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Abstract. This paper is concerned with a plane steady-state inclined film flow in-
cluding evaporation effects. The motion is governed by a free boundary value problem
for a coupled system of Navier–Stokes and Stefan equations. The flow domain is un-
bounded in two directions and it contains a geometrical perturbation on the inclined
bottom. Existence and uniqueness of a suitable solution in weighted Sobolev spaces
can be proved for small data (perturbation, inclination of the bottom) characterizing
the problem.
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1 Introduction

The paper is devoted to a plane stationary nonisothermal two-fluid flow prob-
lem with two free boundaries describing an inclined film flow with evaporation.
Two heavy viscous incompressible and heat-conducting fluids are flowing down
a geometrically perturbed inclined bottom (cf. Figure 1). Both of the a priori
unknown free boundaries are noncompact in two directions. The flow domain
is unbounded and evaporation is taken into account. This is quite important in
several technological and scientific applications; interesting examples may be
found in the field of materials science, particularly in coating and solidification
processes with evaporation (cf. [2, 4, 5, 8, 10, 17, 21, 25]) or in crystal-growth
processes [13, 16, 18].

In this paper we investigate a problem for a 2D steady-state flow with
two viscous incompressible heat-conducting fluids (having kinematic viscosities
νi > 0, densities %i > 0 and thermal conductivities λi, i = 1, 2) down an inclined
bottom S0 having a slope α (cf. Figure 1). In fact, the bottom S0 represents a
perturbed plane. Suppose that the bottom is given by the formula S0 = {x =
(x1, x2) ∈ R2 : x2 = εϕ0(x1), −∞ < x1 < +∞} with ϕ0 having a compact
support, i.e. ϕ0(x1) ≡ 0 for |x1| > R0 > 0, and assume that the direction eg
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Figure 1. Flow domain of a nonisothermal two-fluid inclined film flow.

of the gravity is the vector eg = (sinα,− cosα)T which makes (with respect
to the given co-ordinate system) an angle α∗ := π/2 − α (0 < α 6 π/2)
with the x1-axis. Note that the corresponding problem will be formulated in
dimensionless form. The concrete transition to that formulation can be found
in [20].

Now let us explain the problem in more detail. We are concerned with the
two-fluid flow down the inclined bottom S0 caused by gravity g eg, only. This
means mathematically that the positive layer thickness at infinity in each liquid
layer Ωi (i = 1, 2) is a priori given. For example, in slide coaters such kind of
motions occur on some parts of the coater. The flow fields and layer profiles
are essential for associated problems.

Assume that the free interface Γ1 separating the two fluids and the upper
free surface Γ2 admit the parametrizations Γi = {x ∈ R2 : x2 = ψi(x1), −∞ <
x1 < +∞} (i = 1, 2), where the functions ψi (i = 1, 2) are a priori unknown
and have to be determined. Let hi > 0 (0 < h1 < h2) be the prescribed
constant limits of ψi(x1) (i = 1, 2), at infinity. The problem under study has
the following form: to find a vector of velocity v = (v1(x1, x2), v2(x1, x2))T ,
a pressure p(x1, x2), a temperature θ(x1, x2) and functions ψi(x1) (i = 1, 2)
satisfying in the domain Ω = Ω1 ∪ Ω2 with Ω1 = {x ∈ R2 : εϕ0(x1) < x2 <
ψ1(x1), −∞ < x1 < +∞} and Ω2 = {x ∈ R2 : ψ1(x1) < x2 < ψ2(x1), −∞ <
x1 < +∞} the following system of equations for a coupled heat- and mass
transfer process


(v ·∇)v − ν∇2v +

1

%
∇p = g eg,

∇ · v = 0,

(v ·∇) θ − λ∇2θ = 0,

(1.1)

and the boundary conditions on S0

v|S0 = 0, θ|S0 = θ0. (1.2)

Math. Model. Anal., 18(1):22–31, 2013.
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The boundary conditions on the free interface Γ1 are the following ones

[θ]|Γ1
= 0, [v]|Γ1

= 0,

v · n|Γ−
1

=

[
λ
∂θ

∂n

]∣∣∣∣
Γ1

,
[
τ · S(v)n

]∣∣
Γ1

= 0,

d

dx1

ψ′1(x1)√
1 + ψ′1(x1)

2
=

1

σ1(θ)

[
−p+ n · S(v)n

]∣∣
Γ1
,

lim
|x1|→+∞

ψ1(x1) = h1.

