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Abstract. In this paper, a quadratic B-spline Galerkin finite element approach is
applied to one-dimensional coupled KdV equation in order to obtain its numerical
solutions. The performance of the method is examined on three test problems. Com-
puted results are compared with the exact results and also other numerical results
given in the literature. A Fourier stability analysis of the approach is also done.
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1 Introduction

In this paper, we will consider the coupled KdV equation of the form

Ut − 6aUUx − 2bV Vx − aUxxx = 0, c < x < d, t > 0,

Vt + 3UVx + Vxxx = 0, c < x < d, t > 0 (1.1)

with the boundary conditions

U(c, t) = 0, U(d, t) = 0, V (c, t) = 0, V (d, t) = 0, t > 0,

Ux(c, t) = 0, Ux(d, t) = 0, Vx(c, t) = 0, Vx(d, t) = 0, t > 0 (1.2)

and the initial conditions

U(x, 0) = f(x), V (x, 0) = g(x), c < x < d,

where f(x) and g(x) are the prescribed functions, a and b are arbitrary con-
stants [13].

The coupled KdV equation used in this paper describes the interaction of
two long waves with different dispersion relations. Thus, this coupled equation
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is related to most types of long waves having weak dispersion. Some internal
acoustic and planetary waves arising in geophysical fluid mechanics can be
given as examples [6].

The coupled KdV type equations have been the most important class of non-
linear evolution equations arising in physical sciences and engineering. There-
fore, the coupled KdV type equations have been analytically considered by
several authors: Hirota and Satsuma [13], and Tam et al. [27] have presented a
coupled Korteweg-de Vries equation and obtained soliton solutions of the equa-
tion. Tian and Gao [28] have obtained the exact solutions to the Bogoyavlenskii
coupled KdV equations via an auto-Backlund transformation with the applica-
tion of the Painlevė analysis and computer algebra. Fan and Zhang [10] have
obtained several kinds of exact solutions for a system of coupled KdV equations
using an improved homogeneous balance method. Roy [20] has examined the
bi-Hamiltonian structure of two coupled KdV equations proposed by Hirota
and Satsuma [13], and Ito [17]. Zhu [30] has given a difference scheme for the
periodic initial-boundary problem of the coupled KdV Equation. Cao et al. [7]
have obtained more exact solutions for a new coupled MKdV equations by us-
ing a direct and efficient trigonometric function transform method based on
the idea of the homogeneous balance method and for KdV equations by Miura
transformation. Zhou et al. [29] have obtained the periodic wave solutions to a
coupled KdV equations with variable coefficients by using F-expansion method
which can be thought of as an over-all generalization of Jacobi elliptic function
expansion method. Karasu and Kilic [18] have studied the Painleve property
of coupled, non-autonomous KdV type of systems and obtained the conditions
under which the systems pass the Painleve test for integrability. Qian and
Tian [24] have found the single soliton solutions for a coupled KdV equation
using the non-local Lie-Backlund transformation theorem to the trivial zero
solution. Inan [14] has given some exact solutions of the coupled KdV equation
by using the generalized tanh function method. Ma and Zhu [21] have obtained
some new exact solutions of the coupled KdV equations via the Jacobian el-
liptic function expansion approach and Hermite transformation. Assas [5] has
applied He’s variational iteration method to solve the non-linear coupled-KdV
equation based on the use of Lagrange multipliers for identification of optimal
value of a parameter in a functional. Abbasbandy [1] has used an analyti-
cal technique, namely the homotopy analysis method, to solve a generalized
Hirota-Satsuma coupled KdV equation. Al-Khaled et al. [3] have applied both
the tanh and the He’s variational iteration methods for analytical study for
the nonlinear coupled KdV equations. Mokhtari and Mohammadi [22] have
decomposed a coupled system of nonlinear partial differential equations into a
set of algebraic equations as well as an ordinary differential equation and then
solved by using Exp-function method.

The coupled KdV type equations have been also considered numerically by
some authors: Fan [9] has obtained numerical solutions of the coupled KdV
equation by using a Riccati equation involving a parameter and its solutions to
replace the tanh-function in the tanh method. Halim et al. [11] have introduced
a numerical method for general coupled KdV systems valid for solving Cauchy
problems for arbitrary number of equations with arbitrary constant coefficients.



