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Abstract. A fully discrete high order method is constructed and justified for a class
of Fredholm integral equations of the second kind with kernels that may have bound-
ary and logarithmic diagonal singularities. The method is based on the improving
the boundary behaviour of the kernel with the help of a change of variables, and on
“central part” interpolation by polynomials on the uniform grid.
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1 Introduction

In the present paper we treat a fully discrete method of accuracy order O(h™)
for the integral equation

ulz) = / la(z,y)log |z — y| + bz, y)]u(y) dy + fz), 0<z<1, (L1)

with the logarithmic diagonal singularity in the kernel. The coefficient func-
tions a,b € C™([0,1] x (0,1)) and the free term f € C[0,1] N C™(0,1) may
have certain boundary singularities characterised in Lemma 1 and Lemma 2 be-
low. The method is based on a smoothing change of variables (see for example
[3, 4, 6, 7, 10]) and a product integration method based on the “central part”
interpolation on the uniform grid, which has also been used in [8] for solving
weakly singular integral equation. We rely on the fact that the “central part”
interpolation of smooth functions by polynomials and by high order polynomial
splines on uniform grids has excellent accuracy and stability properties com-
parable with the accuracy and stability properties of Chebyshev interpolation
[16]. The use of data only on uniform grids is preferable also from the algo-
rithmical point of view due to better numerical stability. See Section 3 for the
details about the “central part” interpolation. In Section 2 we reduce problem
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(1.1) by the smoothing change of variables to the form with smooth data and
solution.

The present paper is a complement to work [14], where the convergence and
the error of the product quasi-interpolation method has been presented for the
integral equation (1.1). We refer yet to [9], where another type fully discrete
method for solving (1.1) has been constructed.

Denote by T the integral operator of equation (1.1)

1
(Tu)(z) = / [a(z 1) log |z — | + b(z )] uly) dy.

For m € N, Ao, \; < 1, denote by C™*0:21(0, 1) the weighted space of functions
u € C[0,1] N C™(0,1) such that,

m

lull gmrori 0,1y = Zozuglwk 1o (@) wp—142, (1 — a:)|u(k)(a:)| < 00,
xr

where

() 17 p<07
w,(r) =
. r?/(1+ [logr|), p>0, rpeR, r>0.

Clearly, C™[0,1] C C™*0-21(0, 1) for A\g, Ay < 1.
Lemma 1. Let a,b € C([0,1] x (0,1)) satisfy for (z,y) € [0,1] x (0,1) the

inequality
|a(z,y)| + [b(z,y)| < ey (1 —y)™N,

where Ao, \1 € R, Ao < 1, Ay < 1. Then T maps C[0,1] into C[0,1], and
T:C0,1] — C[0,1] is compact.
The proof is standard, cf. [5]; a detailed argument can be found in [11].

Denote 050!, = (0/0x)*(0/dy)".
Lemma 2 [see [11]]. Let a,b € C™([0,1] x (0,1)) and let for k +1 < m,
(z,y) € 0,1] x (0, 1),

050 a(z,y)| + |050Lb(x,y)| < cy o 1 —y) M7

where \g < 1,A\; < 1. Then T maps the Banach space C™*-*1(0, 1) into itself,
and T : C™20A1(0,1) — C™*021(0,1) 4s compact.

Let I be the identity mapping and denote N'(I-T) = {u € C[0,1]: u=Tu}.
The following theorem is a consequence of Lemmas 1 and 2.

Theorem 1. Assume the conditions of Lemma 2 and N'(I —T) = {0}. Then
for f € Cm’AO’Al(O 1) also the solution of equation (1.1) u € C™*0*1(0,1) and
[lu| cmroi(0,1) - Lhe constant ¢ is independent of f.

cmroa(0,1) S € 1]

Our main results will be established under assumptions of Theorem 1.