(1.3)

Finally, at the free surface Γ2 we are given the boundary conditions

v · n|Γ2 =

(
θ − θa + λ2

∂θ

∂n

)∣∣∣∣
Γ2

, τ · S(v)n|Γ2 = 0,

d

dx1

ψ′2(x1)√
1 + ψ′2(x1)

2
=

1

σ2(θ)

(
pa − p+ n · S(v)n

)∣∣
Γ2
,

lim
|x1|→+∞

ψ2(x1) = h2.

(1.4)

It is well-known (cf. [3]) that for a large number of fluids the surface tensions
σi can be represented as linear functions of the temperature θ along the free
interface Γi (i = 1, 2) (cf. also [13, 19]) as follows

σi(θ) = ai − biθ (ai, bi > 0; i = 1, 2). (1.5)

Under λm we understand the thermal conductivity of the m-th fluid (m = 1, 2)
in Problem (1.1)–(1.4). The symbol g means the acceleration of gravity. The
value θ0 denotes the (constant) given temperature of the wall S0. Without loss
of generality one can assume that θ0 = 0 and that θ is in fact the difference
between the physical temperature and θ0. With pa and θa we mention the
given (constant) pressure and temperature of the ambient air, respectively.

Further, the following notations have been used: n and τ are unit vectors
normal and tangential to Γ1 and oriented as x2, x1, respectively. By a · b we
denote the inner product of a, b ∈ R2, ∇ = (∂/∂x1, ∂/∂x2)T is the gradient
operator, ∇p = grad p, ∇ · v = div v, %|Ωm

= %m (m = 1, 2) declares the
restriction of % to Ωm (analogously for ν and λ). ∇2 denotes the Laplace
operator. By S(v) we denote the deviatoric stress tensor, i.e. a matrix with
elements Sij(v) = 0.5%ν(∂vi/∂xj + ∂vj/∂xi) (i, j = 1, 2). The symbol [w]|Γ1

is
called the jump of w crossing the free interface Γ1, that is,[

w(x0)
]∣∣
Γ1

:= lim
y→x0

w(y)− lim
x→x0

w(x) (x0 ∈ Γ1, y ∈ Ω1, x ∈ Ω2), (1.6)

and the symbol w|Γ−
1

declares the limit from below at the interface Γ1; more

precisely
w(x0)|Γ−

1
:= lim

y→x0

w(y) (x0 ∈ Γ1, y ∈ Ω1). (1.7)

Note that the left-hand side of (1.3)5 (i.e. of the fifth equation in (1.3)) is
equal to the curvature K1(x1) of Γ1. The same is true for K2(x1) in case
of Γ2. Furthermore, Equations (1.3)3 and (1.4)1 represent the mathematical
expressions of evaporation effects.
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2 General Solution Scheme

Free boundary value problems for the stationary Navier–Stokes equations or
their modifications were the topic of many mathematicians. Numerous refer-
ences in this field can be found, e.g., in the bibliographies of [9, 12, 23, 24].
In the mathematical papers [6, 7, 10, 13, 15, 19, 21, 22] the dependence on
temperature was additionally taken into account. Some of them are devoted to
problems with thermocapillary convection whereas others include the effect of
evaporation. In [25] a one-dimensional approximation of an evaporation prob-
lem was analytically studied. Computational investigations of nonisothermal
free boundary problems are described in the studies [3, 14, 20] and many others.

For free boundary value problems where the unknown flow domain is un-
bounded in two directions as in Problem (1.1)–(1.4) a special linearization
procedure was necessary (cf. [9, 12] and others).

Solving such kind of problems – in [9], and independently in [1], an appro-
priate procedure was proposed which is based on a linearization of the original
problem on a corresponding exact solution in the unperturbed “uniform” flow
domain, say Π = {x ∈ R2 : 0 < x2 < h1 ∨ h1 < x2 < h2}. The difference
of this technique from previous applied ones is that on each step of iterations
the determination of v, p, θ is not separated from the determination of the
free boundaries Γi (i = 1, 2) (i.e. from the determination of the functions ψi
describing Γi). For Problem (1.1)–(1.4) this scheme can be characterized by
the diagram(
v0, p0, θ0, ψ0

1 , ψ
0
2

)
→
(
v1, p1, θ1, ψ1

1 , ψ
1
2

)
→ · · · →

(
vm, pm, θm, ψm1 , ψ

m
2

)
→ · · ·

where on each step of iterations the linearized problem is solved in the same
“strip-like” domain and the functions v, p, θ and ψi (i = 1, 2) are determined
simultaneously. Note that the superscripts in the above formula denote the
number of the corresponding iteration step.

