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Abstract. Dynamics and hysteresis of an elongated droplet under the action of
a rotating magnetic field is considered for mathematical modelling. The shape of
droplet is found by regularization of the ill-posed initial–boundary value problem for
nonlinear partial differential equation (PDE). It is shown that two methods of the
regularization – introduction of small viscous bending torques and construction of
monotonous continuous functions are equivalent. Their connection with the regular-
ization of the ill-posed reverse problems for the parabolic equation of heat conduction
is remarked.

Spatial discretization is carried out by the finite difference scheme (FDS). Time
evolution of numerical solutions is obtained using method of lines for solving a large
system of ordinary differential equations (ODE).
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1 Introduction

Dynamics of magnetic droplets in the rotating magnetic field is an exciting field
of research. In [1] it was found that magnetic droplets with high magnetic per-
meability have sequence of shape bifurcations with the increase of the magnetic
field including transition from oblate shape to prolate one and back to oblate
at higher values of the magnetic field strength. These experimental results are
in good agreement with the theoretical calculations by the virial method [1]
(for more details see [4]). Later in [9, 10] it was shown that if the magnetic
permeability of the droplet is enough high these bifurcations are subcritical
and therefore hysteresis phenomena should occur. Behavior of the droplet at
intermediate values of the rotating field strength were investigated in [7] where
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further bifurcations of elongated droplets were observed, - formation of shapes
with large curvature in definite places of the droplet corresponding to the dis-
continuities of the tangent of the center line of elongated droplet. This behavior
was theoretically reproduced by the model proposed in [2], which consider the
dynamics of the droplet due to the surface tension forces and torques due to
the rotating magnetic field. The ill-posed nonlinear PDE for the tangent angle
was derived in [2]. Its numerical solution was regularized by introducing the
small viscous torques due to the bending of the droplet [13]. In our paper [3]
it is shown that the regularization of the ill-posed problem may be achieved by
introducing modified continuous monotonous function with discontinuous first
derivative which allow us to consider the path with increasing frequencies of
the rotating field. Here by applying this technique two modified functions are
constructed which allow us to consider the paths with increasing and decreas-
ing frequencies of the rotating field. As a result the existence of the multiple
stationary states of the droplet in definite ranges of the frequency of rotating
field and therefore hysteresis phenomena are predicted.

In the paper [5], the regularization techniques for the backward in time
nonlinear parabolic problem are considered.

2 Mathematical Model

In [2] the cross section of the droplet with the length 2L is assumed to be circular
with constant radius a. The tangential forces along the droplet are neglected.
The shape of the droplet is described by the position of its centerline. The
nonlinear PDE of parabolic type for the tangent angle β = β(l, t) of the center
line of the magnetic droplet under the action of capillary, magnetic and viscous
forces is derived in the following form [2, 3]:ω =

∂β

∂t
− 1

δ

∂2

∂l2
(
πγaβ +M sin(2β)

)
+

3πa4ηi
4δ

∂5β

∂l4∂t
,

l ∈ (0, 2L), t ∈ (0, tf ),

(2.1)

where the parameters l, ηi, t, tf are the arc length, the intrinsic viscosity of the
droplet and time with the final time moment tf , β = ωt − θ is the phase lag
with angle θ between the local tangent to the centerline of the droplet and the

abscissa axis (ω is the angular frequency of a rotating field), M =
2π2χ2H2

0a
2

µ+1

is the magnetic torque, δ = 4πη
ln(L/a)+c is the hydrodynamic drag coefficient,

ηi, γ are the intrinsic viscosity and the surface tension of the droplet, χ, µ
are magnetic susceptibility and permeability of magnetic liquid respectively,
H0 = (cos(ωt), sin(ωt)) is the rotating field, η is the viscosity of the surrounding
fluid, c is a constant of the order of unity.

Shape of the droplet depending on the time in the frame of rotating field is
calculated from the known tangent angle β by integration of the set of ordinary
differential equations (ODEs)

dx

dl
= cos(β),

dy

dl
= − sin(β). (2.2)
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The unknown constants of integration are determined from the condition
that mass center of the droplet is motionless.

