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1 Introduction

Let a = {am : m ∈ N0 = N ∪ {0}} be a periodic sequence of complex numbers
with minimal period k ∈ N, and let α, 0 < α ≤ 1, be a fixed parameter. The
periodic Hurwitz zeta-function ζ(s, α; a), s = σ + it, is defined, for σ > 1, by
the series

ζ(s, α; a) =

∞∑
m=0

am
(m+ α)s

,

and is meromorphically continued to the whole complex plane by using the
equality

ζ(s, α; a) =
1

ks

k−1∑
l=0

alζ

(
s,
α+ l

k

)
,

where ζ(s, α) denotes the classical Hurwitz zeta-function. The point s = 1 is
the unique possible simple pole of ζ(s, α; a).

In [6], the second author began to characterize the asymptotic behaviour of
the function ζ(s, α; a) by limit theorems on the weak convergence of probability
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measures. We discussed the cases of transcendental, rational and algebraic
irrational parameter α. The simplest of them is the case of transcendental α
because of the linear independence over the field of rational numbers Q of the
set L(α) =

{
log(m + α) : m ∈ N0

}
. The case of rational α is based on the

linear independence over Q of the set {log p : p ∈ P}, where P denotes the set
of all prime numbers. The most complicated case is that of algebraic irrational
α. In this case, there is no precise information on the linear independence of
the set L(α). We know only a very deep theorem of Cassels which asserts that
at least 51 percent of elements of the set L(α) in the sense of density are linear
independent over Q. The latter theorem allows to prove a limit theorem for
weakly convergent probability measures with explicitly given limit measure.

The paper [7] is devoted to joint limit theorems for periodic Hurwitz zeta-
functions. Let ζ(s, α1; a1), . . . , ζ(s, αr; ar) be a collection of periodic Hurwitz
zeta-functions. In [7], two cases of the parameters α1, . . . , αr were discussed.
The first case is of algebraically independent α1, . . . , αr. Let γ = {s ∈ C:

|s| = 1} be the unit circle on the complex plane, and Ω1 =
∞∏
m=0

γm, where

γm = γ for all m ∈ N0. Then Ω1 is a compact topological group. Define

Ω1 =

r∏
j=1

Ω1j ,

were Ω1j = Ω1 for j = 1, . . . , r. Then Ω1 is also a compact topological group.
Therefore, on (Ω1,B(Ω1)) (B(S) denotes the class of Borel sets of the space S)
the probability Haar measure m1H exists, and we obtain the probability space
(Ω1,B(Ω1),m1H). Denote by ω1 = (ω11, . . . , ω1r) the elements of the groupΩ1,
and, on the probability space (Ω1,B(Ω1),m1H), define Cr-valued random ele-
ment ζ

1
(σ, α, ω1; a) by the formula

ζ
1
(σ, α, ω1; a) =

(
ζ1(σ1, α1, ω11; a1), . . . , ζ1(σr, αr, ω1r; ar)

)
,

where σ = (σ1, . . . , σr), α = (α1, . . . , αr) and a = (a1, . . . , ar), and

ζ1(σj , αj , ω1j ; aj) =

∞∑
m=0

amjω1j(m)

(m+ αj)σj
, σj >

1

2
, j = 1, . . . , r.

Here aj = {amj : m ∈ N0}, j = 1, . . . , r, are periodic sequences of complex
numbers, and ω1j(m) denotes the projection of ω1j ∈ Ω1j to the coordinate
space γm. Let Pζ

1
be the distribution of the random element ζ

1
(σ, α, ω1; a)

and ζ(σ + it, α; a) = (ζ(σ1 + it1, α1; a1), . . . , ζ(σr + itr, αr; ar)). Then the first
theorem of [7] is the following statement.