An important part in the derivation of the correct linearization takes the
calculation of exact solutions of the nonlinear problems in a “uniform” (not per-
turbed) flow domain. These exact (basic) solutions in the uniform domain Π
will be determined in Section 4 – Basic solutions. They are also useful for the
numerical flow simulation: they can be used as inlet boundary data in more
complicated problems. In [12] the analogous isothermal problem (without any
inclusion of temperature) to Problem (1.1)–(1.4) was solved by numerical meth-
ods. Finally, in [22] a problem was studied which has a lot of common features
with the presented one. Instead of evaporation thermocapillary convection of
Marangoni type was considered there.

3 Function Spaces

When studying Problem (1.1)–(1.4) it is useful to work with weighted Sobolev
spaces. Let Πm (m = 1, 2) be the strip-like domains

Π1 :=
{
x ∈ R2 : 0 < x2 < h1, −∞ < x1 < +∞

}
,

Π2 :=
{
x ∈ R2 : h1 < x2 < h2, −∞ < x1 < +∞

}
,

Math. Model. Anal., 18(1):22–31, 2013.
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and Π = Π1 ∪Π2 their union. We introduce the space W l,2
β (Π) of functions

u on Π with restrictions u(m) = u|Πm
belonging to W l,2

β (Πm) (m = 1, 2) and
having the finite norms∥∥u(m);W l,2

β (Πm)
∥∥ =

∥∥u(m) exp
(
β
√

1 + x21
)
;W l,2(Πm)

∥∥ (m = 1, 2),

where W l,2(Πm) is the usual Sobolev space. The norm in W l,2
β (Π) is given by

∥∥u;W l,2
β (Π)

∥∥ =

2∑
m=1

∥∥u(m) exp
(
β
√

1 + x21
)
;W l,2(Πm)

∥∥.
If β > 0, then elements of W l,2

β (Π) vanish exponentially as |x1| → ∞ and, if

β < 0, then elements u ∈W l,2
β (Π) might exponentially increase as |x1| → ∞.

The spaces W
l−1/2,2
β (R) of functions defined on R can be introduced anal-

ogously. Let S = {x ∈ Π : x1 ∈ R, x2 = h ∈ {0, h1, h2}} be a line. De-

note by W
l−1/2,2
β (S) the spaces of traces on S of functions from W l,2

β (Π).

Then W
l−1/2,2
β (R) coincides with W

l−1/2,2
β (S), i.e. if u ∈ W l−1/2,2

β (Π), then

u(·, h) ∈W l−1/2,2
β (R)).

In the paper the spaces of scalar and vector-valued functions are not dis-
tinguished in notations. The norm for vector-valued functions is then the sum
of the norms of the corresponding coordinate functions.

4 Basic Flows

Firstly, let us introduce the flow parameter r := ν1%1/(ν2%2) denoting the ratio
of dynamic viscosities. In order to obtain one exact solution to Problem (1.1)–
(1.4) in the uniform (not perturbed) domain Π which is in fact an unbounded
double-strip (cf. Section 3) we make the subsequent assumptions

v2 ≡ 0,
∂p

∂x1
≡ 0,

∂θ

∂x1
≡ 0.

The second assumption reflects the circumstance that the fluid flow is caused
by gravity, only. The first equation together with the continuity condition
imply ∂v1/∂x1 = 0. Under these assumptions one gets the following reduced
nonisothermal Navier–Stokes system in Π

−ν%∇2 v1 = % g sinα,
∂p

∂x2
= −% g cosα, −λ∇2 θ = 0, (4.1)

equipped with the corresponding boundary conditions. The three equations
from (4.1) are independent of each other. Finally, we obtain three indepen-
dent boundary value problems for some ordinary differential equations. The
first problem contains the unknown velocity component v1(x2) and takes the
form
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ν1%1
d2v

(1)
1

dx22
= −%1 g sinα, ν2%2

d2v
(2)
1

dx22
= −%2 g sinα,

v
(1)
1 (0) = 0,

dv
(2)
1

dx2

∣∣∣∣
x2=h2

= 0,

v
(1)
1

∣∣
x2=h1

= v
(2)
1

∣∣
x2=h1

, ν1%1
dv

(1)
1

dx2

∣∣∣∣
x2=h1

= ν2%2
dv

(2)
1

dx2

∣∣∣∣
x2=h1

.