Math. Model. Anal., 18(1):136-148, 2013.
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2 The Smoothing Change of Variables

In the integral equation (1.1) we perform the change of variables
=), y=¢(), 0<t<1,0<s<1,

where ¢ : [0,1] — [0, 1] is defined by the formula

1 t
p(t) = —/ oPo (1 - )P do,
0

Cx
(p1 —1)!
po(po+1)---(po+p1—1)

1
Ch = / o 11— o)t do = (2.1)
0

We assume, that pg,p; € N. If so, the integral in (2.1) can be evaluated in
a stable way by an exact Gauss rule, since the integrand is a polynomial of
degree pg + p1 — 2. Clearly, ©(0) =0, ¢(1) = 1 and () is strictly increasing
n [0,1]. Hence ‘p(tl 2(s) 5 0, |o(t) — o(s)] = M\t s| for s # t, and
equation (1.1) takes the form

1
v(t) = /0 (A(t,s)log [t —s| + B(t,s))v(s) ds+g(t), 0<t<1, (2.2)

where v(t) = u(p(t)) is the new function we look for,

( ) A(ta S) = a(@(t)’ QD(S»(pl(S)a
B(t75) = [a(p(t), ¢(5)) log D(t, 5) +b((t), (s))] ' (5),

¢(t7s):{( (t))_(p(s))/(t—s)’ t#S}.

(s t=s

Let us characterise the boundary behaviour of functions in equation (2.2).
Clearly,

0<o(t)<ctr, 0<1-—pt) <cl-1t)P,
le® ()| < etro k1 -tk 0<t<1, k=1,...,m.

Lemma 3. Let a and b satisfy the conditions of Lemma 2. Then for j =
0,....m, 0<t<1,0<s <1, it holds

|0a((t), ¢(9))] + |01b((2), (5)) | < esTPONTI (1 — 5) 7PN,

The proof of the inequality is based on the formula of Faa di Bruno

(i)jU(W(@)
_ 3 k'.j.!.kv!u(k1+-~+kj)((p(m))(LPII(!HC))’CI (‘P(j?(x))kj7

|
O J
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where the sum is taken over all non-negative integers ki, ..., k; such that k; +
2ko + - -+ jk; = 5.

The derivatives of the function &(¢, s) have singularities at (0,0) and (1, 1),
the only zeroes of &(t,s) in [0,1] x [0,1]. It is easy to see that

OFd(t,s) < (t+s)Po F (1 —t)+ (1 - s))pl_k_l, ast,s — 0orasts—1,

that together with the formula of Faa di Bruno implies the following results.
Lemma 4. For j=0,...,m, 0<t<1,0<s <1, it holds

|07 (1og (B(t,5)))| < et + )79 (1 —t) + (1 —5)) 7.
Next we present estimates for functions A(¢, s), B(t, s), and 07 [A(t, s)v(s)],
O [B(t, s)u(s)].

Lemma 5. Let a and b satisfy the conditions of Lemma 1. Then the following
holds true: if pg,p1 > 1 satisfy

Po > 1/(1—)\0), p1 > 1/(1—>\1), (23)
then for (t,s) € [0,1] x (0,1) it holds
|A(t, s)| < 0550(1 — 5)51, |B(t, s)| < 0550(1 — 5)51 |10g s(1— 5)’, (2.4)

with dg := (1 — )\o)po —-1>0, 6 := (1 — /\1)])1 —1>0.
Lemma 6 [see [13]]. Let the conditions of Lemma 2 be fulfilled. If pg,p1 > 1
satisfy
po>m/(1=Xo), p1>m/(1—= A1), (2.5)
then for (t,s) € [0,1] x (0,1) it holds
’A(t, s)| < csm_1+5°(1 — s)m_1+51,
|B(t,s)| < csMTIH00 (] — gym—1t+a |log s(1 — s)],

with dg := (1 — Ag)po —m >0, 61 := (1 — A\1)p1 — m > 0. About the boundary
behaviour of v(t) = u(p(t)) see Lemma 3.1 in [13]: for u € C™A0:A1(0, 1),
j=1,...,m, 0<t <1, it holds