In order to present the equation (2.1) in dimensionless form, the charac-

teristic time scale τ = δL2

M is introduced. Arc length is scaled by L. We have
following PDE:

ωτ =
∂β

∂t
− ∂2F (β)

∂l2
+ ε

∂5β

∂l4∂t
, (2.3)

where F (β) = 1
Bmβ + sin(2β) is the nonlinear function, ε = 3πa4ηi

4δL4 is a small

coefficient (of order 10−4) for the regularization, Bm =
2π2χ2H2

0a
2

(µ+1)γ is the mag-

netic Bond number given by the ratio of the magnetic and capillary forces,
l ∈ (0, 2), t ∈ (0, tf ).

The regularization term in (2.3) with parameter ε is added from physical
considerations using the analogy between bending stress in elastic and vis-
cous filaments [13]. The function F (β) is not monotonic for Bm values larger
than 0.5 (see Fig. 1 for Bm = 1.5).
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Figure 1. Function F (β) at Bm = 1.5.

The equation (2.3) is supplemented by boundary conditions corresponding
to the absence of normal forces and torques at the ends of the droplet: β(0, t) =

β(2, t) = ∂2β(0,t)
∂l2 = ∂2β(2,t)

∂l2 = 0, t ∈ [0, tf ).
The initial condition is defined by β(l, 0) = Θ0(l), l ∈ [0, 2], where Θ0(l)

is continuously differentiable function with Θ0(0) = Θ0(2) = 0. The last term
in the equations (2.1), (2.3) is used for the regularization of the numerical
approximations.

By setting ε = 0 we obtain the following ill-posed problem:
∂β

∂t
=
∂2F (β)

∂l2
+ ωτ,

β(0, t) = β(2, t) = 0, t ∈ (0, tf ),

β(l, 0) = Θ0(l), l ∈ [0, 2].

(2.4)

In the numerical experiments by changing the frequencies ωτ we can take Θ0(l)
equal to the stationary solution obtained at the previous assigned value of the
frequency.
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3 Approximations and Solution of the Problems

The stationary solution βs(l) of the equations (2.3), (2.4) with the boundary
conditions β(0, t) = β(2, t) = 0 can be obtained from the transcendental equa-
tion F (βs(l)) = 0.5ωτl(2− l) for fixed values of ωτ and l ∈ (0, 2). The maximal
value βm = βs(1) is the solution of the transcendental equation F (βm) = 0.5ωτ.

The solution (β(l, t) ≥ 0) is symmetrical with respect to l = 1: β(1 −
l1, t) = β(1 + l1, t), l1 ∈ (0, 1) or ∂β(1,t)

∂l = 0. The angle β as function of the
variable l is discontinuous for ωτ = 2F (β0), where β0 are the roots of equation
F ′(β) = 0 (the local maxima or minimum of the function F (β)). The values
wc = (ωτ)0 = 2F (β0), define the critical frequencies.

The second method of regularization of the ill-posed problem (2.4) consists
in construction of monotonous continuous functions. For the path with increas-
ing frequency ωτ of rotating field the modified (direct) function F (β) = F (u)
is constructed as follows [3]:

1) F (u) = 1
Bmu + sin(2u), u ∈ [0, u1], where u1 = π

2 − 0.5 arccos(0.5/Bm),
is the first local maxima of function F (u) or the solution of the equations
F ′(u1) = 1

Bm + 2 cos(2u1) = 0,

2) F (u) = F (u1) = F1, u ∈ [u1, u2], where u2 is the solution of the tran-
scendental equation F (u) = F1 at the interval (u1, u3), u3 = 3π

2 −
0.5 arccos(0.5/Bm),

3) F (u) = 1
Bmu+ sin(2u), u ∈ [u2, u3],

4) F (u) = F (u3) = F3, u ∈ [u3, u4], where u4 is the solution of the tran-
scendental equation F (u) = F3 at the interval (u3, u5), u5 = 5π

2 −
0.5 arccos(0.5/Bm),

and so on.
More generally, we can calculate the maxima of the function and the co-

ordinates of the intersection points. Therefore in the segment [u2k−1, u2k],
k = 1, 2, . . . the function F (u) is replaced with line segment F (u) = F (u2k−1) =