Theorem 1. Suppose that min1≤j≤r σj >
1
2 , and that the numbers α1, . . . , αr

are algebraically independent over Q. Then

1

T
meas

{
t ∈ [0, T ] : ζ(σ + it, α; a) ∈ A

}
, A ∈ B

(
Cr
)
,

converges weakly to Pζ
1

as T →∞.
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Here and in the sequel, meas{A} stands for the Lebesque measure of a
measurable set A ⊂ R. The second joint limit theorem of [7] deals with rational
parameters α1, . . . , αr. In this case, we use Ω2 =

∏
p∈P

γp , where γp = γ for

all primes p. The torus Ω2 is also a compact topological group, and we obtain
a new probability space (Ω2,B(Ω2),m2H), where m2H is the probability Haar
measure on (Ω2,B(Ω2)). Denote by ω2(p) the projection of ω2 ∈ Ω2 to the
coordinate space γp, p ∈ P, and extend the function ω2(p) to the set N by the
formula

ω2(m) =
∏
pl‖m

ωl2(p), m ∈ N.

Suppose that αj = aj/qj , 0 < aj < qj , (aj , qj) = 1, j = 1, . . . , r, and, on
the probability space (Ω2,B(Ω2),m2H), define the Cr-valued random element
ζ
2
(σ, α, ω2; a) by the formula

ζ
2
(σ, α, ω2; a) =

(
ζ2(σ1, α1, ω2; a1), . . . , ζ2(σr, αr, ω2; ar)

)
,

where, for σj >
1
2 ,

ζ2(σj , αj , ω2; aj) = ω2(qj)q
σj
j

∞∑
m=1

m≡aj(modqj)

a(m−aj)/qjω2(m)

mσj
, j = 1, . . . , r.

Let Pζ
2

be the distribution of the random element ζ
2
(σ, α, ω2; a). Then the

second theorem of [7] is of the form.

Theorem 2. For j = 1, . . . , r, suppose that αj =
aj
qj

, 0 < aj < qj, (aj , qj) = 1,

and that σj >
1
2 . Then

1

T
meas

{
t ∈ [0, T ] : ζ(σ + it, α; a) ∈ A

}
, A ∈ B

(
Cr
)
,

converges weakly to Pζ
2

as T →∞.

The aim of this paper is to obtain a joint limit theorem for periodic Hurwitz
zeta-functions with algebraic irrational parameters. The motivation for this is
a possible application of limit theorems in the investigation of the universality
for periodic Hurwitz zeta-functions.

For j = 1, . . . , r, let I(αj) be a maximal linearly independent over Q subset
of the set L(αj). Suppose that L(αj) 6= I(αj), and define D(αj) = L(αj) \
I(αj). If djm = log(m + αj) ∈ D(αj), then the set I(αj) ∪ {djm} is already
linearly dependent over Q. Thus, there exist elements ijm1 , . . . , ijmn ∈ I(αj)
and kj0, . . . , kjn ∈ Z \ {0} such that

djm = −kj1
kj0

ijm1
− · · · − kjn

kj0
ijmn .

From this we find that

m+ αj = (m1 + αj)
−
kj1
kj0 · · · (mn + αj)

−
kjn
kj0 . (1.1)

Math. Model. Anal., 18(1):149–159, 2013.
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Define the sets

M(αj) =
{
m ∈ N0 : log(m+ αj) ∈ I(αj)

}
and

N (αj) =
{
m ∈ N0 : log(m+ αj) ∈ D(αj)

}
.

Now let

Ω3j =
∏

m∈M(αj)

γm,

where γm = γ for all m ∈ M(αj), and Ω3 =
r∏
j=1

Ω3j . Then Ω3 is a com-

pact topological Abelian group. Therefore, on (Ω3,B(Ω3)), the probabil-
ity Haar measure m3H can be defined, and we obtain the probability space
(Ω3,B(Ω3),m3H). Denote by ω3j(m) the projection of ω3j ∈ Ω3j to γm,
m ∈M(αj), and extend the function ω3j(m) to the set N0 by the formula