. tho— j A <0
”U(])(t)| < C HUHCm Xos Al(O 1) {t(l Xo)po—7 |10gt|, 0 S )\0 < 1}
(1—t)p1_j, A1 <0
X . , 2.6
{(1 —t)I=A)pi=g |log(1 —t)], 0<XA\ <1 (26)
|0 [At, $)u(s)]| < €570 (1 = 8) 70l onng v (0.1 (2.7)

|07 [B(t, s)v S)H < cs_1+5°(1 — )t log s(1 — s)| [ull gmronriory - (2:8)
We see, that under conditions (2.5) and 0 < \g < 1, 0 < \; < 1, it holds
vD0) =0 (1) =0, j=1,...,m; (2.9)

if \p < 0,A1 <0, then (2.9) holds if pg, p1 > m.

We extend A(t,s) and B(t,s) with respect to s outside (0,1) by the zero
value. Under conditions (2.3) we obtain continuous functions on [0,1] x R,
see (2.4).

Math. Model. Anal., 18(1):136-148, 2013.
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3 Central Part Interpolation by Polynomials and Piece-
wise Polynomials

Given an interval [a,b] and m € N, introduce the uniform grid consisting of m
points
b—a

1
i=a+|i—=]h, i=1,....,m, h= . 1
Ti=a <z 2)h i m, h - (3.1)

Denote by II,, the Lagrange interpolation projection operator assigning to any
u € Cla,b] the polynomial IT,,u € P,,_; that interpolates u at points (3.1);
Pin—1 is the set of polynomials of degree not exceeding m — 1.

Lemma 7 [see [16]]. In the case of interpolation knots (3.1), for f € C™][a, b]
it holds

223, 17(@) = (T D@ < 0mh™ 2y |71 @), (32)
13 Cm-1)
b= g am

where 0., = €, means that 0,,/¢,, — 1 as m — oo. Further, for m = 2k,
k>1,

max |f(x) — (Hmf)(a:)| < ¥, h™ max |f(m)(a:)|, (3.3)

2 <e<TK41 a<z<b

2m m! ~ ﬂ_m—% -m
I =2 Gy & VAT

whereas form=2k+1, k> 1,

wk<122)$(k+2’f(x) B (Hmf)($)| = ﬁmhm a@3§b|f(m) ({I?)‘, (34)
’L9'm, = 2\/§ (k')z = 2\/3 2/7Tm7%27m.

9 2k+1)! 9

In the central parts of [a, b], the interpolation process on the uniform grid
has good stability properties as m increases: in contrast to an exponential
growth of [|ITn || ¢4 e @ m — oo, it holds by the Runck’s theorem
(see [12])

Tl o232 i, e i) < (14 logm), (3.5)

2

where the constant ¢, depends only on 7 > 0.

Introduce in R the uniform grid {jh: j € Z} where h = 1/n, n € N. Let
m > 2 be fixed. Given a function f € C[—4§,1+ d], 6 > 0, we define a piece-
wise polynomial interpolant I, ,,, f € C[0,1] as follows. On every subinterval
[7h, (7 +1)h], 0 < j < n—1, the function II}, ,, f is defined independently from
other subintervals as a polynomial IT ,[LJ ]m f € Pm—1 of degree < m — 1 by the
conditions

Y f(ih) = f(ih), for | € Z such that | — j € Zy, (3.6)
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where Z,, = {k €Z: -3 <k< %} The I1}, ,,, f is uniquely defined at interior
knots and I, ,, f is continuous on [0,1] (see [8]); the one side derivatives of
the interpolant I1, ,, f at the interior knots may be different.