(4.2)

The next boundary value problem relates to the unknown pressure field p(x2):
dp(1)

dx2
= −%1 g cosα,

dp(2)

dx2
= −%2 g cosα,

p(1)
∣∣
x2=h1

= p(2)
∣∣
x2=h1

, p(2)
∣∣
x2=h2

= pa,

(4.3)

The last problem was established for the unknown temperature field θ(x2):

d2θ(1)

dx22
= 0,

d2θ(2)

dx22
= 0,

θ(1)
∣∣
x2=0

= θ0,

(
θ(2) − θa + λ2

dθ(2)

dx2

)∣∣∣∣
x2=h2

= 0,

θ(1)
∣∣
x2=h1

= θ(2)
∣∣
x2=h1

, λ1
dθ(1)

dx2

∣∣∣∣
x2=h1

= λ2
dθ(2)

dx2

∣∣∣∣
x2=h1

,

(4.4)

The solution to the systems (4.2)–(4.4) sometimes in the literature is called
Nusselt solution of inclined film flow. It can be calculated in a straightforward
manner. The solution for the velocity takes the form

v01(x2) =



g sinα

[
− 1

2ν1
x22 +

(
h2 − h1
rν2

+
h1
ν1

)
x2

]
, 0 6 x2 6 h1,

g sinα

[
− 1

2ν2
(h2 − x2)2 +

1

2ν2
(h2 − h1)2

+
1

2ν1
h21 +

1

rν2
(h2 − h1)h1

]
, h1 6 x2 6 h2.

(4.5)

The determined pressure is described by

p0(x2) =

{[
(h1 − x2)%1 + (h2 − h1)%2

]
g cosα+ pa, 0 6 x2 6 h1,

(h2 − x2)%2g cosα+ pa, h1 6 x2 6 h2.
(4.6)

Finally, the calculated temperature can be written as

θ0(x2) =


θaλ2

λ2h1 + λ1(h2 − h1) + λ1λ2
x2, 0 6 x2 6 h1,

θa[λ1 x2 + h1(λ2 − λ1)]

λ2h1 + λ1(h2 − h1) + λ1λ2
, h1 6 x2 6 h2.

(4.7)

The formula (4.7) was obtained under the assumption θ0 = 0 which can be
made without loss of generality. The above mentioned solution implies the

Math. Model. Anal., 18(1):22–31, 2013.



28 J. Socolowsky

subsequent fluxes (i.e. flow rates)

F1 = g sinα

[
1

3ν1
h31 +

1

2rν2
h21(h2 − h1)

]
,

F2 = g sinα

[
1

3ν2
(h2 − h1)3 + (h2 − h1)

(
1

2ν1
h21 +

1

rν2
h1(h2 − h1)

)]
,

which are small if the inclination angle α is small.

5 Results

Theorem 1. Let S0 = {x ∈ R2 : x2 = εϕ0(x1), −∞ < x1 < +∞}, ϕ0 ∈
W

l+5/2,2
β (R) with l > 0, β = |β0| sinα > 0, where β0 is independent of α and

α denotes the slope of the inclined bottom S0. Assume that α is sufficiently
small. Then there exist real numbers ε̂, r̂ > 0 such that for arbitrary ε ∈ (0, ε̂)
the Problem (1.1)–(1.4) has a unique solution (v, p, θ, ψ1, ψ2)T characterized by
the structure

v(x) = v0(x) + εu(x), p(x) = p0(x) + ε q(x), θ(x) = θ0(x) + ε ϑ(x),

ψ1(x1) = h1 + ε Ψ1(x1), ψ2(x1) = h2 + ε Ψ2(x1),

where {v0, p0, θ0} denotes the basic solution (4.5)–(4.7) and the regular part U
has the representation

U := (u, q, ϑ, Ψ1, Ψ2)T ∈
[
W l+2,2
β (Π)

]2 ×W l+1,2
β (Π)×W l+2,2

β (Π)

×
[
W

l+5/2,2
β (R)

]2 ≡ Dl,2
β W (Π).

