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Abstract. In this paper, we discuss some properties on hyperbolic-harmonic func-
tions in the unit ball of C". First, we investigate the relationship between the weighted
Lipschitz functions and the hyperbolic-harmonic Bloch spaces. Then we establish the
Schwarz—Pick type theorem for hyperbolic-harmonic functions and apply it to prove
the existence of Landau-Bloch constant for functions in a-Bloch spaces.
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1 Introduction and Preliminaries

Let C™ denote the complex Euclidean n-space. For z = (z1,...,2,) € C",
the conjugate of z, denoted by Z, is defined by z = (Z1,...,%,). For z and
w = (wy,...,wy,) € C", the standard Hermitian scalar product on C™ and the
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Euclidean norm of z are given by

(z,w) szwk and |z] := (z, z)l/ = (Jz1]* + -+ |zn] )1/2
k=1

respectively. For a € C", B"(a,7) = {# € C": |z — a| < r} is the (open) ball
of radius r with center a. Also, we let B™(r) := B"(0,r) and use B™ to denote
the unit ball B"(1), and D = B!. We can interpret C" as the real 2n-space
R2" 50 that a ball in C" is also a ball in R?". We use the following standard
notations. For a € R", we may let BR(a,7) = {z € R™: |z — a|] < r} so that
Bi(r) := BR(0,r) and B = B(1) denotes the open unit ball in R™ centered
at the origin.

DEFINITION 1. A twice continuously differentiable complex-valued function f =
u 4 iv on B™ is called a hyperbolic-harmonic (briefly, h-harmonic, in the fol-
lowing) if and only if the real-valued functions u and v satisfy Apu = Apv =0
on B”, where

9 n ) n a a
Ay, 1— 4(n—1)(1—

=73 (g + ) + 10001 3 (e
denotes the Laplace—Beltrami operator and zp = zp + iy, for k=1,...,n

Obviously, when n = 1, all h-harmonic functions are planar complex-valued
harmonic functions (see [12]). We refer to [5, 13, 14, 25] for more details of
h-harmonic functions.

By [5, Paga], it turns out that if ¢ € C(9B"), then the Dirichlet problem

Apf=0 inB",
f=v on JB"

has unique solution in C(B") and can be represented by

1) = [ P 0w do(c).

where do is the unique normalized surface measure on 9B™ and Pj(z, () is the
hyperbolic Poisson kernel defined by

1|2
|z = ¢I?

Here C(£2) stands for the set of all continuous functions on {2. A planar
complex-valued harmonic function f in D is called a harmonic Bloch function

if and only if
b oy VOS]
z,weD, z#£w p(Z, UJ)

Ph(z,C)< )2 1 (z € B", € OB").
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Here 3y is the Lipschitz number of f and

1 1+ Z—w .
p(z,w) = = log — 122w ) — arctanh Q
2 1—[£==] 1—Zw

denotes the hyperbolic distance between z and w in D. It can be proved that
By =sup{ (1= 1=P) [I£:(2)] + [ £=()]]}-

We refer to [11, Theorem 2] (see also [8, Theorem 1] and [9, Theorem A]) for
a proof of the last fact.
For a complex-valued h-harmonic function f on B", we introduce

_ (oL 98 D= (2L 9
Df—<821,...,azn) and Df—<821,...,azn .

DEFINITION 2. The h-harmonic Bloch space HB consists of complex-valued h-
harmonic functions f defined on B"™ such that

[ fllns = Seuéi{(l — [2P)[|Ds(2)| + [Ds(2)]] } < o0
Obviously, when n =1, ||f|lus = 8. For a pair of distinct points z and w

in B™, let
(1= 12132 (1= [w]?) 2 [ f(2) = f(w)]

|2 — wl

‘cf(z’ w) =

denote the weighted Lipschitz function of a given h-harmonic function f : B" —
C. The relationship between weighted Lipschitz functions and (analytic) Bloch
spaces has attracted much attention (cf. [1, 2, 11, 15, 16, 21]). Our first aim
is to characterize the functions in h-harmonic Bloch spaces in terms of their
corresponding weighted Lipschitz functions. This is done in Theorem 1 which
is indeed a generalization of [11, Theorem 1] and [15, Theorem 3].