Introduce the Lagrange fundamental polynomials Ly, € Pp—1, k € Zy,
satisfying Ly, (1) = 0y for | € Z,,, where 0y ; is the Kronecker symbol, d5; = 0
for k # 1 and dy 1, = 1. An explicit formula for Ly, ,,, is given by

t—1
Lim®) = ] 7+ #*€Zm (3.7)
l€Zn \{k}

Then (see [8])

(]]}[lj;]mf)(t): > G +ER) Lem(nt — ), j=0,...,n—1. (3.8)
k€EZ,,

For m > 3, IIj, ,» f uses values of f outside of [0,1]. For f € CI0,1], I mf
obtains a sense after an extension of f onto [—d,1 + 6] with some ¢ > 0.
We are in a lucky situation if f € C™]0, 1] satisfies the boundary conditions
fO90) = f9(1)=0,j =1,...,m, cf. Lemma 6 and conditions (2.9), then
the simplest extension operator

f(0), =6<t<0
Es: Cl0,1] = C[-6,1+6], (Esf)t)=< f(t), 0<t<1
f(1), 1<t<1+446

maintains the smoothness of f. The operator
Py = I Es - C[0,1] — C[0, 1] (3.9)

is well defined and P,f_’m = Py, Le., P, is a projector in C[0,1]. For
wy, € R(Ph,m) (the range of Py ,,) we have wy, = P, pwy, = I, m Eswy, and
due to (3.8)

wi(t) = > (Eswp)((j + k)h) L (nt — ),
k€Zm

for t € [jh,(j +1)h], j = 0,...,n — 1, where (Eswy)(ih) = wy(ih) for i =
0,...,n, (Eswy)(ih) = wp(0) for ¢ < 0 and (Eswp)(th) = wy(1) for i > n.
Thus wy, € R(Pp,m) is uniquely determined on [0, 1] by its knot values wy, (ih),
i=0,...,n. We conclude, that dimR(Py, ,,) = n + 1. It is also clear, that for
a wy, € R(Pp,m) we have wy, = 0 if and only if wy,(ih) =0,7i=0,...,n.

On [jh,(j + 1)h] for f € C[—0,1 + §] the interpolant I} ..f = Hi[f]mf
coincides with the polynomial interpolant I7,, f constructed for f on the interval
[a;,b;] where a;j = (j — Z52)h, b; = (j + Z1)h in the case of even m and
aj = (j — §)h, bj = (j + F)h in the case of odd m; moreover, [jh, (j + 1)h]
is a “central” part of [a;, b;] on which the interpolation error can be estimated
by (3.3) and (3.4).

In this way we obtain the following result.

Math. Model. Anal., 18(1):136-148, 2013.



142 K. Orav-Puurand
Lemma 8 [see [8]].
(i) For f € C™[—6,1+ 4],

MO~ unf O S 0n™ e |10

with ¥y, defined in (3.3) and (3.4) respectively for even and odd m.

(ii) For f € V(™ = {v e C™[0,1]: v (0) =0 (1) =0, j=1,...,m}, it

holds
_ m (m)
ax [ f() = (Pom f)(@)] < 9™ max [17(0)]. (3.10)
From (3.5) we obtain that
1Pl o115 00,1y < €(1 + logm). (3.11)

Thus the norms || P | c01]—cfo,1 are uniformly bounded with respect to n.

Together with (3.10), noticing that V(™) is dense in C[0,1], the Banach-
Steinhaus theorem yields the following result.

Lemma 9. For any f € C[0,1], maxo<¢<1 |f(t) — (Phmf)(t)] = 0, asn — oco.