F2k−1, where u2k−1 = (2k−1)π
2 −0.5 arccos(0.5/Bm) are the local maxima of the

function F (u). The ends of the segment u2k−1, u2k satisfy following conditions:
u2k−1 = u1 + (k − 1)π; u2k = u2 + (k − 1)π, k = 2, 3, . . . . The maximal value
of F (u2k−1) is equal F2k−1 = F1 + (k − 1) π

Bm , where F1 = F (u1).
From F ′(u2k) = F ′(u2), F ′(0) = 2 + 1

Bm follows that F ′(u2k) ≤ F ′(0).
The critical frequencies wc(k) are defined by wc(k) = 2F2k−1, k = 1, 2, . . . This
function is shown in Fig. 2 for Bm = 1.5.

For the path with decreasing frequency of the rotating field the modified
(reverse) function F (β) = f(u) is defined as follows:

1) f(u) = 1
Bmu+sin(2u), u ∈ [0, v2], v2 is the solution of the transcendental

equation f(u) = f1 at the interval (0, u1), where f1 = f(v1) is the value
of the minimal value of function f(u), the local minimum is the solution
of the equations f ′(u) = 0 in the segment [u1, u2],

2) f(u) = f(v1) = f1, u ∈ [v2, v1],

Math. Model. Anal., 18(1):80–96, 2013.
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Figure 2. Direct modified function
F (u) at Bm = 1.5. The following

numerical values are shown in figure:
u1 = 0.9553, u2 = 2.9448, u3 = 4.0969,
u4 = 6.0864, u5 = 7.2385, u6 = 9.2280,
F1 = 1.5797, F3 = 3.6741, F5 = 5.7685,
F ′(0) = 2.6667. In the fixed points

⊙
there are values of ωτ with the

coordinates (βs(1), ωτ/2).
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Figure 3. Reverse modified function
f(u) at Bm = 1.5. The following

numerical values are shown in figure:
v1 = 2.1863, v2 = 0.1968, v3 = 5.3279,
v4 = 3.3384, v5 = 8.4695, v6 = 6.4800,
f1 = 0.5147, f3 = 2.6091, f5 = 4.7035. In
the fixed points

⊙
there are values of ωτ

with the coordinates (βs(1), ωτ/2).

3) f(u) = 1
Bmu + sin(2u), u ∈ [v1, v4], where v4 is the solution of the tran-

scendental equation f(u) = f3 at the interval (u2, u3), where f3 = f(v3)
is the value of the local minimum of function f(u) or the solution of the
equations f ′(u) = 0 in the segment [u3, u4],

4) f(u) = f(v3) = f3, u ∈ [v4, v3].

More generally, in the segment [v2k, v2k−1], k = 1, 2, . . . the function f(u) is

replaced with line segment f(u) = f(v2k−1) = f2k−1, where v2k−1 = (2k−1)π
2 +

0.5 arccos(0.5/Bm) are the local minimum of the function f(u). The ends of
the segment v2k−1, v2k satisfy following conditions: v2k−1 = v1 + (k − 1)π;
v2k = v2 + (k − 1)π, k = 2, 3, . . . , v1 = π − u1. The minimal value of f(u2k−1)
is equal f2k−1 = f1 + (k − 1) π

Bm , where f1 = f(v1). The critical frequencies
wc(k) in this case are defined with the expression wc(k) = 2f2k−1, k = 1, 2, . . .
Function f(u) is shown for Bm = 1.5 in Fig. 3.

The stationary shapes with 3 jumps constructed according to the modified
functions are shown in Fig. 4 (direct function) and Fig. 5 (reverse function)
for Bm = 1.5, ωτ = 15. It is interesting to remark that the curvature of the
shapes has opposite signs for the cases of direct and reverse functions. From
∂2F (u)
∂l2 = F ′′(u)(∂u∂l )2 + F ′(u)∂

