·)

)∣∣
(tj ,tj+1)

− g(·) ∈ L1(tj , tj+1).

By Lemma 1 it follows that d
dt (|

d
dtx(t)|p(t)−2 ddtx(t)) exists for a.e. t ∈ (tj , tj+1)

and belongs to L1(tj , tj+1). Next we obtain∫ π

0

∣∣∣∣dx(t)

dt

∣∣∣∣p(t)−2 dx(t)

dt

dh(t)

dt
dt+

∫ π

0

(
f
(
t, x(t), u(t)

)
− g(t)

)
h(t) dt

+

m∑
j=1

(∣∣∣∣ ddtx(t+j )

∣∣∣∣p(t)−2 d

dt
x(t+j )−

∣∣∣∣ ddtx(t−j+1)

∣∣∣∣p(t)−2 d

dt
x(t−j+1)

)
h(tj) = 0.

Since x is a weak solution we get from equating the above relation and (3.1)
that

m∑
j=1

(∣∣∣∣ ddtx(t+j )

∣∣∣∣p(t)−2 d

dt
x(t+j )−

∣∣∣∣ ddtx(t−j+1)

∣∣∣∣p(t)−2 d

dt
x(t−j+1)

)
h(tj)

=

m∑
j=1

Ij
(
x(tj)

)
h(tj).

Hence for all j = 1, 2, . . . ,m we have∣∣∣∣ ddtx(t+j )

∣∣∣∣p(t)−2 d

dt
x(t+j )−

∣∣∣∣ ddtx(t−j )

∣∣∣∣p(t)−2 d

dt
x(t−j ) = Ij

(
x(tj)

)
. ut

5 Existence and Uniqueness

Lemma 3. Assume that conditions H1–H3 hold. Let u ∈ Ls(t)(0, π) be fixed.
Then J is Gâteaux differentiable, weakly l.s.c. and coercive and its critical
points correspond to the classical solutions of (1.1)–(1.2).

Proof. By assumption H3 we see that J is well defined on X. Again by H3
we see that J is Gâteaux differentiable. Let us take an arbitrary x ∈ X and fix
h ∈ X. Then the Gâteaux derivative is

J
′
(x;h) =

∫ π

0

∣∣∣∣ ddtx(t)

∣∣∣∣p(t)−2 d

dt
x(t)

d

dt
h(t) dt

+

m∑
j=1

Ij
(
x(tj)

)
h(tj) +

∫ π

0

f
(
t, x(t), u(t)

)
h(t) dt−

∫ π

0

g(t)h(t) dt.

Math. Model. Anal., 18(2):161–175, 2013.
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Therefore each critical point of J is a weak solution of (1.1)–(1.2).
Let us take any weakly convergent sequence {xk}∞k=1 ⊂ X. Then the se-

quence {xk}∞k=1 has a subsequence {xkn}
∞
n=1 which is strongly convergent in

Lp(t)(0, π) and convergent in C[0, π]. Denote by x ∈ X the weak limit of
{xkn}

∞
n=1. Then by continuity we see that

m∑
j=1

∫ xkn (tj)

0

Ij(t) dt→
m∑
j=1

∫ x(tj)

0

Ij(t) dt.

There exists r > 0 such that ‖xkn‖X ≤ r for all n ∈ N . Thus from H3 there
exists a function gr ∈ L1(0, π) such that∣∣F (t, xkn(t), u(t)

)∣∣ ≤ gr(t) for a.e. t ∈ [0, π].

Then by the Lebesgue Dominated Convergence Theorem we get∫ π

0

F
(
t, xkn(t), u(t)

)
dt→

∫ π

0

F
(
t, x(t), u(t)

)
dt.

Therefore, J is weakly l.s.c. on X.
Since F is convex in the second variable we see that for all y, u ∈ R and

a.e. t ∈ [0, π] that

F (t, y, u) ≥ Fx(t, 0, u)y + F (t, 0, u).