A Quadratic B-Spline Galerkin Approach for Solving a Coupled KdV 105

Halim and Leble [12] have selected a second covariant equation to form Lax
pair of a coupled KdV-MKdV system and introduced a numerical method for
general KdV-MKdV system. Kaya and Inan [19] have found the explicit and
numerical traveling wave solutions for a coupled KdV equation and a coupled
MKdV equation by using the decomposition method with the help of symbolic
computation. Alvarez-Samaniegoa and Carvajalb [4] have studied the locally
well-posed conditions of coupled KdV equations for some systems. Ismail [16]
has set up a numerical method for solving the coupled KdV equation based
on the collocation method with quintic B-spline finite elements to simulate the
solution of coupled KdV equation. Siraj-ul-Islam et al. [15] have formulated
a simple classical radial basis functions collocation method for the numerical
solution of the coupled KdV equations. Rady et al. [2] have considered the
system of coupled KdV equations and established the transformation which
turns the coupled KdV equations into the single nonlinear partial differential
equation, then they obtained an auto-Backlund transformation and lax pairs
using the extended homogeneous balance method. Biswas and Ismail [6] have
used solitary wave ansatz to carry out the integration of the coupled KdV
equation with power law nonlinearity, and then supplemented their results by
numerical simulations. Recently, Rashid and Ismail [25] have obtained error
estimates of spectral collocation method for the coupled KdV equations and
presented their numerical solutions.

In this paper, we have applied a Galerkin quadratic B-spline finite element
method to the one dimensional coupled KdV equation given by (1.1) with a
set of initial and boundary conditions to obtain its numerical solutions.

2 The Finite Element Solution

The finite interval [c, d] is divided into N finite elements of equal length h by
the knots xi, (i = 0, . . . , N) such that c = xo < x1 < · · · < xN−1 < xN = d
and h = ∆x = xi − xi−1 = (d − c)/N . The quadratic B-splines Qm(x),
m = −1, . . . , N , which form a basis for functions over the interval [c, d] are
defined as [23]

Qm(x) =
1

h2


(x− xm−1)2, [xm−1, xm],

(x− xm−1)2 − 3(x− xm)2, [xm, xm+1],

(x− xm−1)2 − 3(x− xm)2 + 3(x− xm+1)2, [xm+1, xm+2],

0, otherwise.

So global approximations UN (x, t) and VN (x, t) to the exact solutions U(x, t)
and V (x, t) are respectively sought in terms of the quadratic B-splines as

UN (x, t) =

N∑
j=−1

δj(t)Qj(x), VN (x, t) =

N∑
j=−1

σj(t)Qj(x), (2.1)

where δj and σj are time dependent parameters to be determined from the
boundary and weighted residual conditions.

Math. Model. Anal., 18(1):103–121, 2013.
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In terms of the local coordinate transformation ξ = x− xm, 0 ≤ ξ ≤ h, the
splines can be expressed as

Qm−1

Qm

Qm+1

=
1

h2


(h− ξ)2,
h2 + 2hξ − 2ξ2, 0 ≤ ξ ≤ h,
ξ2.

(2.2)

Since all other quadratic B-splines are zero over the element [xm, xm+1],
the approximation (2.1) over this element can be written in terms of the basis
functions (2.2) as

UN =

m+1∑
j=m−1

δjQj , VN =

m+1∑
j=m−1

σjQj . (2.3)

Using Eqs. (2.2) and (2.3), the nodal values Um, Vm, U ′m and V ′m at the knot
xm are obtained in terms of time-dependent element parameters δm and σm
as

U(xm) = Um = δm−1 + δm, V (xm) = Vm = σm−1 + σm,

U ′(xm) = U ′m =
2

h
(δm − δm−1), V ′(xm) = V ′m =

2

h
(σm − σm−1).

In the above equations and throughout this paper, the prime denotes differen-
tiation with respect to x.

In the Galerkin method, basis functions given by (2.2) are used as weighting
functions Wm. Thus, the weak form of Eq. (1.1) with boundary conditions (1.2)
over each finite element [xm, xm+1] leads to the integral equation∫ xm+1

xm

(WUt − 6aWUUx − 2bWV Vx + aWxUxx) dx = 0,∫ xm+1

xm

(WVt + 3WUVx −WxVxx) dx = 0. (2.4)

By inserting Eqs. (2.2) and (2.3) into Eq. (2.4), we have

m+1∑
j=m−1

(∫ h

0

QiQj dξ

)
δ̇ej − 6a

m+1∑
k=m−1

m+1∑
j=m−1

[(∫ h

0

QiQ
′

kQj dξ

)
δej

]
δek

− 2b

m+1∑
k=m−1

m+1∑
j=m−1

[(∫ h

0

QiQkQ
′

j dξ

)
σe
j

]
σe
k + a

m+1∑
j=m−1

(∫ h

0

Q
′

iQ
′′

j dξ

)
δej = 0,

m+1∑
j=m−1

(∫ h

0

QiQj dξ

)
σ̇e
j + 3

m+1∑
k=m−1

m+1∑
j=m−1

[(∫ h

0

QiQ
′

kQj dξ

)
δej

]
σe
k

−
m+1∑

j=m−1

(∫ h

0

Q
′

iQ
′′

j dξ

)
σe
j = 0,
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which can also be written in the matrix form as