2u
∂l2 = −ωτ follows that ∂2u

∂l2 ≤ 0 if F ′′(u) ≥ 0.
For the stationary solutions depending on the frequency we can obtain one

or two solutions. In the segments ωτ ∈ [2F2k−1, 2f2k−1], k = 2, 3, . . . we have
two stationary solutions, but in the segments ωτ ∈ (2F2k−1, 2f2k+1), k =
2, 3, . . . the solution is unique (F ′(u) ≥ 0). An example, at Bm = 1.5 (see Figs.
2, 3) we have the following maximal values max(βs(l)) = βs(1) for different
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Figure 4. Stationary solution βs(l) at
ωτ = 15 in the case of direct function.
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Figure 5. Stationary solution βs(l) at
ωτ = 15 in the case of reverse function.

values of ωτ : ωτ = 2(0.4078; 2.6858), ωτ = 6(3.504, 5.7751), ωτ = 5(3.2955),
ωτ = 8(6.2122), ωτ = 10(6.6035, 8.8584), ωτ = 12(9.3180), ωτ = 15(9.9494).

The modified functions are continuous and monotonous with discontinuous
first derivatives, (0 ≤ F ′(β) ≤ 2 + 1

Bm ), and from (2.4) we can obtain that for
fixed time t the solution β(l, t) is square integrable together with the first order
weak partial derivatives.

If t = 0, Θ0 = 0, then from (2.4) it follows that ∂β(l,0)
∂t = ωτ > 0 and the

function β is increasing in time. For modified functions F, f we can prove that

the weak solution for fixed t is bounded in the norm of Sobolev space
0

W 1
2 and

the problem (2.4) is uniquely solvable. The solvability for the equation (2.3)
with ε 6= 0 requires an additional investigation.

The problem (2.3), which is regularized by ε, and problem (2.4), which
is regularized by the modified functions, are solved by the MATLAB “solver
ode15s” with relative error 10−7 (RelTol = 10−7), using the method of lines
and finite difference method for the approximation of spatial derivatives. We
consider the uniform grid in the space lj = jh, j = 0, N , Nh = 2. The finite
differences of second order approximation for partial derivatives of second and
fourth order with respect to l are applied. As a result the initial value problem
for the system of nonlinear ODEs of the first order is obtained:{

(E + εB)U̇(t) +AF
(
U(t)

)
= G,

U(0) = U0,
(3.1)

Here E is the unit matrix of N−1 order, A is the standard 3-diagonal matrix of

N−1 order with the elements 1
h2 {−1; 2;−1} approximating the derivative − ∂2

∂l2 ,
B is the 5-diagonal matrix of N −1 order with the elements 1

h4 {1;−4; 6;−4; 1}
approximating the derivative ∂4

∂l4 . The first and last elements of matrix B are
B(1, 1) = B(N − 1, N − 1) = 5/h4, they include finite difference expressions
u0(t) = uN (t) = 0, u−1(t) = −u2(t), uN+1 = −uN−1 used to approximate the

Math. Model. Anal., 18(1):80–96, 2013.
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artificial boundary conditions

∂2β(0, t)

∂l2
=
∂2β(2, t)

∂l2
= 0.

It is obvious that B = A2.
U(t), U̇(t), U0, F (U), G are the column-vectors of N − 1 order with the

elements uj(t) ≈ β(lj , t), u̇j(t) ≈ ∂β(lj ,t)
∂t , uj(0) = Θ0(lj), fj ≈ F (uj(t)),

gj = ωτ , j = 1, N − 1.

For the difference scheme with exact spectrum (FDSES) [3] the matrix
A is replaced with the matrix WDW , where W = W−1 is the symmetrical

orthogonal matrix with elements wj,k=
√

2
N sin πjk

N , j, k = 1, N − 1 and the

diagonal matrix D contains the N − 1 and eigenvalues λk = (kπ
L̄

)2 of the

differential operator (− ∂2

∂l2 ). For FDS the diagonal matrix D has eigenvalues

µk = 4
h2 sin2( πk2N ).

Using the matrix form A + h2

12B for the fourth order approximation of the
diffusion operator [12], we can obtain the following problem:(E + εB)U̇(t) +

(
A+

h2

12
B

)
F
(
U(t)

)
= G,

U(0) = U0,

(3.2)

It should be remarked that the regularization of ill-posed backward in time

linear homogeneous heat transfer equation (2.3) by term ε∂
4β
∂4l or εBU(t) for

ODEs system (3.1) is considered in the book by Lattes and Lions [8].
Inverse problems for partial differential equations and their methods of reg-

ularization are considered in the book by V.Isakov [6].