Throughout, H(B"™,C") denotes the set of all continuously differentiable
functions f from B™ into C™ with f = (fi,...,fn) and f;(z) = u;(z) +
ivj(z) (1 < j < n), where u; and v; are real-valued functions on B™. For
f € H(B™,C™), the real Jacobian matrix of f is given by

6u1 8u1 8’[1,1 6u1 V. 8u1 8u1

oz oY1 Oxo dya Oxy, OYn

vy ovy  Ov ovy L. vy ovy

oz Byl Oxo 8y2 OTr, Byn

Jr =

Qun  Oun  OQup  Oun ., Oun  Oun
oz 8y1 Oxo 8y2 Oy 8yn
vy Qs  Oun  Oua ., Oun Oun
oz Jy1 Oz 0y2 Oxy Oyn

A vector-valued function f € H(B™,C") is said to be h-harmonic, if each
component f; (1 < j < n) is a h-harmonic function from B" into C. We
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denote by Hp,(B™,C™) the set of all vector-valued h-harmonic functions from
B"™ into C".

For each f = (f1,...,fn) € H(B",C"), denote by f, = (Dy,,...,Dy,)"
the matrix formed by the complex gradients Dy, ,..., Dy, , and let denote by
fz=(Dy,,...,Dy,)T, where T means the matrix transpose.

For an n x n matrix A = (a;),,,,, the operator norm of A is given by

|A| = sup MZ|| = max{|A46]: 0 € OB" }.
z7#0

Then for f € H(B",C™), we use the standard notations:

Af(z)—erélgﬁvz 2)0 + fz(2)0 | and Af(z) = mm ’fz )0 + fz(2)0 | (1.1)

We see that (see for instance [6])

A = Js0] and A = J 0 1.2
f g})?BXIflan f Igggnlf\ (1.2)

Let PH(B™,C™) denote the set of all f = (f1,..., fn) € H(B",C") such
that all partial derivatives 0f;/0z; and 0f;/0Zk (1 < j,k < n) are h-harmonic
in B™.

We remark that when n = 1, every complex-valued harmonic function from
D to C belongs to PH(D,C). The converse is not true as the function f(z) =
|2|? shows.

DEFINITION 3. For a > 0, the vector-valued h-harmonic a-Bloch space HB,, ()
consists of all functions in PH(B™, C™) such that

e = s {1 = =) 2] + | ]} <

Obviously, HB;(«) contains the harmonic a-Bloch space as a proper subset
(see [9]). Onme of the long standing open problems in function theory is to
determine the precise value of the univalent Landau-Bloch constant for analytic
functions of . In recent years, this problem has attracted much attention, see
[4, 18, 20] and references therein. For general holomorphic functions of more
than one complex variable, no Landau-Bloch constant exists (cf. [26]). In
order to obtain some analogs of Landau-Bloch’s theorem for functions with
several complex variables, it became necessary to restrict the class of functions
considered (cf. [3, 6, 10, 17, 22, 24, 26]).

Based on Heinz’s Lemma and Colonna’s Distortion Theorem ({11, The-
orem 3]) for planar complex-valued harmonic functions, in [6], the authors
established the Schwarz—Pick type theorem for bounded pluriharmonic map-
pings and pluriharmonic K-mappings. As a consequence of it, the authors
in [6] obtained Landau-Bloch theorem as generalizations of the main results
[7, Theorems 1-7]. It is known that every pluriharmonic mapping f defined in
B" admits a decomposition f = h + g, where h and g are holomorphic in B".
This decomposition property is no longer valid for functions in H5,,(«). Hence
the methods of proof used in [6, Theorem 4] and [6, Theorem 5] are no longer
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applicable for functions in H;,(B™,C™) and HB,(«). In view of this reason-
ing, in this article, we use entirely a different approach and prove Schwarz—Pick
type theorem for functions in Hp(B™, C™) and then establish the Landau-Bloch
theorem for functions in HB,,(a) (see Theorems 2 and 3). It is worth pointing
out that Theorems 2 and 3 are indeed generalizations of [11, Theorem 1] and
[9, Theorem 2.4], respectively.

2 Characterization of Mappings in h-Harmonic Bloch
Spaces

Consider the group Aut(B™) consisting of all biholomorphic mappings of B"
onto itself. Then for each a € B"™, ¢, defined by [23]:

a—Pyz—(1—la?)2(z — P,2)
1—{(z,a)

Pa(2) =

belongs to Aut(B™), where P,z = a(z,a)/{a,a). Moreover, we find that

> (1= [ —|af?)

i (za)P 21)

1-— |¢>a(z)

Using arguments similar to those in the proof of [19, Lemma 2.5], we have

Lemma 1. Suppose f : E}z(a,r) — R is a continuous, and h-harmonic in
Bi(a,r). Then

Vi) < 202DV )~ g asto)

nV(n)r" OBg (a,r)

where V f = (aa—zfl, ceey %), do denotes the surface measure on OB (a,r) and

V(n), the volume of the unit ball in R™.