Aeδ̇e − 6aBe(δ)δe − 2bB̃e(σ)σe + aCeδe = 0,

Aeσ̇e + 3Be(δ)σe − Ceσe = 0. (2.5)

In the above equations and throughout the paper, the dot denotes differentia-
tion with respect to t, δe = (δm−1, δm, δm+1) and σe = (σm−1, σm, σm+1) are

the element parameters, and Ae
ij , B

e
ikj , B̃

e
ikj and Ce

ij are the element matrices
given by the following integrals:

Ae
ij =

∫ h

0

QiQj dξ, Be
ikj =

∫ h

0

QiQ
′

kQj dξ,

B̃e
ikj =

∫ h

0

QiQkQ
′

j dξ, Ce
ij =

∫ h

0

Q
′

iQ
′′

j dξ, (2.6)

where i, j, k = m− 1,m,m+ 1. The element matrices (2.6) are calculated as

Ae
ij =

h∫
0

QiQj dξ =
h

30

 6 13 1
13 54 13
1 13 6

 ,
Be

ikj =

h∫
0

QiQ
′

kQj dξ =
1

30

(−10,−19,−1)δe (8, 12, 0)δe (2, 7, 1)δe

(−19,−54,−7)δe (12, 0,−12)δe (7, 54, 19)δe

(−1,−7,−2)δe (0,−12,−8)δe (1, 19, 10)δe

 ,

B̃e
ikj =

h∫
0

QiQkQ
′

j dξ =
1

30

 (−10, 8, 2)σe (−19, 12, 7)σe (−1, 0, 1)σe

(−19, 12, 7)σe (−54, 0, 54)σe (−7,−12, 19)σe

(−1, 0, 1)σe (−7,−12, 19)σe (−2,−8, 10)σe

 ,
Ce

ij =

h∫
0

Q
′

iQ
′′

j dξ =
2

h2

−1 2 −1
0 0 0
1 −2 1

 .
Assembling all contributions coming from all the elements, Eq. (2.5) yields the
system of equations

Aδ̇ − 6aB(δ)δ − 2bB̃(σ)σ + aCδ = 0,

Aσ̇ + 3B(δ)σ − Cσ = 0, (2.7)

where δ = (δ−1, δ0, . . . , δN−1, δN )T and σ = (σ−1, σ0, . . . , σN−1, σN )T , and A,

B, B̃ and C are (N + 2)× (N + 2) global matrices with a generalized mth row
as follows, respectively

A:
h

30
(1, 26, 66, 26, 1), C:

2

h2
(1,−2, 0, 2,−1),

B:
1

30

(
(−1,−7,−2, 0, 0)δ, (0,−31,−62,−7, 0)δ, (1, 31, 0,−31,−1)δ,

(0, 7, 62, 31, 0)δ, (0, 0, 2, 7, 1)δ

)
,

B̃:
1

30

(
(−1, 0, 1, 0, 0)σ, (−7,−31, 31, 7, 0)σ, (−2,−62, 0, 62, 2)σ,

(0,−7,−31, 31, 7)σ, (0, 0,−1, 0, 1)σ

)
,

Math. Model. Anal., 18(1):103–121, 2013.
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where δ = (δm−2, δm−1, δm, δm+1, δm+2)T and σ = (σm−2, σm−1, σm, σm+1,
σm+2)T .

By substituting the Crank–Nicolson approaches

δ = 0.5(δn + δn+1), σ = 0.5(σn + σn+1)

and the forward finite difference approximations

δ̇ = (δn+1 − δn)/∆t, σ̇ = (σn+1 − σn)/∆t

into Eq. (2.7), we obtain[
A− a∆t

2
(6B(δ)− C)

]
δn+1 −

[
b∆tB̃(σ)

]
σn+1

=

[
A+

a∆t

2
(6B(δ)− C)

]
δn +

[
b∆tB̃(σ)

]
σn,[

A+
∆t

2
(3B(δ)− C)

]
σn+1 =

[
A− ∆t

2
(3B(δ)− C)

]
σn. (2.8)

Using the boundary conditions in (2.8) yields a 2N×2N system of linear equa-
tions. The obtained system is easily solved by a variation of Gauss-elimination
algorithm. The following inner iterations are applied two or three times at each
time to improve the accuracy of the approximation

(δ∗)
n+1

= δn +
1

2

(
δn+1 − δn

)
, (σ∗)

n+1
= σn +

1

2

(
σn+1 − σn

)
.