By using the Lattes and Lions regularization we will consider the following
two initial value problem:U̇(t) +

(
A+

h2

12
B

)
F
(
U(t)

)
+ εBU(t) = G,

U(0) = U0

(3.3)

and {
U̇(t) +AF

(
U(t)

)
+ εBU(t) = G,

U(0) = U0.
(3.4)

Then we get the problem:

∂u

∂t
=

∂

∂l

(
g(u)

∂u

∂l

)
− ε∂

4u

∂l4
+ ωτ, (3.5)

from which the following integral identity follows trivially:

∂

2∂t

∫ 2

0

u2 dl +

∫ 2

0

g(u)
(∂u
∂l

)2

dl + ε

∫ 2

0

(∂2u

∂l2

)2

dl = ωτ

∫ 2

0

u dl, (3.6)
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where g(u) = 2
3 + 2 cos(2u), − 4

3 ≤ g(u) ≤ 8
3 , g′(u) = −4 sin(2u).

In order to investigate the solvability of the corresponding initial-value prob-

lem in the Sobolev space
0

W 2
2 , to prove the existence of the weak solution and to

obtain a priori estimations at fixed time t, we need to determine the parameter
ε from the following inequality:∫ 2

0

g(u)
(∂u
∂l

)2

dl + ε

∫ 2

0

(∂2u

∂l2

)2

dl ≥ k0

∫ 2

0

(∂u
∂l

)2

dl,

or ε ≥ κ = max I(u), where k0 = const ≥ 0,

I(u) =

∫ 2

0

(
k0 − g(u)

)(∂u
∂l

)2

dl
/∫ 2

0

(∂2u

∂l2

)2

dl, u ∈
0

W 2
2 .

From dI(u+ε1φ)
dε1

→ 0, ε1 → 0 (φ is arbitrary function ∈
0

W 2
2 ) the integral

equation follows

−2

∫ 2

0

∂2u

∂l2
∂2φ

∂l2
dl +

1

κ

∫ 2

0

(
−g′(u)

(∂u
∂l

)2

φ+ 2
(
k0 − g(u)

)∂u
∂l

∂φ

∂l

)
dl = 0,

or ∫ 2

0

(∂4u

∂l4
+

1

κ

(
−0.5g′(u)

(∂u
∂l

)2

+
(
k0 − g(u)

)∂2u

∂l2

))
φdl = 0.

Since φ is arbitrary, then for fixed t the following nonlinear differential equation
is obtained

∂4u

∂l4
+

1

κ

(
−0.5g′(u)

(∂u
∂l

)2

+
(
k0 − g(u)

)∂2u

∂l2

)
= 0. (3.7)

This equation is solved numerically by using Matlab solver “bvp4c”, the fol-
lowing 5 boundary conditions are used

u(0, t) = u(2, t) =
∂2u(0, t)

∂l2
=
∂2u(2, t)

∂l2
= 0,

∂u(0, t)

∂l
= 0.7.

The last condition is used to find κ for the fixed value of parameter k0. The
maximal value of κ = 0.0143 is obtained for k0 = 1.3.

Then from (3.6) and using Hölder’s inequality |
∫ 2

0
u dl| ≤

√
2‖u(t)‖ we get

the inequality
1

2

d

dt
‖u(t)‖2 + k0‖ux(t)‖2 ≤

√
2ωτ‖u(t)‖.

Using the Friedrich inequality [11] ‖u‖2 ≤ 4
π2 ‖ux‖2 we obtain the inequality

d‖u(t)‖
dt

+
k0π

2

4
‖u(t)‖ ≤

√
2ωτ

from which it follows that

‖u(t)‖ ≤ ‖u(0)‖ exp
(
− k0π

2

4
t
)

+
√

2ωτ
4

k0π2

(
1− exp

(
− k0π

2

4
t
))
.