Proof. Without loss of generality, we may assume that a = 0 and f(0) = 0.

Let _—
1 r? —|xz]2\""
K(x,t) = .
(z.1) nr*=1V(n) < |z — ]2

Then by the assumption on f, we see that [5]

f(a:):/ K(x,0)f(t)do(t), =€ BE(r).
B2 (r)

Further, a computation shows that

— _ 2 _ 2\n—2 _ 2 . 2 _ 2 4.
d K(et) = 20n = 1)(r® = |22 [lo = tai + (o = |2) (@ tz)],
Ox; nrn=1V(n) |z — t]2n
which yields
—K(0,t) = ————
Ox; 0.9 nV (n)rntt’
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whence
IV f(0)] = {Z / %K(O,t)f(t)do'(t) ]2
=gy
<2 / 62»K(0’t)f(t)d”(t)‘ < / LoD %K(O,t) do(t)
=omk) o8 (r) im0
con o Se] ) o
= M ’f(t)‘da(t),

nV(n)r*  Jogs(r)
from which the lemma follows. 0O

Lemma 2. Let f = u + v be a continuously differentiable function from B"
into C, where u and v are real-valued functions. Then for z € B™,

|Df(2)] + |Dy(z)| < |Vu(z)| + |Vo(2)], (2.2)
here Vu = (5 2 ) and Vo= (B ).
Proof. By a basic change of variables, for each k = 1,2,...,n, we have

for(2) = 5 (fan (2) = i () and o, (2) = 5 (Fau 2) + i (2)),

which implies

For() = 5 [t (2) + 03 () F 0y (2) = s (2],

1

f?k (Z) = 5 [uzk (Z) — Uy, (Z) + Z(Uﬁk (Z) + Uyy, (Z))]

The classical Cauchy—Schwarz inequality gives

|Ds()] = ;J D [ (2) + 03 (2)) + (v (2) =y ()]

A
N =
)
<
=
Ry
+
<
=
&
N

and similarly,

D] = 54| S [t (2) — 03, (2)) + (0, (2) 0, (2))°]

INA
N |
)
<
£
Ny
+
<
e
Ny

from which we obtain the desired inequality (2.2). O

Math. Model. Anal., 18(1):66-79, 2013.
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Ezample 1. Consider f(z) = 2% + % = u(z,y) + iv(z,y) so that u(x,y) = 22 +
x —y? and v(z,y) = 22y — y. It is easy to see that

|£200)] + |20 =1 and  |Vu(0)] 4 |Vo(0)| = 2,
showing that strict inequality in (2.2) is possible.
Theorem 1. f € HB if and only if sup, ,epn 2, Lf(2,w) < 00.

Proof. First we prove the necessity. For each pair of distinct points z and w
in B™, we have

() — fw)| = \/ Plers 1)

Z(zk — wk)/o dgijzt) (2t + (1 —t)w) dt

k=1
+;7 ™ [ Fg et a-oual
SZ\zk wy| - ‘/d (2t + ( 1—t)w)dt’
1
+ \Ek—m\ Ocrif()( + (1 —t)w) dt|,

k=1

where ¢(t) = (¢1(t),...,sn(t)) = 2t + (1 — t)w. Hence we see that

\f(z)—f(W)IS(k a4 wk') H (
([l v - omfa) T}

(=
< Vn|z —w/olﬂDf(ter (1= t)w)|+ |Df(tz + (1 = t)w)|] dt.

(t) (2t 41— t)w)‘dt>2r

k=1

This gives
/) f(w UD ()] + D)L Is()P)
E— f/ = 0P o
Loooat ! dt
< Vil s | 5 < VI || G e
il s

A fw])E
Thus,
sup  Lp(z,w) < 7v/nl|fllus.

zZ,WEB™, z#£w
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Next we prove the sufficiency part. Let f = w + iv, where u and v are
real h-harmonic functions. Fix r € (0,1). In view of (2.1) and the fact that
[(z,a)| < |z||a|, we easily have
|z —a |z — al
—(za)| = 1—lal’

|9a(2)] < i (2.3)

whence for a € B,

B" (a, 7“(1—2|a|2)> C E(a,r),

where E(a,r) = {z € B": |¢4(2)| < r}. By Lemma 1, we have
(2n — 1)v2n(1 — |2]?)
nv(Qn)[T(lg\ZP)Pn