Using the relations

UN (x, 0) =

N∑
j=−1

δ0jQj , VN (x, 0) =

N∑
j=−1

σ0
jQj

together with extra conditions, which can be obtained from U ′(x0, 0) =
U ′N (x0, 0) and V ′(x0, 0) = V ′N (x0, 0), since the first derivative of the approx-
imate initial conditions shall agree with those of the exact initial conditions,
initial vector δ0j can be obtained from the following system of linear equations:

−2
h

2
h

1 1
1 1

.
.
.

1 1





δ−1
δ0
δ1
.
.
.
δN


=



U ′0
U0

U1

.

.

.
UN


,

which can be solved using an appropriate algorithm. A similar system of equa-
tion with the same matrix is solved for σ0

j .
Hence, the approximate solution functions for U(x, t) and V (x, t) can be

obtained from δn and σn using Eq. (2.8).
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2.1 Stability analysis

For stability analysis, it is convenient to use the Fourier stability analysis. Since
system (2.8) consists of two equations with two variables, we use the following
Fourier modes [26]:

δnm = Pqneimϕ, σn
m = Wqneimϕ, (2.9)

where i =
√
−1, q is a complex number, ϕ is a real number and P , W are

harmonic amplitudes. For the stability, the condition |q| ≤ 1 must be satisfied.
To linearize the coupled KdV equation, we assume that the quantity U and

V in the nonlinear terms UUx and V Vx are local constants, namely Û and V̂ ,
respectively. So, the generalized mth row of the global matrices B and B̃ are
Û
3 (−1,−10, 0, 10, 1) and V̂

3 (−1,−10, 0, 10, 1), respectively.
The generalized mth rows of Eq. (2.8) are

α1δ
n+1
m−2 + α2δ

n+1
m−1 + α3δ

n+1
m + α4δ

n+1
m+1 + α5δ

n+1
m+2 + γ4σ

n+1
m−2 + 10γ4σ

n+1
m−1

− 10γ4σ
n+1
m+1 − γ4σ

n+1
m+2 = α5δ

n
m−2 + α4δ

n
m−1 + α3δ

n
m + α2δ

n
m+1 + α1δ

n
m+2

− γ4σn
m−2 − 10γ4σ

n
m−1 + 10γ4σ

n
m+1 + γ4σ

n
m+2 (2.10)

and

β1σ
n+1
m−2 + β2σ

n+1
m−1 + β3σ

n+1
m + β4σ

n+1
m+1 + β5σ

n+1
m+2

= β5σ
n
m−2 + β4σ

n
m−1 + β3σ

n
m + β2σ

n
m+1 + β1σ

n
m+2, (2.11)

where

γ1 =
h

30
, γ2 =

Û∆t

6
, γ3 =

∆t

h2
, γ4 =

bV̂ ∆t

3
,

α1 = γ1 + 6γ2a+ γ3a, α2 = 26γ1 + 60γ2a− 2γ3a, α3 = 66γ1,

α4 = 26γ1 − 60γ2a+ 2γ3a, α5 = γ1 − 6γ2a− γ3a,
β1 = γ1 − 3γ2 − γ3, β2 = 26γ1 − 30γ2 + 2γ3, β3 = 66γ1,

β4 = 26γ1 + 30γ2 − 2γ3, β5 = γ1 + 3γ2 + γ3.

Substituting the Fourier modes given by Eq. (2.9) into (2.10) and (2.11) leads
to the following homogeneous algebraic equation system:

(ρ1 + c1)q − (ρ1 − c1)]P +
[
(ρ4q + ρ4)

]
W = 0,

(ρ1 + c2)q − (ρ1 − c2)]W = 0, (2.12)

where

ρ1 =
(
66 + 2 cos(2ϕ) + 52 cos(ϕ)

)
γ1, ρ2 =

(
−12 sin(2ϕ)− 120 sin(ϕ)

)
aγ2,

ρ3 =
(
−2 sin(2ϕ) + 4 sin(ϕ)

)
aγ3, ρ4 =

(
−2 sin(2ϕ)− 20 sin(ϕ)

)
γ4,

ρ5 =
(
6 sin(2ϕ) + 60 sin(ϕ)

)
γ2, ρ6 =

(
2 sin(2ϕ)− 4 sin(ϕ)

)
γ3,

c1 = ρ2 + ρ3, c2 = ρ5 + ρ6.

Math. Model. Anal., 18(1):103–121, 2013.
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For the system (2.12) to have a solution other than zero, the determinant of
the coefficient matrix of the system must be zero. Therefore, we get(
ρ21 + iρ1c1 + iρ1c2 − c1c2

)
q2 −

(
2ρ21 + 2c1c2

)
q + ρ21 − iρ1c1 − iρ1c2 − c1c2 = 0,

where

q1 =
ρ1 − ic1
ρ1 + ic1

, q2 =
ρ1 − ic2
ρ1 + ic2

.