Math. Model. Anal., 18(1):80–96, 2013.
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If k0 = 0, then ‖u(t)‖ ≤ ‖u(0)‖+
√

2ωτt.
For the stationary solutions us(l) the estimate ‖us‖ ≤ Cs is valid, where

Cs =
√

2ωτ 4
k0π2 .

For the case of constant function g, by using the Fourier series

u(l, t) =

∞∑
k=1

ak(t)wk(l), wk(l) = sin
kπl

2

we obtain

dak(t)

dt
= −gλkak(t)− ελ2

kak(t) + bk,

bk = ωτ

∫ 2

0

wk(l) dl = ωτ
2

kπ

(
1− (−1)k

)
,

or

ak(t) = exp(ρkt)ak(0) +
bk
ρk

(
exp(ρkt)− 1

)
,

where ρk = −gλk − ε(λk)2, ak(0) =
∫ 2

0
u(l, 0)wk(l) dl. We have a bounded

solution for g = −|g| < 0, when ρk ≤ 0 or ε ≥ max |g|λk
= |g|

λ1
= 4|g|

π2 . Using

Matlab solver “bvp4c” with g = −1, k0 = 0 we get from (3.7) that κ =
0.4053 ≈ 4

π2 .

For discrete equations (3.3), (3.4) in similar way we obtain, that ε ≥ |g|
µ1
,

ε ≥ |g|(1+µ1h
2/12)

µ1
.

Let us consider a backward in time problem with ε = 0, g = const > 0 and
initial condition uT (l) ∈ L2(0, 2)

∂u

∂t
= g

∂2u

∂l2
, l ∈ (0, 2), t ∈ (tf , 0),

u(0, t) = u(2, t) = 0, t ∈ (tf , 0), u(l, tf ) = uT (l), l ∈ (0, 2).

(3.8)

The Fourier coefficients of the solution are defined by

ak(t) = exp
(
gλk(T − t)

)
aTk, aTk =

∫ 2

0

uT (l)wk(l) dl.

The coefficients ak(0) are uniquely determined from the relations ak(0) =
exp(gλkT )aTk. These relations show that the solution u(l, t) is exponentially
unstable: if initial condition uT is defined by the k-th mode, then for the
solution

u(l, t) =

∞∑
k=1

ak(0) exp(−gλkt)aTkwk(l)

with ak(0) = ε exp(gλkT ), we have ‖u(0)‖ = ε exp(gλkT ), while ‖uT ‖ = ε.
In [8] the equation (3.8) is replaced by the regularized high-order equation

∂u

∂t
= g

∂2u

∂l2
+ ε

∂4u

∂l4
.
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Then ak(t) = exp(g(λk−ελ2
k)(T−t))aTk and the series for u(l, t) is convergent in

L2(0, 2) for any uT and any t < T . Moreover, when ε goes to 0, the regularized
solutions are converging to the exact solution u of the initial problem (3.8) [6].

The second method for regularization of (2.4) is given by the initial value
problem (3.1) with ε = 0 but with the modified functions F , f. The shape of
a droplet in the plane x, y is found by numerical integration of the equation
(2.2)

x̄(l, t) =

∫ l

0

cos
(
β(ξ, t)

)
dξ, ȳ(l, t) = −

∫ l

0

sin
(
β(ξ, t)

)
dξ,

and the center of mass

Mx(t) =
1

2

∫ 2

0

x̄(l, t) dl, My(t) =
1

2

∫ 2

0

ȳ(l, t) dl.

Then x(l, t) = x̄(l, t) − Mx(t), y(l, t) = ȳ(l, t) − My(t). Therefore, the mass
center of the droplet is motionless. In the discrete case the trapezoid formula
is used.

4 Numerical Results

Constructed direct and reverse functions allow us to calculate the dynamics
of shapes corresponding to the path with increasing the frequency of rotating
field starting from straight configuration and the reverse path starting from
the deformed shape calculated by using direct function. The main numerical
simulations are carried out by N = 100 and integrating the system of ODEs
(3.1) in two ways:

1) ε = 10−4, 2) ε = 0,

in the second case the modified functions F , f are used. The obtained results
in either case are consistent with the maximal difference less than 0.1 percent.