(1- |z\2)|Vu(z)| <

[l - ua)|dotc)
OB (z,20=1210))
—u(elr) [ a0~ u()] o),
oBn (2,20 210
where V(2n) denotes the volume of the unit ball in R?" (or C") and

B 227(2n — 1)v/2n
M(|Z‘7T) T nV(2n)(1 — |22)2nLp2n

Similarly, we obtain

(1— [2)|Vo(z)| < M(|z],7) / [0(¢) — v(2)| dor(0).
OB (z,20=210)
By Lemma 2, we have
(1= 12l)(|Ds(2)| + [Dy(2)])
< (1= 122 (|Vu(z)| + | Vo(2)])
<MD [ (O - )]+ ) o)) o)

ks 722
OB" (z, a 2| | ))

4y/n(2n —1)

r

<V2M (|z],r) M / do(¢) = M,

r(1—|2|2
OB (=, 205710

where My = sup{|f(2) — f(w)|: w € E(z,7)}.

Hence for all w € B"(z, 7«(1%\2\2)) C E(z,r), it follows from (2.1) and (2.3)
that

(L2121 —wl)r (1|23~ [wP)? |1 {zw)|

|2 = wl 1= (z,w)] |2 = wl

Y APPSR Sl G0
= V1= o) =0

Math. Model. Anal., 18(1):66-79, 2013.



74 Sh. Chen, S. Ponnusamy and X. Wang
5 11— (zw)] S V1 —7"2.

>V1-r >
|z — w| r

Therefore, there exists a positive constant Ms(n,r) such that

(1_|Z|2)(‘Df(z)‘ + |Ef(z>‘> SM?(n’T) sup ‘Cf(sz)’
weE(z,r), w#z

from which we see that f € HB. O

3 Schwarz—Pick Type Theorem and Landau—Bloch The-
orem

The following result is a Schwarz—Pick type theorem for h-harmonic functions
in Hp(B", C").

Theorem 2. Let f € Hy(B™,C") with |f(z)| < M for z € B", where M is a
positive constant. Then

e e
160~ (e O] < 41 (5 e o
and

Af<2@n—1m4 52)

Tz

Proof. We first prove (3.1). Without loss of generality, we assume that f is
also h-harmonic on dB™. The hyperbolic Poisson integral formula states that

6= [ Pue0fQw©O. [ Peo@@=1 63)

As Pr(0,¢) =1 and |Py(2,¢)| < 1 for ¢ € OB™ and all z € B", the representa-
tion (3.3) immediately yields

O e e R [ e e

}f(o do(g)‘

OB

(1 _ |Z|2)2n—1 B (1 _ |Z|)2n—1 .
= / [z—q?(?nl) (1+|Z|)2n1:||f(<)‘d (©)

B

<uf1- B

and the proof of (3.1) follows.

Next, we prove (3.2). Let f = (f1,...,fn) and 0 = (61,...,60,)T € OB™.
Without loss of generality, we assume that f is also h-harmonic on dB". If we
consider the formula (3.3) for f componentwise and then the partial derivatives
with respect to the variables z; and Zj, we see that

(fi(2)).,

[ T DA o O

[z = ¢|*
oBn
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and

(fj(z))zk
B B G 7 S R [ oy) P
_8]4 |sz|4n f](g)d (<)>

which hold clearly for each j, k € {1,...,n}. Now, we introduce

n

F Z(J 9k+ng

k=1
Then the classical Cauchy—Schwarz inequality yields
‘Ffj|2
(20— 121~ o)
" [Zk — 224 (1= 1219z — )]0k
OB |z — (]

=1

L lklC = P (L= ) = B
+; - e £(¢) do(¢)

U [2lI¢ = 2 + (1~ 2| )K_Z'”fj(mda(@r
oB" |z = ¢|*"

[ e BB o] [ [ O (o).

|As 2 maxoealﬂw(zyﬂ |y, %)

Cr =20 PP o= P
[121I¢ — 2[ + (1 — |2[*)] 2ialhOF
<4|:8B[ |Z_C|4n 2 ][ / |Z_C|4n (C):|

i ek,
< R0 | 1o g )
AM?(1 + |2])° R
< T o | e g )
(
(

2

IA
~

IN
S

whence

4M2(1+ |2])?
T (=)A= o)A

Hence
4(2n — 1)2M>?