Clearly, the conditions |q1| ≤ 1 and |q2| ≤ 1 are satisfied. Therefore, the
linearized approximations given by Eqs. (2.10) and (2.11) are unconditionally
stable.

3 Numerical Examples and Results

The importance to construct discrete schemes for which the discrete versions
of conservation laws are satisfied is well known for many mathematical models.
We note nonlinear Schrödinger problems, where discrete conservation laws are
playing a very important role in the analysis of stability and accuracy of nu-
merical approximations, see [8]. All numerical calculations were executed on a
Pentium i7 PC in the Fortran code using double precision arithmetic. We use
the L2 and L∞ error norms defined by

L2 = ‖U − UN‖2 =

√√√√h

N∑
j=0

∣∣Uj − (UN )j
∣∣2,

L∞ = ‖U − UN‖∞ = max
0≤j≤N

∣∣Uj − (UN )j
∣∣

and evaluate only two constants of motion to validate the conservation prop-
erties [16]

I1 =

∫ ∞
−∞

U dx, I2 =

∫ ∞
−∞

(
U2 +

2

3
bV 2

)
dx.

To implement the performance of the method, the following three test prob-
lems have been considered: The motion of a single soliton, the interaction of
two solitons and birth of solitons.

3.1 The motion of a single soliton

We first consider Eq. (1.1) with the homogeneous boundary conditions (1.2)
and the initial conditions

U(x, 0) = 2λ2 sech2(ξ), V (x, 0) =
1

2
√
ω

sech(ξ).

The exact solution of this problem is [13]

U(x, t) = 2λ2 sech2(ξ), V (x, t) =
1

2
√
ω

sech(ξ),
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Table 1. The numerical solutions of single soliton with a = 0.5, b = −3, λ = 0.5 and
∆t = 0.01.

UN (x, t) VN (x, t)

h t I1 I2 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

0.2 0.0 2.000000 −0.333333 0.000000 0.000000 0.000000 0.000000
5.0 1.999999 −0.333333 0.021111 0.013470 0.009392 0.004447
10.0 2.000002 −0.333333 0.043768 0.025648 0.019462 0.010740
15.0 1.999996 −0.333332 0.065471 0.037995 0.026306 0.014083
20.0 2.000012 −0.333331 0.056729 0.029653 0.029793 0.011300

0.1 0.0 2.000000 −0.333333 0.000000 0.000000 0.000000 0.000000
5.0 2.000000 −0.333334 0.001653 0.000871 0.005180 0.002787
10.0 1.999999 −0.333333 0.005296 0.003500 0.008284 0.004428
15.0 2.000000 −0.333333 0.008642 0.006090 0.012757 0.006106
20.0 2.000002 −0.333332 0.005222 0.003439 0.019473 0.009960

where

ξ = λ
(
x− λ2t

)
+

1

2 log(ω)
, ω =

−b
8(4a+ 1)λ4

.

We will solve the above problem in the interval −25 ≤ x ≤ 25 by taking the
following values of a, b and λ to compare our results with the earlier works.

Case (a): a = 0.5, b = −3 and λ = 0.5.
Case (b): a = −0.5, b = 3 and λ = 0.5.
Case (c): a = −0.125, b = −3 and λ = 0.5.

For these three cases the computed values of the invariants I1 and I2 with
the error norms L2 and L∞ are presented respectively at some selected times
for h = 0.2, 0.1 and ∆t = 0.01 in Tables 1–3. All tables confirm that the error
norms L2 and L∞ are still small when the time is increased up to t = 20. The
values of the invariants I1 and I2 remain almost constant during the computer
run. For example, the relative change of the invariants I1 and I2 are respectively
0.093×10−3% and 0.415×10−3% for Case (a), 0.070×10−3% and 0.103×10−3%
for Case (b), 0.057 × 10−3% and 0.140 × 10−3% for Case (c) with ∆t = 0.01
and h = 0.1.

Table 4 displays the values of x and amplitudes of UN and VN at different
values of t. It is clearly seen from the table that the computed values of the
amplitudes are very close to their exact ones. It is also observed from the table
that the soliton moves to the right at an almost unchanged amplitude with an
increasing of time, as expected.

Figure 1 shows the profiles of single solitons at t = 0, 10 and 20 with
the error distributions of UN and VN . It is also clearly seen from the figure
that the soliton moves to the right at an almost unchanged amplitude with
an increasing of time as mentioned above and the error distributions are high
around the right boundary for VN about the position x at which UN attains
its highest amplitude.