ω3j(m) = ω3j(m1)
−
kj1
kj0 · · ·ω3j(mn)

−
kjn
kj0 , m ∈ N (αj),

if equality (1.1) holds. Here the principal values of roots are taken. Denote
by ω3 = (ω31, . . . , ω3r) the elements of the group Ω3, and, on the probability
space (Ω3,B(Ω3),m3H), define the Cr-valued random element ζ

3
(σ, α, ω3; a)

by the formula

ζ
3
(σ, α, ω3; a) =

(
ζ3(σ1, α1, ω31; a1), . . . , ζ3(σr, αr, ω3r; ar)

)
,

where, for σj >
1
2 ,

ζ3(σj , αj , ω3j ; aj) =

∞∑
m=0

amjω3j(m)

(m+ αj)σj
, j = 1, . . . , r.

Denote by Pζ
3

the distribution of the random element ζ
3
(σ, α, ω3; a). The main

result of the paper is the following theorem.

Theorem 3. Suppose that the numbers α1, . . . , αr are algebraic irrational, the

set
r⋃
j=1

I(αj) is linearly independent over Q, and that min1≤j≤r σj >
1
2 . Then

PT (A)
def
=

1

T
meas

{
t ∈ [0, T ] : ζ(σ + it, α; a) ∈ A

}
, A ∈ B

(
Cr
)
,

converges weakly to Pζ
3

as T →∞.

Theorem 3 is the first attempt to obtain probabilistic limit theorems used
in proofs of universality theorems for zeta-functions. On the other hand, Theo-
rem 3 characterizes the asymptotic behaviour of a collection of periodic Hurwitz
zeta-functions with algebraic irrational parameters. This is a motivation of the
paper.
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2 A Limit Theorem on the Torus Ω3

In this section, we consider the weak convergence of

QT (A) =
1

T
meas

{
t ∈ [0, T ] :

((
(m+ α1)−it : m ∈M(α1)

)
, . . . ,(

(m+ αr)
−it : m ∈M(αr)

))
∈ A

}
, A ∈ B(Ω3).

Theorem 4. Suppose that the numbers α1, . . . , αr satisfy the hypotheses of
Theorem 3. Then QT converges weakly to the Haar measure m3H as T →∞.

Proof. The dual group of Ω3 is isomorphic to

D def
=

( ⊕
m∈M(α1)

Zm
)
⊕ · · · ⊕

( ⊕
m∈M(αr)

Zm
)
,

where Zm = Z for all m ∈ M(αj), j = 1, . . . , r. An element k = (k1m : m ∈
M(α1), . . . , krm : m ∈ M(αr)) of D, where only a finite number of integers
kjm, j = 1, . . . , r, are distinct from zero, acts on Ω3 by

x→ xk =
∏

m∈M(α1)

xk1m1m . . .
∏

m∈M(αr)

xkrmrm ,

where x = ((x1m : m ∈ M(α1)), . . . , (xrm : m ∈ M(αr))) ∈ Ω3. Therefore, the
Fourier transform gT (k) of the measure QT is of the form

gT (k) =

∫
Ω3

( ∏
m∈M(α1)

xk1m1m . . .
∏

m∈M(αr)

xkrmrm

)
dQT

=
1

T

∫ T

0

( ∏
m∈M(α1)

(m+ α1)−itk1m . . .
∏

m∈M(αr)

(m+ αr)
−itkrm

)
dt

=
1

T

∫ T

0

exp

{
−it

( ∑
m∈M(α1)

k1m log(m+ α1) + · · ·

+
∑

m∈M(αr)

krm log(m+ αr)

)}
dt, (2.1)

where only a finite number of integers kjm, j = 1, . . . , r, are distinct from zero.

Since the set
r⋃
j=1

I(αj) is linearly independent over Q, we have that

l(k)
def
=

∑
m∈M(α1)

k1m log(m+ α1) + · · ·+
∑

m∈M(αr)

krm log(m+ αr) = 0

if and only if k = 0. Therefore, after integration in (2.1), we find that

gT (k) =

{
1 if k = 0,
exp{−iTl(k)}−1
−iTl(k) if k 6= 0.