There exist functions f0, g0 ∈ L1(0, π) such that∣∣F (t, 0, u(t)
)∣∣ ≤ f0(t),

∣∣Fx(t, 0, u(t)
)∣∣ ≤ g0(t).

We see from (2.2) that∫ π

0

Fx
(
t, 0, x(t)

)
x(t) dt ≤ ‖x‖∞

∫ π

0

∣∣Fx(t, 0, x(t)
)∣∣ dt ≤ (C2

∫ π

0

g0(t) dt

)
‖x‖X

for any x ∈ X. Thus∫ π

0

F
(
t, x(t), u(t)

)
dt ≥ −

(
C2

∫ π

0

g0(t) dt

)
‖x‖X −

∫ π

0

f0(t) dt

for any x ∈ X. Since x→
x∫
0

Ij(t) dt is convex for j = 1, 2, . . . ,m we see that

∫ x(tj)

0

Ij(t) dt ≥ Ij(0)x(tj) ≥ −C2

m∑
j=1

∣∣Ij(0)
∣∣ ‖x‖X .

Finally, we see from (2.3) that for any x ∈ X with ‖x‖X ≥ 1

J(x) ≥ 1

p+
‖x‖p

−

X −
(
C2

∫ π

0

g0(t) dt

)
‖x‖X −

∫ π

0

f0(t) dt

− C2

m∑
j=1

∣∣Ij(0)
∣∣ ‖x‖X − C2 ‖x‖X ‖g‖L1 . (5.1)

Also since p− > 1 we see that J is coercive. ut
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Theorem 2. Assume that H1–H3 hold. Let u ∈ Ls(t)(0, π) be fixed. Problem
(1.1)–(1.2) has exactly one solution xu ∈ X such that xu(t) 6= 0 for a.e. t ∈
[0, π].

Proof. By Lemma 3 J is Gâteaux differentiable, weakly l.s.c. and coercive
on X. Therefore there exists xu ∈ X such that J(xu) = infv∈X J(v) and thus
xu satisfies (3.1). Note that the functional

J1(x) =

∫ π

0

1

p(t)

∣∣∣∣ ddtx(t)

∣∣∣∣p(t) dt
is strictly convex. Since Ij are nondecreasing, functions it follows that x →∫ x
0
Ij(t) dt are convex. Since F is convex in the second variable, therefore

x→
∫ π
0
F (t, x(t), u(t)) dt is a convex functional.

J2(x) =

m∑
j=1

∫ x(tj)

0

Ij(t) dt+

∫ π

0

F
(
t, x(t), u(t)

)
dt−

∫ π

0

g(t)x(t) dt

is convex, we see that J = J1 + J2 is strictly convex. Thus the critical point
is unique. An application of Lemma 2 shows that xu is a classical solution.
Suppose xu = 0 for a.e. t ∈ [0, π]. Inserting xu = 0 into (1.1) provides that
g = 0 which is a contradiction. ut

6 Continuous Dependence on Parameters

Having shown the existence and uniqueness of a solution, we investigate the
dependence on a sequence of parameters. We improve earlier results [10] by
showing the strong convergence of the sequence of solutions instead of weak
convergence. We also generalize the results from [10] to the case of variable
exponent. However we shall need some additional assumption which is not
required when we want to obtain the weak convergence of the sequence of
solutions.

6.1 Strongly convergent sequence of parameters

Now we replace H3 with the following assumption

H4 g ∈ Lα(t)(0, π) where α ∈ L∞+ (0, π) with α− > 1, α+ < +∞ and for each

r > 0 there exist functionsfr ∈ L1(0, π), gr ∈ Lα(t)(0, π), such that for all
(x, u) ∈ X × Ls(t)(0, π) satisfying ‖x‖X ≤ r, ‖u‖Ls(t) ≤M and for a.e. t
∈ [0, π] we have∣∣F (t, x(t), u(t)

)∣∣ ≤ fr(t), ∣∣f(t, x(t), u(t)
)∣∣ ≤ gr(t).