Table 5 displays a comparison of the values of the invariants and the error
norm L∞ obtained by the present method with those obtained by the quintic

Math. Model. Anal., 18(1):103–121, 2013.
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Table 2. The numerical solutions of single soliton with a = −0.5, b = 3, λ = 0.5 and
∆t = 0.01.

UN (x, t) VN (x, t)

h t I1 I2 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

0.2 0.0 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
5.0 2.000001 1.000000 0.008026 0.005741 0.004186 0.001814
10.0 1.999999 1.000000 0.010025 0.004786 0.007551 0.003250
15.0 2.000001 1.000000 0.019918 0.012000 0.011007 0.004569
20.0 1.999997 0.999999 0.023566 0.014667 0.017011 0.008244

0.1 0.0 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
5.0 2.000000 1.000000 0.001570 0.000777 0.003150 0.002053
10.0 1.999999 1.000000 0.002180 0.001304 0.005177 0.002665
15.0 1.999999 0.999999 0.002939 0.001294 0.008701 0.004710
20.0 1.999999 0.999999 0.003737 0.001719 0.015142 0.008143

Table 3. The numerical solutions of single soliton with a = −0.125, b = −3, λ = 0.5 and
∆t = 0.01.

UN (x, t) VN (x, t)

h t I1 I2 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

0.2 0.0 2.000000 0.500000 0.000000 0.000000 0.000000 0.000000
5.0 2.000000 0.500000 0.002851 0.001822 0.002566 0.001309
10.0 2.000000 0.500000 0.004240 0.002488 0.004368 0.002211
15.0 2.000001 0.500001 0.007778 0.004328 0.007140 0.003498
20.0 2.000001 0.500001 0.012679 0.006891 0.012727 0.006340

0.1 0.0 2.000000 0.500000 0.000000 0.000000 0.000000 0.000000
5.0 1.999999 0.500000 0.000991 0.000431 0.002202 0.001269
10.0 1.999999 0.500000 0.001486 0.000705 0.004038 0.002272
15.0 1.999999 0.499999 0.001870 0.000864 0.006696 0.003590
20.0 1.999999 0.499999 0.002646 0.001337 0.011751 0.006171

Table 4. Computed values of position and amplitude for single soliton with a = 0.5,
b = −3, h = 0.1 and ∆t = 0.01.

Amplitude Amplitude

t Position(x) UN U VN V

0.0 −1.4 0.499772 0.499772 0.353473 0.353473
5.0 −0.2 0.499993 0.499993 0.353551 0.353551
10.0 1.1 0.499771 0.499772 0.353471 0.353473
15.0 2.3 0.499990 0.499993 0.353550 0.353551
20.0 3.6 0.499775 0.499772 0.353474 0.353473
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Figure 1. Single soliton profiles at t = 0, 10, 20 and error distributions at t = 20.

B-spline collocation finite element method given in Ref. [16] at different times
for the values of a, b and λ given in Cases (a)–(c). It is clearly seen from the
table that the invariants are in very good agreement with each other and the
present method produces the error norms L∞ at each time smaller than those
given in Ref. [16].

3.2 Interaction of two solitons

Secondly, the coupled KdV equation (1.1) has been considered with the bound-
ary conditions given by (1.2) and the initial conditions

U(x, 0) =

2∑
j=1

Uj(x, 0), V (x, 0) =

2∑
j=1

Vj(x, 0),

where

Uj(x, 0) = 2λ2j sech2(ξj), Vj(x, 0) =
1

2
√
ωj

sech(ξj),

ξj = λj(x− γj) +
1

2 log(ωj)
, ωj =

−b
8(4a+ 1)λ4j

(j = 1, 2).

For this problem, all calculations are done in the range −10 ≤ x ≤ 120
for λ1 = 1, λ2 = 0.6, γ1 = 10, γ2 = 30, a = 0.5 and b = −3. Tables 6
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Table 5. Comparison of the numerical solutions of the single soliton with results from [16]
with ∆t = 0.01 and h = 0.1.

Present Method [16]

Case t I1 I2 L∞ × 103 I1 I2 L∞ × 103

(a) 0.0 2.000000 −0.333333 0.000000 2.000000 −0.333333 0.000
5.0 2.000000 −0.333334 0.000871 2.000000 −0.333333 0.004
10.0 1.999999 −0.333333 0.003500 2.000000 −0.333333 0.007
15.0 2.000000 −0.333333 0.006090 2.000000 −0.333333 0.014
20.0 2.000002 −0.333332 0.003439 2.000001 −0.333333 0.026

(b) 0.0 2.000000 1.000000 0.000000 2.000000 1.000000 0.000
5.0 2.000000 1.000000 0.000777 2.000000 1.000000 0.003
10.0 1.999999 1.000000 0.001304 2.000000 1.000000 0.003
15.0 1.999999 0.999999 0.001294 1.999998 0.999999 0.005
20.0 1.999999 0.999999 0.001719 1.999999 0.999999 0.008