Math. Model. Anal., 18(1):149–159, 2013.
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Thus,

lim
T→∞

gT (k) =

{
1 if k = 0,

0 if k 6= 0,

and it follows from a continuity theorem for probability measures on compact
groups (see, for example, Theorem 1.4.2 from [3]) that the measure QT con-
verges weakly to m3H as T →∞. ut

3 Limit Theorems for Absolutely Convergent Series

For fixed σ̂ > 1
2 , and m ∈ N0, n ∈ N, let

v(m,n, αj) = exp

{
−
(
m+ αj
n+ αj

)σ̂}
, j = 1, . . . , r.

Define

ζn(s, αj ; aj) =

∞∑
m=0

amjv(m,n, αj)

(m+ αj)s
, j = 1, . . . , r.

Then the series for ζn(s, αj ; aj) converges absolutely for σ > 1
2 independently

on the arithmetical nature of αj [4]. For A ∈ B(Cr), we set

PT,n(A) =
1

T
meas

{
t ∈ [0, T ] : ζ

n
(σ + it, α; a) ∈ A

}
,

where ζ
n
(σ + it, α; a) =

(
ζn(σ1 + it, α1; a1), . . . , ζn(σr + it, αr; ar)

)
. Moreover,

for ω3 = (ω31, . . . , ω3r) ∈ Ω3, let

ζn(s, αj , ω3j ; aj) =

∞∑
m=0

amjω3j(m)v(m,n, αj)

(m+ αj)s
, j = 1, . . . , r.

Obviously, the series for ζn(s, αj , ω3j ; aj) also converges absolutely for σ > 1
2 .

Let ζ
n
(σ + it, α, ω3; a) =

(
ζn(σ1 + it, α1, ω31; a1), . . . , ζn(σr + it, αr, ω3r; ar)

)
,

and, for A ∈ B(Cr) and a fixed ω̂3 = (ω̂31, . . . , ω̂3r),

P̂T,n(A) =
1

T
meas

{
t ∈ [0, T ] : ζ

n
(σ + it, α, ω̂3; a) ∈ A

}
.

Theorem 5. Suppose that min1≤j≤r σj >
1
2 .Then, on (Cr,B(Cr)) , there exists

a probability measure Pn such that the measures PT,n and P̂T,n both converge
weakly to Pn as T →∞.

Proof. Define a function hn : Ω3 → Cr by the formula

hn(ω3) =

( ∞∑
m=0

am1ω31(m)v(m,n, α1)

(m+ α1)σ1
, . . . ,

∞∑
m=0

amrω3r(m)v(m,n, αr)

(m+ αr)σr

)
.

Since the series in the definition of hn converge absolutely, the function hn is
continuous, moreover,

hn
((

(m+ α1)−it : m ∈M(α1)
)
, . . . ,

(
(m+ αr)

−it : m ∈M(αr)
))

=
(
ζn(σ1 + it, α1; a1), . . . , ζn(σr + it, αr; ar)

)
= ζ

n
(σ + it, α; a).
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Hence, we have that

PT,n(A) = QTh
−1
n (A), A ∈ B(Cr).

Therefore, Theorem 4 together with Theorem 5.1 from [1] show that the mea-
sure PT,n converges weakly to m3Hh

−1
n as T →∞.

It remains to prove that the measure P̂T,n also converges weakly to m3Hh
−1
n

as T →∞. Let a function h : Ω3 → Ω3 be given by the formula h(ω3) = ω3ω̂3.
Then we have that

hn
(
h
(((

(m+ α1)−it : m ∈M(α1)
)
, . . . ,

(
(m+ αr)

−it : m ∈M(αr)
))))

=
(
ζn(σ1 + it, α1, ω31; a1), . . . , ζn(σr + it, αr, ω3r; ar)

)
= ζ

n
(σ + it, α, ω̂3; a).