1—lzh*

from which the inequality (3.2) follows. O

|Af|* <

DEFINITION 4. A matrix-valued function A(z) = (ai,j(z))nxn is called h-har-

monic if each of its entries a; ;(2) is a h-harmonic function from an open subset

2 c C" into C.

Math. Model. Anal., 18(1):66-79, 2013.
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As an application of Theorem 2, we get

Lemma 3. Suppose that A(z) = (a;,;(2))nxn i a matriz-valued h-harmonic
function of B™(r) such that A(0) =0 and |A(z)| < M in B™(r). Then

(r = ]!

|A(z)| < M 1—W .

Proof. For an arbitrary § = (61,...,0,)7 € OB", we introduce

Py(z) = A(2)0 = (p1(2),...,pn(2))
and let Fyp(¢) = Pyp(r¢) for ¢ € B". By Theorem 2, we see that

(1 —¢ph>t (1 —¢h>t n
6) = (e 00 < M1~ 5 ] G5
which is equivalent to
_ 2n—1
|P9(Z)’ §M|:1_E:+i:§2n1:|7 ZGBH(T)

The arbitrariness of 6 yields the desired inequality. O

We recall the following result which is crucial for the proof of our next
theorem.

Lemma A. [[6, Lemma 1] or [17, Lemma 4]] Let A be an n x n com-
plex (real) matriz and |A| # 0. Then for 0 € OB", the inequality |Af] >
|det A| |[A|*~™ holds.

Theorem 3. Suppose that f € HB(c), f(0) =0, det J¢(0) =1 and

£ 1138, () < M,
where M is a positive constant. Then f is univalent in B"(p/2), where
304
= . 3.4
P= M2 (3o + 49) (3.4)

Moreover, the range f(B"(p/2)) contains a univalent ball B"(R), where

P
R > AM2n—1 :

Proof. For ¢ € B™, let F(¢) = Zf(%C) Then
M < 4

M,
2 — o 9
(1-EF) =3

|F(O)] + |[F£(0)] <

which gives

F(Q) ~ Fe)] < |0 + R0 < (14 32 )
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Lemma 3 implies that

|Fe(¢) — Fe(0))]

4 (1—|¢h2nt
<”sa)M{1<1+|<|>2n—1
M(3% +4%) (Cun|€] + CFaa ¢ +--- + CIICP )

3 (1+|¢[)2n—t
22n 1(3a+4a) 22n—1(3a+4a)M
= 3a(1+|¢))mt Icl= 3 el (8:3)

IN

where C* = (Z) (k=1,2,...,n) denote the binomial coefficients. Similarly,

2n—1/qa a
_ 23 +40)M
3a

I<I- (3.6)
On the other hand, for § € 9B™, we infer from (1.1), (1.2) and Lemma A that

det J(0) 1
> > .
)\F(O) = A%ﬂn—l(o) — M2n—1

(3.7)

In order to prove the univalence of F' in B"(p), we choose two distinct points
¢ and ¢” in B"(p) with ¢’ —¢"” = |¢' — ¢"|0, and let [¢’, ("] denote the line
segment with endpoints ¢’ and ¢”, where

30(
(2M)2n (3% 1 4o

p:

Set d¢ = (d(y,...,d¢,)T and d¢ = (d(q,...,d(,)T. Then we infer from (3.5),
(3.6) and (3.7) that

!F(C)—F(C”)Iz‘ / F<<o>d<+F<<o>d<‘

| [ w0 - R dc+ () - F0) &
[¢",¢"]

22n3a+4aM
’FC 9+F()| / |d¢| — %

[¢",¢"”] [¢7,¢"]
227 (3% 4 4°)M
> 1= ¢l wio) - TN

1 22n(3% + 4°\M
216 = Y g - SO M =0,

¢l 1dc]

where 6 = %. Thus, F' is univalent in B"(p) which is equivalent to saying
that f is univalent in B"(p/2).

Math. Model. Anal., 18(1):66-79, 2013.
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Furthermore, for each z with || = p, we have

F(O) — F(0)] > \ / F<<o>d<+Fc<o>d<]
[0,¢]

- \ [ (50 - Fu0) de + (Fee) - F(0) dc‘
[0,¢]
1 22130 4oy
Z"){]\42711_ ( 3: ) p}
_ 14
= 3T

(by (3.4)),

showing the range f(B"(p/2)) contains a univalent ball B"(R), where R >
p/(4M?"=1). The proof of this theorem is complete. O
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