(c) 0.0 2.000000 0.500000 0.000000 2.000000 0.500000 0.000
5.0 1.999999 0.500000 0.000431 2.000000 0.500000 0.003
10.0 1.999999 0.500000 0.000705 1.999999 0.500000 0.003
15.0 1.999999 0.499999 0.000864 1.999999 0.500000 0.003
20.0 1.999999 0.499999 0.001337 1.999999 0.500000 0.004

and 7 present a comparison of the calculated conservation constants at different
space and time steps. The variations of the invariants I1 and I2 remain almost
constant during the computer run. For example, the relative change of the
invariants I1 and I2 are respectively 0.015% and 0.264% with ∆t = 0.05 and
h = 0.1; 4.657 × 10−3% and 3.716 × 10−3% with ∆t = 0.02 and h = 0.1;
4.278× 10−3% and 3.420× 10−3% with ∆t = 0.01 and h = 0.2; 2.005× 10−3%
and 1.773× 10−3% with ∆t = 0.01 and h = 0.1.

Table 8 displays a comparison of the invariants obtained by the present
method with those obtained by the quintic B-spline collocation finite element
method given in Ref. [16]. From Table 8, it is clearly seen that both results
are in good agreement with each other.

Table 6. Invariants for the interaction of two solitons with h = 0.1 for ∆t = 0.02, 0.05.

∆t = 0.05 ∆t = 0.02

t I1 I2 I1 I2

0.0 6.400000 −3.242667 6.400000 −3.242667
10.0 6.399930 −3.243751 6.399999 −3.242693
20.0 6.400085 −3.244850 6.400025 −3.242688
30.0 6.400259 −3.245970 6.400065 −3.242689
40.0 6.398464 −3.247081 6.399711 −3.242722
50.0 6.397809 −3.248153 6.399575 −3.242711
60.0 6.400838 −3.248617 6.400174 −3.242697
70.0 6.401932 −3.248917 6.400376 −3.242689
80.0 6.399879 −3.249991 6.399969 −3.242711
90.0 6.399074 −3.251013 6.399695 −3.242713



A Quadratic B-Spline Galerkin Approach for Solving a Coupled KdV 115

Table 7. Invariants for the interaction of two solitons with ∆t = 0.01 for h = 0.1, 0.2.

h = 0.2 h = 0.1

t I1 I2 I1 I2

0.0 6.400000 −3.242667 6.400000 −3.242667
10.0 6.399999 −3.242674 6.399998 −3.242675
20.0 6.400071 −3.242679 6.400010 −3.242662
30.0 6.400202 −3.242677 6.400025 −3.242657
40.0 6.398900 −3.242693 6.399881 −3.242678
50.0 6.398441 −3.242725 6.399826 −3.242689
60.0 6.400494 −3.242631 6.400076 −3.242695
70.0 6.401631 −3.242704 6.400174 −3.242689
80.0 6.400228 −3.242689 6.400000 −3.242678
90.0 6.399726 −3.242778 6.399877 −3.242683

Table 8. Comparison of numerical solutions of the interaction of two solitons with results
from [16] with h = 0.1 and ∆t = 0.01.

Present Method [16]

t I1 I2 I1 I2

0.0 6.400000 −3.242667 6.400000 −3.243013
10.0 6.399998 −3.242675 6.400001 −3.243012
20.0 6.400010 −3.242662 6.399995 −3.243009
30.0 6.400025 −3.242657 6.399946 −3.243015
40.0 6.399881 −3.242678 6.399991 −3.243102
50.0 6.399826 −3.242689 6.399962 −3.243008
60.0 6.400076 −3.242695 6.399863 −3.243008
70.0 6.400174 −3.242689 – –
80.0 6.400000 −3.242678 – –
90.0 6.399877 −3.242683 – –

The experiment was run from t = 0 to t = 90 to allow the interaction
of two solitons to take place. Figure 2 shows the interaction of two solitons
for UN . As it is seen from Figure 2, the amplitudes of the big and small waves
at t = 0 are 1.996731 at the point x = 10.2 and 0.719566 at the point x = 53.1,
respectively. As time increases, both of the waves move forward the right and
then the big wave catches up the smaller one. At t = 90, it is observed that the
big wave leaves from the small one and they both move forward. At t = 90,
the amplitude of the big wave is 1.987528 at the point x = 103.1 whereas the
amplitude of the smaller one is 0.719579 at the point x = 80.9.