Theorem 3. Assume that conditions H1, H2, H4 hold. Let {un}∞n=1 sat-
isfy un → u0 (strongly) in Ls(t)(0, π). Then, for any sequence {xn}∞n=1 of
(unique) solutions to (1.1)–(1.2) corresponding to un, there exists a subsequence
{xnk

}∞k=1 ⊂ X and an element x0 ∈ X such that x
nk
→ x0 (strongly) in X

and x0 is a classical solution to (1.1)–(1.2) corresponding to u0.
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Proof. We shall apply an iterative technique. We define a sequence {xn}∞n=1,
where xn is a solution to (1.1)–(1.2) with u = un. Thus

− d

dt

(∣∣∣∣ ddtxn(t)

∣∣∣∣p(t)−2 d

dt
xn(t)

)
+ f

(
t, xn(t), un(t)

)
= g(t),

xn(0) = xn(π) = 0,∣∣∣∣ ddtxn(t+j )

∣∣∣∣p(t)−2 d

dt
xn(t+j )−

∣∣∣∣ ddtxn(t−j )

∣∣∣∣p(t)−2 d

dt
xn(t−j )

= Ij
(
xn(tj)

)
for j = 1, 2, . . . ,m. (6.1)

We now show there exists a constant r > 0 such that ‖xn‖X ≤ r for n ∈ N .
To see this we just note if ‖xn‖X ≥ 1 then by (5.1) we have

J(xn) ≥ 1

p+
‖xn‖p

−

X − C2

(∫ π

0

g0(t) dt+ ‖g‖L1

)
‖xn‖X −

∫ π

0

f0(t) dt

− C2

m∑
j=1

∣∣Ij(0)
∣∣ ‖xn‖X .

Next we see that

0 = J(0) ≥ inf
x∈X

J(x) = J(xn) ≥ 1

p+
‖xn‖p

−

X

− C2

(∫ π

0

g0(t) dt+

m∑
j=1

∣∣Ij(0)
∣∣+ ‖g‖L1

)
‖x‖X −

∫ π

0

f0(t) dt.

Hence {xn}∞n=1 has a weakly convergent subsequence in X (and for simplicity
we will denote this subsequence also by {xn}∞n=1). Let its limit be x0. Note
{xn}∞n=1 converges strongly in Lp(t)(0, π) and also in C(0, π). Since each xn for
n ∈ N is a critical point so we see that for any l ≥ k we have

0 =
〈
J
′
(xk), xk

〉
−
〈
J
′
(xl), xl

〉
. (6.2)

Writing (6.2) explicitly we get

0 =

∫ π

0

∣∣∣∣ ddtxk(t)

∣∣∣∣p(t) dt− ∫ π

0

∣∣∣∣ ddtxl(t)
∣∣∣∣p(t) dt+

m∑
j=1

Ij
(
xk(tj)

)
xk(tj)

−
m∑
j=1

Ij
(
xl(tj)

)
xl(tj) +

∫ π

0

(
f
(
t, xk(t), uk(t)

)
− g(t)

)
xk(t) dt

−
(∫ π

0

f
(
t, xl(t), ul(t)

)
− g(t)

)
xl(t) dt.

Since ‖xn‖X ≤ r by assumption H4 there exists a function hr ∈ Lα(t)(0, π)
such that ∣∣f(t, xl(t), ul(t))− g(t)

∣∣ ≤ hr(t).
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Thus the sequence {f(·, xn(·), un(·)) − g(·)}∞n=1 is bounded in Lα(t)(0, π) and
as a result it has a weakly convergent subsequence{

f
(
·, xnk

(·), unk
(·)
)
− g(·)

}∞
k=1

,

whose limit we denote by h ∈ Lα(t)(0, π).
Recalling that {xnk

}∞k=1 converges strongly in Lp(t)(0, π) we see that by
letting nk →∞∫ π

0

(
f
(
t, xnk

(t), unk
(t)
)
− g(t)

)
xnk

(t) dt→
∫ π

0

h(t)x0(t) dt.