4.1 Numerical results for different frequencies using the direct path

The dynamics of the tangent angle and the corresponding shapes formed in
direct path obtained for Θ0(l) = 0 for different frequencies of rotating field by
Bm = 1.5, ωτ = 5, 8, 12, 24 are shown in Figs. 6–13. Here the function β(l, t)
with 1, 2, 3 and 5 jumps at different time-moments t is shown (the stationary
solution is obtained by tf = 6). We note the formation of highly spiral -like
shapes at large frequencies of the rotating field (see Figs. 11, 13).

In [3], by using the Matlab solver “ode15s” we have solved the same problem
by taking ε = 0. Now we compare more models, including different regulariza-
tion techniques. The numerical results for parameters ωτ = 8, N = 100 and
different systems of ODEs (3.1), (3.2), (3.3), (3.4) with ε = 10−4 and ε = 0 are
presented in Table 1. Here we analyze the dependence of the maximal value
βm of β and the number of time steps K at t = tf = 6 on the different inte-
gration and regularization methods and values of parameter ε. The results are
obtained with the Matlab solver “ode15s” (RelTol = 10−7). For ε > 0, we have

Math. Model. Anal., 18(1):80–96, 2013.
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Table 1. βm and K by t = 6 depending on method and ε.

Method ε K βm

(3.1) FDS 10−4 685 6.2121
(3.2) FDS 10−4 718 6.2122
(3.1) FDSES 10−4 655 6.2130
(3.2) FDSES 10−4 683 6.2140
(3.1) FDS* 0 8538 6.2121
(3.2) FDS* 0 9158 6.2120
(3.1) FDSES* 0 7377 6.2122
(3.2) FDSES* 0 8843 6.2118
(3.3) FDS 4× 10−4 3851 6.2117
(3.4) FDS 4× 10−4 3128 6.2091
(3.3) FDSES 4× 10−4 2916 6.2111
(3.4) FDSES 4× 10−4 2270 6.2114
(3.4) FDS 10−3 1383 6.2109
(3.4) FDS* 0.3× 10−4 9869 6.2121
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Figure 6. β(l, ti) with 1 jump in
dependence on l for ωτ = 0⇒ 5, tf = 6.
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Figure 7. Droplet dynamics at
ωτ = 0⇒ 5, tf = 6.

observed that the computing process in time is smooth (see also Figs. 16, 17),
but for ε = 0 we have observed the oscillations in time (these cases are denoted
by * in Table 1, also see Figs. 14, 15).

Remark 1. Non-stiff Matlab solvers such as “ode45” fail to converge in the ill
posed case ε = 0.

4.2 Numerical results for different frequencies using the reverse
path

Relaxation of the tangent angle and the droplet shape obtained using the re-
verse function for Bm = 1.5, ωτ = 5, 12, 24 are shown in Figs. 18–25. As initial
conditions for the reverse path the stationary solutions obtained for ωτ 1 to 5,
12, 24 at Θ0(l) = 0, tf = 6 are used. Figs. 20, 22 show a step-like behavior of
the maximal tangent angle during the relaxation to the straight configuration
which characterizes the disappearance of the jumps of tangent angle.
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Figure 8. β(l, ti) with 2 jump in
dependence on l for ωτ = 0⇒ 8, tf = 6.
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Figure 9. Droplet dynamics at
ωτ = 0⇒ 8, tf = 6.
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Figure 10. β(l, ti) with 3 jump in
dependence on l for ωτ = 0⇒ 12, tf = 6.
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Figure 11. Droplet dynamics at
ωτ = 0⇒ 12, tf = 6.
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Figure 12. β(l, ti) with 5 jump in
dependence on l for ωτ = 0⇒ 24, tf = 6.
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Figure 13. Droplet dynamics at
ωτ = 0⇒ 24, tf = 6.
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Figure 14. The dependence of maxβ
on t for ωτ = 0⇒ 8, ε = 0.
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Figure 15. The dependence of β(l, ti)
with 2 jump on l for ωτ = 0⇒ 8, ε = 0.
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Figure 16. The dependence of β(l, ti)
with with the Lattes and Lions

regularization on l for ωτ = 0⇒ 8,
ε = 4× 10−4.
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Figure 17. Droplet dynamics with the
Lattes and Lions regularization at