Figure 3 illustrates the behaviour of the interaction of two solitons for VN
at times from t = 0 to t = 90. At t = 0, the amplitudes of the big and small
waves are 1.413057 at the point x = 10.2 and 0.508964 at the point x = 53.1,
respectively. As time increases, both of the waves move forward the right and
the big wave catches up the smaller one. It is observed that at t = 90 the big
wave leaves from the small one and then they both move forward. At t = 90,
the amplitude of small wave is 0.508966 with having the position x = 80.9 while
the amplitude of the big one is 1.409834 with having the position x = 103.1.

Math. Model. Anal., 18(1):103–121, 2013.
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Figure 2. The interaction of two solitons for U at different times.
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Figure 3. The interaction of two solitons for V at different times.
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Table 9. The numerical solutions of the birth of soliton and a comparison with those given
in Ref. [16].

Present Method [16]
h = 0.2 h = 0.1 h = 0.1

∆t t I1 I2 I1 I2 I1 I2

0.02 0.0 17.724539 −12.533142 17.724539 −12.533142
10.0 17.724552 −12.534584 17.724517 −12.533817
20.0 17.724438 −12.538644 17.724436 −12.537647
30.0 17.723768 −12.542624 17.724235 −12.541628
40.0 17.727828 −12.546647 17.727083 −12.545628
50.0 17.731455 −12.550704 17.727015 −12.549471

0.01 0.0 17.724539 −12.533142 17.724539 −12.533142 17.72454 −12.53314
10.0 17.724575 −12.533963 17.724539 −12.533214 17.72454 −12.53316
20.0 17.724568 −12.534382 17.724528 −12.533502 17.72454 −12.53316
30.0 17.724072 −12.534597 17.724476 −12.533695 17.72449 −12.53320
40.0 17.727303 −12.534727 17.725440 −12.533943 17.72448 −12.53321
50.0 17.729995 −12.535070 17.725238 −12.533980 17.72469 −12.53320

As a result, Figures 2 and 3 show the interaction of two positive amplitude
waves having the same position at the point x and at the same time t having
different amplitudes.

3.3 Birth of solitons

As a final problem, we consider the coupled KdV equation given by (1.1) with
the initial conditions

U(x, 0) = e−0.01x
2

, V (x, 0) = e−0.01x
2

and the boundary conditions (1.2).
All calculations for this problem are done in the range −50 ≤ x ≤ 150 for

the values a = 0.5 and b = −3. The experiment was run from t = 0 to t = 50.
The values of the invariants obtained by the present method at different space
and time steps are displayed in Table 9. The table also presents a comparison
of the invariants obtained by the present method with those given in Ref. [16].
It is obviously seen from the table that the results are in good agreement with
each other.

It is clearly seen from the table that the variations of the invariants I1 and
I2 are satisfactorily well. For example, the relative change of the invariants I1
and I2 are respectively 0.039% and 0.140% with ∆t = 0.02 and h = 0.2; 0.014%
and 0.130% with ∆t = 0.02 and h = 0.1; 0.031% and 0.015% with ∆t = 0.01
and h = 0.2; 3.946× 10−3% and 6.687× 10−3% with ∆t = 0.01 and h = 0.1.

The solutions UN and VN obtained for a = 0.5, b = −3 and t = 0, 30 and 50
are illustrated in Figure 4 and 5, respectively. It is seen from the figures that
at t = 0, there is only a single wave for each of UN and VN with the amplitude
1.0 at x = 0, and then each single wave for UN and VN moves to the right
when time increases and then each one creates a large number of waves behind

Math. Model. Anal., 18(1):103–121, 2013.
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Figure 4. Solution profiles of the birth of soliton for U at various times.
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Figure 5. Solution profiles of the birth of soliton for V at various times.
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Table 10. Computed values of position and amplitude for the birth of soliton with h = 0.1
and ∆t = 0.01 at t = 50.

Position(x) Amplitude(UN ) Position(x) Amplitude(VN )

First wave 90.9 3.457008 90.9 2.444029
Second wave 63.1 2.447592 63.1 1.731882
Third wave 38.7 1.587947 38.6 1.120752
Fourth wave 18.0 1.004435 17.8 0.660323
Fifth wave −0.4 0.612468 −0.4 0.329449

itself with different amplitudes at t = 50. The positions and amplitudes of the
successive waves at time t = 50 are given in Table 10.

4 Conclusions

In this paper, the numerical solutions of the coupled KdV equation with various
initial and boundary conditions were obtained using the Galerkin quadratic B-
spline finite element method. The efficiency of the method was tested on three
numerical experiments of wave propagation: The motion of a single soliton,
the interaction of two solitons and the birth of solitons. The accuracy of the
method was examined by the error norms L2 and L∞. The obtained results
show that the error norms are reasonably small and the conservation properties
are all very good. As a conclusion, the method can also be used efficiently for
solving a large number of coupled nonlinear partial differential equations.
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