Hence letting lk, nk →∞ we see that∫ π

0

(
f
(
t, xnk

(t), unk
(t)
)
− g(t)

)
xnk

(t) dt

−
∫ π

0

(
f
(
t, xlk(t), ulk(t)

)
− g(t)

)
xlk(t) dt→ 0.

Thus for a fixed ε > 0, there is some Nε such that for all lk ≥ nk ≥ Nε

−ε
2
≤
∫ π

0

(
f
(
t, xnk

(t), unk
(t)
)
− g(t)

)
xnk

(t) dt

−
∫ π

0

(
f
(
t, xlk(t), ulk(t)

)
− g(t)

)
xlk(t) dt ≤ ε

2
.

Since {xnk
}∞k=1 converges strongly in C(0, π) we observe that for the same

ε > 0, there is some Mε such that for all lk ≥ nk ≥Mε

−ε
2
≤

m∑
j=1

Ij
(
xnk

(tj)
)
xnk

(tj)−
m∑
j=1

Ij
(
xlk(tj)

)
xlk(tj) ≤

ε

2
.

Hence, taking Kε ≥ max {Mε, Nε} we see that for all lk ≥ nk ≥ Kε∣∣∣∣∣
∫ π

0

∣∣∣∣ ddtxnk
(t)

∣∣∣∣p(t) dt− ∫ π

0

∣∣∣∣ ddtxlk(t)

∣∣∣∣p(t) dt
∣∣∣∣∣ ≤ ε. (6.3)

Recall that X is a Banach space and that norm convergence is equivalent to
the modular convergence, see [8]. From (6.3) and from xnk

⇀ x0 we have

‖xnk
‖X → ‖x0‖X .

Since X is uniformly convex, we see that {xnk
}∞k=1 is strongly convergent to

x0. Note the generalized Krasnosel’skij Theorem (Theorem 1) applies and

f
(
·, xnk

(·), unk
(·)
)
− g(·)→ f

(
·, x0(·), u0(·)

)
− g(·)

in Lα(t)(0, π). Since a pair (xnk
, unk

) satisfies (3.1) we see by taking limits as
nk → ∞ that (x0, u0) also satisfies (3.1). By Lemma 2, we see that now x0 is
a classical solution (1.1)–(1.2) corresponding to u0. ut

In the case of a weakly convergent sequence of solutions we do not need the
assumption H4.
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Theorem 4. Assume that conditions H1–H3 hold. Let {un}∞n=1 satisfy un →
u0 (strongly) in Ls(t)(0, π). Then, for any sequence {xn}∞n=1 of solutions to
(1.1)–(1.2) corresponding to un, there exists a subsequence {xnk

}∞k=1 ⊂ X and
an element x0 ∈ X such that xnk

⇀ x0 (weakly) in X and x0 is a classical
solution to (1.1)–(1.2) corresponding to u0.

Proof. We shall again apply an iterative technique. We define a sequence
{xn}∞n=1 ⊂ X by (6.1). As in the proof of Theorem 3 we can show that
{xn}∞n=1 has a weakly convergent subsequence in X (and for simplicity we will
denote this subsequence also by {xn}∞n=1). Let its limit be x0. By assumption
H3 there exists a function gr ∈ L1(0, π) such that∣∣f(t, xn(t), un(t)

)
− g(t)

∣∣ ≤ gr(t).
Thus the sequence {

f
(
·, xn(·), un(·)

)
− g(·)

}∞
n=1

is bounded in L1(0, π). Since the sequence {(xn, un)}∞n=1 is convergent strongly
in Lp(t)(0, π)×Ls(t)(0, π) the generalized Krasnosel’skij Theorem (see Theorem
1) applies and

f
(
·, xn(·), un(·)

)
→ f

(
·, x0(·), u0(·)

)
in L1(0, π). Thus {f(·, xnk

(·), unk
(·))}∞k=1 has a subsequence convergent a.e.

on [0, π] to f(·, x0(·), u0(·)). We multiply the first equation in (6.1) by a test
function C∞0 (0, π) and integrate. As a result, following the lines of the proof
of Theorem 2 we see that x0 is a classical solution to (1.1)–(1.2). ut

6.2 Weakly convergent sequence of parameters

In Theorems 3 and 4 the convergence of a sequence of parameters was strong
convergence. We are now interested in the case when this convergence is weak.
However this would require some structure condition on the nonlinear term,
i.e.

f(t, x, u) = f1(t, x) + xf2(t)u.