Furthermore, the following inequalities hold∥∥U ;Dl,2
β W (Π)

∥∥ 6 r̂, ε̂ 6 const · sin2α.

Let us shortly describe the main steps and ideas of the proof. We realize
the proof by successive approximations. In a first step the original (perturbed)
and unknown flow domain Ω (cf. Figure 1) is transformed onto the uniform
(strip-like) domain Π. Then, by using the transformation mapping, the orig-
inal flow Problem (1.1)–(1.4) is linearized over the basic solution (4.5)–(4.7)
in domain Π. By N we assign the operator on the left-hand side of the cor-
responding linearized auxiliary problem. Thanks to a related theorem for the
linear auxiliary problem (see, e.g., [12]), there exists a bounded inverse operator
N−1 such that

N−1 : Rl,2
β W (Π) 7−→ Dl,2

β W (Π), (5.1)

with β = |β0| sinα. The value |β0| is independent of α and depends on eigenval-
ues of the operator pencils associated with the corresponding linear problem
(cf. [12]). Furthermore, the multidimensional space Rl,2

β W (Π) to which the
right-hand side of the linearized problem belongs can be described in a similar
way as the space Dl,2

β W (Π) (see above). Moreover, one is able to prove that
there holds the inequality ∥∥N−1∥∥ 6

C

sinα
, (5.2)
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where the constant C does not depend on α. Therefore, Problem (1.1)–(1.4) is

equivalent to the subsequent operator equation in the space Dl,2
β W (Π):

U = N−1F(U) ≡ K(U), (5.3)

where U = (u, q, ϑ, Ψ1, Ψ2)T , and F(U) = (f1(u, q, ϑ, Ψ1, Ψ2), f2(u, q, ϑ, Ψ1, Ψ2),
0, f3(u, q, ϑ, Ψ1, Ψ2), . . . )T denotes the long vector of right-hand side after the
linearization. The coordinates of the right-hand side vector depend on ε via the
transformation mapping of the original flow domain. To prove the convergence
of the successive approximations (un, qn, ϑn, Ψn1 , Ψ

n
2 )T , it is sufficient to check

that the operator K is a contraction mapping in a ball of the space Dl,2
β W (Π)

for small values of ε and α.
Let us remark that the related isothermal problem to Problem (1.1)–(1.4)

(i.e. without any inclusion of temperature) was analytically investigated in full
detail in the papers [11, 12]. In order to prove Theorem 1 in details, one has
to repeat and to modify all the considerations from those papers. Since the
temperature equation is a nonlinear elliptic one, there are not essential changes
in the proof. Thus we omit the detailed proof here.
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[15] V.Ya. Rivkind and A.V. Ilin. On a numerical method for solving the nonisother-
mal flow problem of a liquid layer. Numer. Methods, 15:98–104, 1988. (In
Russian)

[16] P.A. Sackinger, R.A. Brown and J.J. Derby. A finite element method for analysis
of fluid flow, heat transfer and free interfaces in Czochralski crystal growth.
Internat. J. Numer. Methods Fluids, 9:453–492, 1989.
http://dx.doi.org/10.1002/fld.1650090406.

[17] G.R. Schmidt, T.J. Chung and A. Nadarajah. Thermocapillary flow with evapo-
ration and condensation at low gravity. Part I: Non-deforming surface, and Part
II: Deformable surface. J. Fluid Mech., 294:323–347, 349–366, 1995.

[18] Y. Shen, G.P. Neitzel, D.F. Jankowski and H.D. Mittelmann. Energy stability of
thermocapillary convection in a model of the float-zone crystal-growth process.
J. Fluid Mech., 217:639–660, 1990.
http://dx.doi.org/10.1017/S002211209000088X.

[19] J. Socolowsky. Existence and uniqueness of the solution to a free boundary value
problem with thermocapillary convection in an unbounded domain. Acta Appl.
Math., 37:181–194, 1994. http://dx.doi.org/10.1007/BF00995140.

[20] J. Socolowsky. On the numerical solution of heat-conducting multiple-layer coat-
ing flows. Lithuanian Math. J., 38(1):98–115, 1998.
http://dx.doi.org/10.1007/BF02465548.

[21] J. Socolowsky. The analysis of a coating flow with evaporation. In P. Neit-
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