4 A Product Integration Method Based on the Central
Part Interpolation

We determine the approximate solution vy, of equation (2.2) by solving the n+1
dimensional problem

on(t) = /0 log |t — | P (A(t, s)un(s)) ds
—1—/0 Ppm (B(t, s)un(s)) ds + g(t), 0<t<1. (4.1)

Here Py, ., (see (3.9)) is applied to the products A(t, s)vn(s) and B(t, s)vi(s)
as functions of s, treating t as a parameter. This is the operator form of a
product interpolation method corresponding to the piecewise polynomial “cen-
tral part” interpolation on the uniform grid {ih: i =0,...,n}. Below we use
the following notations for the integral operators of equations (1.1), (2.2) and
(4.1) respectively:

@) = [ [ofe.)logle —3] + b p]u)dy. 0<a <1
(Tv)(t)z/o [A(t, s)log|t — 5| + B(t,s)]u(s)ds, 0<t<1,

1
(Tho)(t) :/0 [log [t—$|Pn.m (A(t, 5)1}(5)) + thm(B(t, s)v(s))] ds, 0<t<1.
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Theorem 2.

(i) Let a and b satisfy the conditions on Lemma 1, N(I —T) = {0}, [ €
C[0,1] and let po > 1/(1 —Xo) and p1 > 1/(1 —A1). Then for sufficiently
large n, equation (4.1) has a unique solution vy, € C[0,1] and

lv—vn|ly = trél[gﬁ]’v(t) —up(t)] — 0, (4.2)

where v € C[0,1] is the unique solution of equation (2.2).

(ii) Let a and b satisfy the conditions of Lemma 2, N(I-T) = {0}, f €
C™A A0, 1); let po, p1>m and let py and py satisfy the conditions (2.5).
Then

[0 = vnlloe < ™ [[fllemaoai(o) s (4.3)

constant ¢ in (4.3) is independent of n and f.

Proof. (i) Accept the assumptions formulated in (i). We claim that T, — T
compactly in C[0, 1] as n — oo, i.e. (see [1, 15])

[ Tov — T, =0 for every v € C[0,1], (4.4)
(vn) € C[0,1], |Jvnllo <1 = (Thvy) is relatively compact in C[0,1]. (4.5)

Indeed, the sets {A(t,-): 0 <t <1} and {B(t,-): 0 <t < 1} are relatively com-
pact in C[—0,1 + ¢], and by Lemma 9 for a fixed v € C]0,1] extended by
v(s) =v(0) for =0 < s <0 and v(s) =v(1) for 1 <s <1+ 6 it holds

sup max |A(t, s)v(s) — P (A(t,s)v(s))| = 0, asn — oo,
0<t<10<s<1

sup max |B(t,s)v(s) — Pum(B(t,s)v(s))| =0, asn — oco.
0<t<1 0<s<1
This together with the equality || P, | < c(14+logm) (see (3.11)) implies (4.4).
The proof of (4.5) can be built using the Arzela theorem.

Due to the condition N (I — T) = {0} also N(I —T) = {0}. As well
known (see [1, 2, 5, 15]) relations (4.4), (4.5) and N (I —7) = {0} imply that,
for sufficiently large n the operators I — 7}, are invertible in C10,1] and the
inverses are uniformly bounded:

(7 — E)ilHC[O,l]*)C[O,l] <6 n2mo.

Let v and vp, be solutions of equations (2.2) and (4.1) respectively. Then
v—wy = (I —Ty) YTv—Thv) and

[v = vnlle < cllTv=Tholl, 7 =m0,

and, due to (4.4), the convergence (4.2) follows.
(ii) Let us prove the error estimate (4.3) under conditions (2.5) on py and
p1, and pg,p1 > m. For the solution u of (1.1) we have by the Theorem 1

Math. Model. Anal., 18(1):136-148, 2013.
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u € C™*21(0,1). On the basis of (2.7)-(2.9) and (3.10) we find that
|(Tw)(t) = (Twv)(#)]

1
/O [A(t,s)log |t — s| + B(t, s)]v(s) ds

— /o [log [t — $|Ppm (A(t, $)v(s)) + Pam (B(t, 5)v(s))] ds

= '/ log [t—s|(I—Ppm) (A(t, s)v(s)) d8—|—/0 (I—Ppm)(B(t, s)v(s)ds

/ ’10g|t 8|(I—=Ppm) (A(t, s)v |ds—|—/ |(I=Phm)(B(t, s)v(s)| ds
< clhm/ [log |t — s\|5*1+60(1 —5)" 0. 2l cmorors (0,1)
0

1
n czhm/ sT1H00(] _ g)=1+6 ’10g s(1 — s)’ ds - ||lullgm.ror (0,1)
0

< ch™|ul

[OLLILI IS (0,1).