Let s∗(t) be the conjugate exponent to s(t), i.e. 1
s∗(t)+ 1

s(t) = 1 for a.e. t ∈ [0, π].

Now we replace H3 with the following assumption

H5 f1 : [0, π] × R → R is a Caratheodory function, f2 ∈ Ls
∗(t)(0, π) and for

each r > 0 there exist functions fr, gr ∈ L1(0, π) such that∣∣F1

(
t, x(t)

)∣∣ ≤ fr(t), ∣∣f1(t, x(t)
)∣∣ ≤ gr(t)

for all x ∈ X satisfying ‖x‖X ≤ r, all u with ‖u‖Ls(t) ≤ M and for a.e.
t ∈ [0, π].

Firstly, we follow the ideas of Theorem 4.

Theorem 5. Assume that conditions H1, H2, H5 hold. Let {un}∞n=1 satisfy
un ⇀ u0 (weakly) in Ls(t)(0, π). Then, for any sequence {xn}∞n=1 of solutions
to (1.1)–(1.2) corresponding to un, there exists a subsequence {xnk

}∞k=1 ⊂ X
and an element x0 ∈ X such that xnk

⇀ x0 (weakly) in X and x0 is a classical
solution to (1.1)–(1.2) corresponding to u0.
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Proof. The proof follows similar lines as in the proof of Theorem 4. In fact we
get the weak convergence of a subsequence {xnk

}∞k=1 of solutions corresponding
to a sequence of parameters. This sequence can be assumed to be convergent
strongly in Lp(t)(0, π).

Since {xnk
}∞k=1 is convergent strongly in Lp(t)(0, π) the generalized Kras-

nosel’skij Theorem applies and f1
(
·, xn(·)

)
→ f1

(
·, x0(·)

)
in L1(0, π). Next,

since {xnk
}∞k=1 is convergent strongly in Lp(t)(0, π) and {unk

}∞k=1 is convergent
weakly in Ls(t)(0, π) we get∫ π

0

f2(t)unk
(t)xnk

(t) dt→
∫ π

0

f2(t)u0(t)x0(t) dt. ut

The application of the ideas of Theorem 3 requires some special type as-
sumptions on the nonlinear term.

H6 s− > 1, s+ < +∞, g ∈ Ls(t)(0, π) and f1 : [0, π] × R → R is a
Caratheodory function, f2 ∈ L∞(0, π) and for each r > 0 there exist
functions fr ∈ L1(0, π), gr ∈ Ls(t)(0, π) such that∣∣F1

(
t, x(t)

)∣∣ ≤ fr(t), ∣∣f1(t, x(t)
)∣∣ ≤ gr(t)

for all x ∈ X satisfying ‖x‖X ≤ r, ‖u‖Ls(t) ≤M and for a.e. t ∈ [0, π].

We have the following result which follows as in the lines of the proof of
Theorem 3.

Theorem 6. Assume that conditions H1, H2, H6 hold. Let {un}∞n=1 satisfy
un ⇀ u0 (weakly) in Ls(t)(0, π). Then, for any sequence {xn}∞n=1 of solutions
to (1.1)–(1.2) corresponding to un, there exists a subsequence {xnk

}∞k=1 ⊂ X
and an element x0 ∈ X such that xnk

⇀ x0 (weakly) in X and x0 is a classical
solution to (1.1)–(1.2) corresponding to u0.