ωτ = 0⇒ 8, ε = 4× 10−4.
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Figure 18. The dependence of β(l, ti)
on l for ωτ = 5⇒ 0, tf = 6 using reverse

function.
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Figure 19. Droplet reverse dynamics
at ωτ = 5⇒ 0, tf = 6.
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Figure 20. The dependence of maxβ
on t for ωτ = 5⇒ 0 using reverse

function.
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Figure 21. Droplet reverse dynamics
at ωτ = 12⇒ 0, tf = 6.
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Figure 22. The dependence of maxβ
on t for ωτ = 12⇒ 0 and using the

reverse function.
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Figure 23. The dependence of β(l, ti)
on l for ωτ = 12⇒ 0, tf = 6 and using

the reverse function.
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Figure 24. Droplet reverse dynamics
at ωτ = 24⇒ 0, tf = 6.
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Figure 25. The dependence of β(l, ti)
on l for ωτ = 24⇒ 0, tf = 6 and using

reverse function.
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Figure 26. Droplets at
ωτ = 0⇒ 2⇒ 5 ∪ 5⇒ 2, tf = 6.
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Figure 27. β(l)stac for
ωτ = 0⇒ 2⇒ 5 ∪ 5⇒ 2, tf = 6.
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Figure 28. Droplets at
ωτ = 0⇒ 6⇒ 8 ∪ 8⇒ 6, tf = 6.
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Figure 29. β(l)stac for
ωτ = 0⇒ 6⇒ 8 ∪ 8⇒ 6, tf = 6.

4.3 Numerical results for different frequencies using the direct and
reverse paths

The main results of this paper are shown in Figs. 26–31. In this case the shape
obtained by reverse function starting from the stationary configuration with
tf = 6, which is obtained by using the direct function at higher frequency, is
different from the configuration obtained at the same frequency by the direct
path. So shapes obtained at ωτ = 2 by direct and reverse paths are different
(see Fig. 26). Here we plot two stationary solutions at frequency ωτ = 2
obtained at tf = 6 in the following way:

1) We use the direct path (function F ) with Θ0(l) = 0 and obtain the
stationary solutions by ωτ = 2 and ωτ = 5;

2) We use the reverse path (function f) with Θ0(l) equal to the stationary
solution obtained with the direct function for ωτ = 5 and obtain the
stationary solution for ωτ = 2.

We will denote this scenario as: from 0 to 2 and to 5, then from 5 to 2 or
ωτ = 0⇒ 2⇒ 5 ∪ 5⇒ 2.

The same is valid for ωτ = 6, ωτ = 0 ⇒ 6 ⇒ 8 ∪ 8 ⇒ 6 (Fig. 28) and
ωτ = 10, ωτ = 0 ⇒ 10 ⇒ 12 ∪ 12 ⇒ 10 (Fig. 30). The different tangent angle
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Figure 30. Droplets at
ωτ = 0⇒ 10⇒ 12 ∪ 12⇒ 10, tf = 6.
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Figure 31. β(l)stac for
ωτ = 0⇒ 10⇒ 12 ∪ 12⇒ 10, tf = 6.

for these frequencies is shown in Figs. 27, 29, 31.

Thus the considered model predicts multiple stationary states of the droplet
in definite ranges of the frequency of rotating field. It would be interesting to
confirm this prediction in experiments. Here we should remark that available
experiments [7] indeed show the formation of the shapes with discontinuity
of tangent angle which breaks at places with large curvature. The breaking
phenomenon is not described by the present model.

5 Conclusions

The ill-posed problem for non-linear parabolic PDE may be regularized by in-
troducing viscous bending torques and construction of monotonous continuous
functions. By numerical simulation it is found that both approaches are equiv-
alent. It is shown that increasing the accuracy of approximation of the discrete
problem allows to decrease the number of time steps to obtain the same results.

Two monotonous functions corresponding to the paths with increasing and
decreasing frequencies may be constructed and two different droplet shapes
exist in definite ranges of the frequency of the rotating field. This leads to
hysteresis phenomena in the droplet shape transformations at change of the
frequency of rotating field. This prediction is a challenge for experimental
verification.
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