This proves (4.3) and completes the proof of the Theorem. 0O

Let us derive the matrix form of the product interpolation method (4.1).
From the definition of the operator Py, ,, (see (3.8)):

n_1 GtDHA
vh(t)zz / log [t — s Z A t,(j+ k) ) h((j—i—k)h)Lk’m(ns—j)ds
7=0 jh ke€Z.,
ey GH+DA
+Z / Z ) h((j—&-k)h)Lk,m(ns—j)ds
i k€Znm

+g(t), 0<t<1.

We obtain the algebraic system of linear equations with respect to the grid
values vy, (ih), ¢ = 0,...,n by collocating at the points ih:

(G+1)h

Z Z{ (ih, (j + k)h) /h log |ih — s|Lgm(ns — j)ds

j=0 keZ J
(G+1)h

B(ih, (j + k)h) / Lk,m(ns—j)ds}wl((ﬁk)m
jh

+g(ih), i=0,...,m;

note that A(ih, (j + k)h) = 0 and B(ih, (j + k)h) = 0 for j + k < 0 and for
j+k > n, thus in the r.h.s the values vy (lh) with I < 0 and [ > n actually are
not exploited.
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With the change of variables ns — j = o we see that

(G+Dh
/ log |ih — s|Lgm(ns — j)ds
ih

1 1
=h llogh/ Ly m(0)do + / log|i — j — o|Lgm(0)do
0 0

and
(G+Dh 1
Ly m(ns—j)ds= h/Lk,m(a)da, ji=0,....n—1, k€ Z,,
ih 0
so we have to compute integrals

1 1
Qi g = logh/ Ly m(0)do + / log |i" — o|Lim(0) do,
0 0

i'=-n+1,...,n, k€ Z,,
and
1
B ::/ Lk)m(()’) do, k€ Zp,.
0
The system takes the form:

n—1
on(ih) =h Y > {A(ih, (j + k)h) ai_j i + B(ih, (j + k)R) Bi you (5 + k)h)

j=0k€Z,,
+ g(ih),

i =0,...,n, or collecting in the r.h.s. the coefficients by vy, ((j +k)h) with fixed
J+k=1,

n—1
vp(ih) = Z ciyvp(lh) +g(ih), i=0,...,n, (4.6)
=1
where
il = h{A(ih,lh) > Qiiikk + B(ih,h) Y ﬁk},
{k€Zp, : 0<I—k<n—1} kE€Zym,

i=0,....,n,l=1,...,n—1.

We took into account that A(ih,lh) = 0 and B(ih,lh) =0for ] <0 and ! > n.
Having determined vy, (ih), i = 0,...,n, through solving the system (4.6), the
collocation solution vp(t) at any intermediate point ¢ € [jh,(j + 1)h], j =
0,...,n—1,is given by

’Uh(O), i+ k<0
w(t) = Y Qon((G+kh), 1<j+k<n—1pLyn(nt—j),
RE€Zm | vp(1), jt+k>n

where Ly, ,, is the Lagrange fundamental polynomial defined in (3.7).