Thus, the above arguments show that the measure P̂T,n converges weakly to
m3H(hnh)−1 as T → ∞. However, the invariance of the Haar measure m3H

implies the equality m3H(hnh)−1 = (m3Hh
−1)h−1n = m3Hh

−1
n . ut

4 Approximation in the Mean

In this section, we approximate ζ(σ + it, α, ; a) by ζ
n
(σ + it, α, ; a), and ζ(σ +

it, α, ω3; a) by ζ
n
(σ + it, α, ω3; a). We use the Euclidean metric ρ in Cr. Let

zj = (zj1, . . . , zjr) ∈ Cr, j = 1, 2, and

ρ(z1, z2) =

( r∑
j=1

|z1j − z2j |2
) 1

2

.

Lemma 1. Suppose that min1≤j≤r σj >
1
2 . Then

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
(
ζ(σ + it, α, ; a), ζ

n
(σ + it, α, ; a)

)
dt = 0.

Proof. By Lemma 6 from [6], we have that, for every j = 1, . . . , r,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

∣∣ζ(σj + it, αj ; aj)− ζn(σj + it, αj , ; aj)
∣∣dt = 0.

Since

ρ(z1, z2) ≤
r∑
j=1

|z1j − z2j |, (4.1)

this proves the lemma. ut

Lemma 2. Suppose that min1≤j≤r σj >
1
2 . Then, for almost all ω3 ∈ Ω3,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
(
ζ(σ + it, α, ω3; a), ζ

n
(σ + it, α, ω3; a)

)
dt = 0.

Math. Model. Anal., 18(1):149–159, 2013.
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Proof. By Lemma 15 from [6], for almost all ω3j ∈ Ω3j and every j = 1, . . . , r,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

∣∣ζ(σj +it, αj , ω3j ; aj)− ζn(σj +it, αj , ω3j ; aj)
∣∣dt = 0. (4.2)

Let Ω̂3j be the subset of Ω3j whose elements satisfy the later relation. Then we

have that m3jH(Ω̂3j) = 1, where m3jH is the Haar measure on (Ω3j ,B(Ω3j)),

j = 1, . . . , r. Let Ω̂3 = Ω̂31 × · · · × Ω̂3r. Since the Haar measure m3H is
the product of the measures m31H , . . . ,m3rH , we find that m3H(Ω̂3) = 1.
Therefore, the assertion of the lemma follows from inequality (4.1) and relation
(4.2). ut

5 Limit Theorems for ζ(s, α; a) and ζ
3
(s, α, ω3; a)

For A ∈ B(Cr), define one more probability measure

P̂T (A) =
1

T
meas

{
t ∈ [0, T ] : ζ

3
(σ + it, α, ω3; a) ∈ A

}
.

Theorem 6. Suppose that the numbers α1, . . . , αr satisfy the hypotheses of
Theorem 3, and that min1≤j≤r σj >

1
2 . Then, on (Cr,B(Cr)), there exists a

probability measure P such that the measures PT and P̂T both converge weakly
to P as T →∞.

Proof. Let θ be a random variable defined on a certain probability space
(Ω,A,P) and uniformly distributed on the interval [0, 1]. Define

XT,n = XT,n(σ) =
(
XT,n,1(σ1), . . . , XT,n,r(σr)

)
= ζ(σ + iTθ, α; a)

which is a Cr-valued random element on the probability space (Ω,A,P). Then
we have, in view of Theorem 5, that

XT,n
D−→

T→∞
Xn, (5.1)

where Xn = Xn(σ) = (Xn,1(σ1), . . . , Xn,r(σr)) is the Cr-valued random ele-
ment which distribution is the limit measure Pn in Theorem 5, and, as usual,
D−→ means the convergence in distribution.

