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1 Introduction

A sequence z ={{,} is called bounded with the rapidity A= {\,}
(0 < Ap 1 00) if Ap(§n — &) = O(1) with lim&,, = €. Let

m* = {l‘ | T = {gn} Alim§, =& A An(fn - 5) = 0(1)}

A sequence x = {,} is called A-bounded by Cesaro method (C,1) if (C, 1)z is
A-bounded. That means

M (00 (z) — o(2)) = O(1) (1.1)
with .
on(z) = ni : kzzogk A lim o(x) = o(2).
Shortly we note this fact
z € ((C,1),m"). (1.2)
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G. Kangro [7] and I. Tammeraid [9] proved several Tauberian remainder
theorems for method (C, 1) using summability with given rapidity. For example
see one of them in [9].

Proposition 1. If the sequences x and X\ satisfy the conditions (1.2),

nA, AL, = O(1), (1.3)
where
o
and

An > Ai =0(1), (1.4)

n+1k o Ak

then © € m™.

If we study the condition (1.4) in the case A, = (n + 1)%, we get that «
has to satisfy the condition 0 < a < 1. That means we are not able to use the
Tauberian remainder theorems proved by G. Kangro and I. Tammeraid in the
case A, = (n+1)® with o > 1. Therefore we are interested in the presentations
of G. H. Hardy [6], E. Landau [8], M. Dik [5], I. Canak, U. Totur and M. Dik
[1, 2, 3, 4, 10, 11]. Firstly this concept was used in the paper [5]. So we prove
several new Tauberian remainder theorems for (C,1).

2 Tauberian Remainder Theorems for (C,1)

Let N be the set of all natural numbers and Ng = N U {0}. The classical
control modulo of the oscillatory behavior of the sequence {,,} is denoted by

w? (z) = nAE,. (2.1)

The general control modulo of the oscillatory behavior of order m € N of
sequence zx is defined by

W™ (@) = (@) — 0 (W™D (@) (meNandneNg).  (2.2)

G.H. Hardy [6] proved that the condition w () = O(1) is a Tauberian con-
dition for the (C, 1) summability method.
E. Landau [8] extended Hardy’s Tauberian condition as follows

w®(z) > =M (n e Np) (2.3)

for some M > 0.
M. Dik [5] showed that the condition (2.3) in E. Landau’s statement can be
replaced by the condition

w(x) > —M (n€Ny).
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I. Canak and U. Totur (see [1] and [3]) proved: if for some {M,} with M, >0
w?(z) > -M, (neNy)

and x is (C,1) summable, then z is convergent.
Let us start with the simplest Tauberian theorem using the general control
modulo.

Theorem 1. If the condition (1.2) is satisfied,
A V0 (Az) = 0(1), (2.4)
where VO(Azx) = H%H Sro w,(co) (7), then x € m>.

Proof. As (see [1])
&n —on(2) = Vr?(Ax)’

then
An(&n = o()) = A (o (@) — o (@)) + AaV;) (Az).
Using (1.2) and (2.4) we get the assertion of Theorem 1 is valid. O

Let us prove the following statement.

Lemma 1. The assertion

wil (@) = 0P (@) — & +ou(z) (nEN) (2.5)
1s valid.
Proof.  Using (2.2) for m =1 and (2.1) we get for n € N

Wi (@) = W (@) = on (WO (2))

1 n
=) i e @) =) - +1ZkA§k
= w(x nH(Zk«sk—Zk+1)§k+(n+1)£n)

k=0

—wO(@) — &0 + #Z&C — wO(2) — &0 + onl2).

That means the statement of Lemma 1 is valid. 0O

We use the result of Lemma 1 for the proof of the next theorem.

Theorem 2. If the conditions

Aw®(z) = 0(1), (2.6)
AnwiD () = O(1) (2.7)

and (1.2) are satisfied, then x € m*.

Math. Model. Anal., 18(1):97-102, 2013.
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Proof. Using (2.5) we get

M (&n — (@) = XwlD (2) — Xw D () + Mo (00 (2) — o (2)).
As the conditions (1.2), (2.6) and (2.7) are satisfied the assertion of
Theorem 2 is valid. O
Remark 1. The assertion (1.3) < (2.6) is valid.

Now we can prove the following result.

Lemma 2. The assertion
Wi (z) = W) () — 26, + 3o,(2) — Zak (neN)

is valid.
Proof. Let £&_1 = 0. Using (2.2) for m = 2 and (2.5) we get
W (@) = WM (@) = o0 (WP (2))

= w0 () = & + on(x) - Z kKAG, — &, + on(@)).
k:O

Z kA, — & + ox(x Z (& — &e-1) — &k + or(2))
k=0 k=0

n

fk*Z (k+1 fk*Z&HrZUk

k k=0 k=0

n

kfk—Z(k“Fl)gk—F (n+1)¢& Zﬁ;ﬁ—Zak

=0 k=0

23"+ (n+1)&, + ZUk:(l')
k=0 k=0

=

then

That means the assertion of Lemma 2 is valid. O

Using Lemma 2 we get the next assertion.
Theorem 3. If the conditions (1.2), (2.6),

Al () = O(1), (28)
1 n
(s > oute) - o)) = 00) (2.9

are satisfied, then © € m*.
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Proof. Using Lemma 2 we get

2(6, - 0(2) = (o)~ (0) + 3(0n() - o) - (7 Soonlo) o))
k=0

and

While the conditions (2.6), (2.8), (1.2) and (2.9) are satisfied we get
An(&n —o(2z)) =0(1) + O(1) + O(1) + O(1) = O(1).

That means the assertion of Theorem 3 is valid. O

Remark 2. The assertion (1.2) A (1.4) = (2.9) is valid.

Analogically it is possible to prove Lemma 3 and Theorem 4.

Lemma 3. The assertion

w,(f’) (x) = wﬁbo)(x) — 36, + 60, () — ni Z or(x)

n k
n+1Z Z (n € N)

s valid.

Using Lemma 3 we get the following assertion.
Theorem 4. If the conditions (1.2), (2.6), (2.9),
A (x) = O(1),
and

n k
1 1
are satisfied, then © € m*.

Remark 8. The assertion (1.2) A (1.4) = (2.10) is valid.

Math. Model. Anal., 18(1):97-102, 2013.
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