Math. Model. Anal., 18(1):136-148, 2013.
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5 Numerical Example

For testing the algorithm (4.6) we consider equation (1.1) with b(z,y) = 0,
a(z,y) = y_/\o(l — y)‘kh <1, <l

1
u(g;):/ y (1 —y) Mloglr —yldy + f(z), 0<az<L.
0

Table 1. m=2,p=9, \o = A1 =0.75. Table 2. m=3,p =12, Ao = A1 = 0.75.
n €2,n,9 :22.,2:)99 n €3,n,12 :33:27:,1122
4 3.26E—02 4 0.17
8 1.84E—-02 1.77 8 3.11E-02 5.47
16 5.77TE—03 3.19 16 4.39E—-03 7.08
32 1.48E—03 3.89 32 5.42E—-04 8.10
64 3.69E—04 4.01 64 6.72E—05 8.07
128 9.19E—05 4.02 128 8.37TE—06 8.03
256 2.29E—-05 4.01 256 1.04E—-06 8.05
512 5.71E—06 4.01 512 1.30E—07 8
1024 1.42E—-06 4.02 1024 1.62E—08 8.02
Table 3. m=4,p =17, Ao = A1 = 0.75. Table 4. m =5,p =21, Ao = A1 =0.75.
n €4,m,9 o n €5,n,21 ey
4 0.14 4 0.20
8 1.42E—02 9.86 8 2.39E—-02 8.37
16 2.55E—-03 5.92 16 3.46E—03 6.91
32 2.13E—04 11.51 32 1.27TE—04 27.24
64 1.43E—05 14.76 64 4.53E—-06 28.04
128 9.06E—07 15.78 128 1.43E—07 31.68
256 5.66E—08 16.01 256 4.46E—09 32.06
512 3.53E—-09 16.03 512 1.43E—10 31.19
1024 2.18E—10 16.19 1024 6.52E—12 21.93

We set u(x) = 2 (1 —2)M, A9 < 1, \; < 1 to be the exact solution; it cor-
responds to f(z) = 22 (1—2)" —zlogz— (1—z)log(1—z)+1,0 <z < 1. We
composed system (4.6) for m = 2,3,4,5, n = 2* with k = 1,2,...,10. In func-
tions a and f we used various values of Ag and A1; in the change of variables (2.1)
we used different values of the smoothing parameter max {pp,p1} = p € N de-
pending on Ag and \; and satisfying the conditions (2.5). In Tables 1-8 the
errors

Emn,p ‘= Oréliagxnb(ih) - vh(ih)|
and the quotients €, np/€m,2n,p are presented. The expected limit value of
€m,n,p/Em,2n.p 15 2™. As results in the tables show, the numerical results confirm
our theoretical results (see (4.3)) quite well.
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Table 5. m =2,p=9, \o = A\; = 0.25. Table 6. m =3, p =15, Ao = A1 = 0.25.
n €2,n,9 :22127:99 n €3,n,15 6633g:1155
4 0.10 4 0.16
8 4.32E—-02 2.31 8 3.11E—-02 5.14
16 1.17E—-02 3.69 16 6.01E—-03 5.10
32 2.99E—-03 3.91 32 8.56E—04 7.13
64 7.55E—04 3.96 64 1.11E-04 7.71
128 1.90E—04 3.97 128 1.40E—05 7.93
256 4.77TE—-05 3.98 256 1.76 E—06 7.95
512 1.19E—-05 4.01 512 2.21E-07 7.96
1024 2.99E—-06 3.98 1024 2.76E—08 8.01
Table 7. m =2,p =21, A0 =0.2, \1 =0.9. Table 8. m =3,p =31, A0 =0.2, A1 =0.9.
n €2,n,21 :22;;,.2211 n €3,n,31 6633g:3311
4 0.24 4 0.35
8 8.51E—02 5.67 8 0.12 4.91
16 2.32E-02 2.82 16 2.29E-02 2.92
32 6.18E—03 3.67 32 2.92E—-03 7.84
64 1.59E—-03 3.89 64 3.82E—-04 7.64
128 4.06E—04 3.92 128 4.87TE—-05 7.84
256 1.02E—04 3.98 256 6.17E—06 7.89
512 2.56E—05 3.98 512 7.75E—-07 7.96
1024 6.40E—06 4 1024 9.71E—-08 7.98
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