Since the series for ζn(σj + it, αj ; aj) converges absolutely, the properties of
Dirichlet series imply

lim
T→∞

1

T

∫ T

0

∣∣ζn(σj+it, αj ; aj)
∣∣2dt=

∞∑
m=0

|amj |2v2(m,n, αj)

(m+ αj)2σj
≤
∞∑
m=0

|amj |2

(m+ αj)2σj
,

for all n ∈ N, j = 1, . . . , r. Hence, for j = 1, . . . , r,

lim sup
T→∞

1

T

∫ T

0

∣∣ζn(σj + it, αj ; aj)
∣∣dt ≤ Rj , (5.2)
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where Rj =
( ∞∑
m=0

|amj |2

(m+αj)
2σj

) 1
2 < ∞. Now let ε > 0 be arbitrary number, and

Mj = Mj(ε) = Rjrε
−1, j = 1, . . . , r. Then, in view of (5.2),

lim sup
T→∞

P
(∣∣XT,n,j(σj)

∣∣ > Mj for at least one j = 1, . . . , r
)

≤
r∑
j=1

lim sup
T→∞

P
(∣∣XT,n,j(σj)

∣∣ > Mj

)
≤

r∑
j=1

lim sup
T→∞

1

T
meas

{
t ∈ [0, T ] :

∣∣ζn(σj + it, αj ; aj)
∣∣ ≥Mj

}
≤

r∑
j=1

1

Mj
sup
n∈N

lim sup
T→∞

1

T

∫ T

0

∣∣ζn(σj + it, αj ; aj)
∣∣dt ≤ r∑

j=1

Rj/Mj = ε.

This together with (5.1) implies

P
(∣∣Xn,j(σj)

∣∣ > Mj for at least one j = 1, . . . , r
)
≤ ε. (5.3)

for all n ∈ N. Now define Kr
ε =

{
z ∈ Cr : |zj | ≤Mj , j = 1, . . . , r

}
. Then Kε is

a bounded closed set, thus it is a compact set on Cr. Moreover, by (5.3),

P
(
Xn ∈ Kr

ε

)
≥ 1− ε,

or, by the definition of Xn,

Pn
(
Kr
ε

)
≥ 1− ε

for all n ∈ N. This means that the family of probability measures {Pn: n ∈ N} is
tight, and, by the Prokhorov theorem, see, for example, [1], it is relatively com-
pact. Therefore, there exists a subsequence {Pnk} ⊂ {Pn} such that the mea-
sure Pnk converges weakly to a certain probability measure P on (Cr,B(Cr))
as k →∞. In other words,

Xnk

D−→
k→∞

P. (5.4)

Now define
XT = XT (σ) = ζ(σ + iTθ, α; a).

Then XT is a Cr-valued random element on the probability space (Ω,A,P).
Using Lemma 1.1, we find that, for every ε > 0,

lim
n→∞

lim sup
T→∞

1

T
meas

{
t ∈ [0, T ] : ρ

(
ζ(σ + it, α; a), ζ

n
(σ + it, α; a)

)
≥ ε
}

≤ lim
n→∞

lim sup
T→∞

1

εT

∫ T

0

ρ
(
ζ(σ + it, α; a), ζ

n
(σ + it, α; a)

)
dt = 0.

This and the definitions of the random elements XT,n and XT imply

lim
n→∞

lim sup
T→∞

P
(
ρ(XT , XT,n) ≥ ε

)
= 0. (5.5)
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The relations (5.1), (5.4) and (5.5) show that the hypotheses of Theorem 4.2
from [1] are satisfied. Therefore,

XT
D−→

T→∞
P, (5.6)

and this shows that the measure PT converges weakly to P as T →∞. More-
over, in virtue of (5.6) we have that the measure P is independent of the choice
of the subsequence Pnk . Thus, the relative compactness of the family {Pn}
yields the relation

Xn
D−→

n→∞
P. (5.7)

Reasoning similarly to the case of the measure PT and using Theorem 5,
Lemma 2 and (5.7), we obtain without difficulty that the measure P̂T also
converges weakly to P as T →∞. ut

In view of Theorem 6, for proving Theorem 3, it remains to identify the
measure P in (5.6).