Remark 1. We observe that when s+ < +∞, then in Theorems 5 and 6 we can
take a bounded sequence of parameters instead of a weakly convergent one.

7 Examples

We will give some examples of nonlinear problems which can be considered by
our methods.

Example 1. Let g ∈ L1(0, π), g 6= 0, h ∈ Ls∗(t)(0, π) and let f : R → R be a
nondecreasing function, f(0) = 0. Consider

− d

dt

(∣∣∣∣ ddtx(t)

∣∣∣∣p(t)−2 d

dt
x(t)

)
+ f

(
x(t)

)
+ x(t)h(t)u(t) = g(t),

x(0) = x(π) = 0, ẋ(1+)− ẋ(1−) =
1

3
x3(1) + 4x(1) (7.1)

with one impulse at t1 = 1. We can easily show that conditions H1, H2, H5
are satisfied with I(v) = 1

3v
3 + 4v. Then the assertion of Theorem 5 holds

for problem (7.1). Function 0 cannot be a solution to the above problem since
g 6= 0.
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Example 2. Let g ∈ L1(0, π), g 6= 0, h ∈ Ls∗(t)(0, π). Let m be an odd number.
Consider

− d

dt

(∣∣∣∣ ddtx(t)

∣∣∣∣p(t)−2 d

dt
x(t)

)
+ xm(t)e−u

2(t) + x(t)h(t)u(t) = g(t),

x(0) = x(π) = 0, ẋ(1+)− ẋ(1−) =
1

3
x3(1) + 4x(1)

with one impulse at t1 = 1. We can easily demonstrate that for the above
problem the assertion of Theorem 3 holds. Function 0 cannot be a solution to
the above problem since g 6= 0.
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[7] F. Córdova-Lepe, M. Pinto and A. González-Olivares. A new class of differential
equations with impulses at instants dependent on preceding pulses. Applica-
tions to management of renewable resources. Nonlinear Anal. Real World Appl.,
13:2313–2322, 2012. http://dx.doi.org/10.1016/j.nonrwa.2012.01.026.

[8] X.L. Fan and D. Zhao. On the spaces Lp(x)(Ω) and W k,p(x)(Ω). J. Math. Anal.
Appl., 263:424–446, 2001. http://dx.doi.org/10.1006/jmaa.2000.7617.

[9] M. Galewski. On the continuity of the Niemytskij operator between spaces Lp1(x)

and Lp2(x). Georgian Math. J., 13(2):261–265, 2006.

[10] M. Galewski. On variational impulsive boundary value problems. Cent. Eur. J.
Math., 10(6):1969–1980, 2012. http://dx.doi.org/10.2478/s11533-012-0084-9.

[11] W. Ge and Y. Tian. Applications of variational methods to boundary-value prob-
lem for impulsive differential equations. Proc. Edinb. Math. Soc. (2), 51(2):509–
527, 2008.

[12] F.L. Hernández and C. Ruiz. lq-Structure of variable exponent spaces. J. Math.
Anal. Appl., 389(2):899–907, 2012.
http://dx.doi.org/10.1016/j.jmaa.2011.12.033.

[13] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov. Theory of Impulsive Dif-
ferential Equations. World Scientific, Teaneck, NJ, 1989.

http://dx.doi.org/10.1016/j.nonrwa.2012.03.014
http://dx.doi.org/10.1155/2010/325415
http://dx.doi.org/10.1137/050624522
http://dx.doi.org/10.1016/j.nonrwa.2012.01.026
http://dx.doi.org/10.1006/jmaa.2000.7617
http://dx.doi.org/10.2478/s11533-012-0084-9
http://dx.doi.org/10.1016/j.jmaa.2011.12.033


On Well Posed Impulsive Boundary Value Problems for p(t)-Laplacian’s 175

[14] U. Ledzewicz, H. Schättler and S. Walczak. Optimal control systems governed
by second-order ODEs with Dirichlet boundary data and variable parameters.
Illinois J. Math., 47(4):1189–1206, 2003.
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