6 Proof of Theorem 3

We start with one statement from ergodic theory. Let at = {((m+α1)−it : m ∈
M(α1)), . . . , ((m + αr)

−it : m ∈ M(αr))}, t ∈ R. Define the one-parameter
family {Φt : t ∈ R} of transformation of Ω3 by the formula Φt(ω3) = atω3,
ω3 ∈ Ω3. Then {Φt : t ∈ R} is a one-parameter group of measurable measure
preserving transformations on the group Ω3.

Lemma 3. Suppose that the numbers α1, . . . , αr satisfy the hypotheses of The-
orem 3. Then the one-parameter group {Φt : t ∈ R} is ergodic.

Proof. Let χ be a character of the group Ω3. We have seen in the proof of
Theorem 4 that

χ(ω3) =
∏

m∈M(α1)

ωk1m31 (m) . . .
∏

m∈M(αr)

ωkrm3r (m), ω3 = (ω31, . . . , ω3r) ∈ Ω3,

where only a finite number of integers kjm, j = 1, . . . , r, are distinct from zero.
First suppose that χ is a non-trivial character. Then we have that

χ(at) =
∏

m∈M(α1)

(m+ α1)−itk1m . . .
∏

m∈M(αr)

(m+ αr)
−itkrm

= exp

{
−it

( ∑
m∈M(α1)

k1m log(m+ α1) + · · ·+
∑

m∈M(αr)

krm log(m+ αr)

)}
.

Using the linear independence of the set
r⋃
j=1

I(αj), hence, we find that there

exists τ0 ∈ R \ {0} such that χ(aτ0) = 1. The further proof is standard, see,
for example, [5]. ut
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Proof of Theorem 3. We take a fixed continuity set A of the limit measure P in
Theorem 6. Then, using the equivalent of the weak convergence of probability
measures in terms of continuity sets, see Theorem 2.1 from [1], we have that

lim
T→∞

1

T
meas

{
t ∈ [0, T ] : ζ

3
(σ + it, α, ω3; a) ∈ A

}
= P (A). (6.1)

Let θ̂ be a random variable on (Ω3,B(Ω3),m3H) given by

θ̂(ω3) =

{
1 if ζ

3
(σ, α, ω3; a) ∈ A,

0 otherwise.

Then, obviously, the expectation E(θ̂) of θ̂ equals∫
Ω3

θ̂ dm3H = m3H

(
ω3 ∈ Ω3 : ζ

3
(σ, α, ω3; a) ∈ A

)
= Pζ

3
(A). (6.2)

From Lemma 3, the ergodicity of the random process θ̂(Φt(ω3)) follows. There-
fore, an application of the classical Birkhoff–Khintchine theorem, see, for ex-
ample, [2], shows that, for almost all ω3 ∈ Ω3,

lim
T→∞

1

T

∫ T

0

θ̂
(
Φt(ω3)

)
dt = E(θ̂). (6.3)

On the other hand, by the definitions of θ̂ and Φt, we have that

1

T

∫ T

0

θ̂
(
Φt(ω3)

)
dt =

1

T
meas

{
t ∈ [0, T ] : ζ

3
(σ + it, α, ω3; a) ∈ A

}
.

This, (6.2) and (6.3) imply, for almost all ω3 ∈ Ω3, the equality

lim
T→∞

1

T
meas

{
t ∈ [0, T ] : ζ

3
(σ + it, α, ω3; a) ∈ A

}
= Pζ

3
(A).

Hence, taking into account (6.1), we obtain that P (A) = Pζ
3
(A). Since A was

an arbitrary continuity set of P , the latter relation is true for all continuity
sets of P , and this shows that P (A) = Pζ

3
(A) for all A ∈ B(Cr). ut
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