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Abstract. We study the applicability of the standard spline collocation method,
on a uniform grid, to linear Volterra integral equations of the second kind with the
so-called cordial operators; these operators are noncompact and the applicability of
the collocation method becomes crucial in the convergence analysis. In particular,
piecewise constant, piecewise linear and piecewise quadratic collocation methods are
applicable under wide, quite acceptable conditions. For higher order spline colloca-
tion, it is more complicated to carry out an analytical study of the applicability of
the method; however, a numerical check is rather simple and this is illustrated by
some numerical examples.
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1 Introduction

In the present article we study the applicability of spline collocation methods
to the Volterra integral equation

µu(t) =

∫ t

0

t−1ϕ(t−1s)u(s) ds+ f(t), 0 ≤ t ≤ T, (1.1)

where ϕ ∈ L1(0, 1) is the core of the (cordial) Volterra integral operator

(Vϕu)(t) =

∫ t

0

t−1ϕ(t−1s)u(s) ds, 0 ≤ t ≤ T.
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Equations and systems of type (1.1) can appear e.g. when solving differential
equations with certain singularities and some partial differential equations with
symmetries. A special case of (1.1) is equation (4.4) which arises in connection
with a heat conduction problem with mixed-type boundary conditions (see [3]
for details).

As known from [10], Vϕ : Cm[0, 1] → Cm[0, 1], m ≥ 0, is bounded but
noncompact (if ϕ 6= 0) and its spectrum σm(Vϕ) is non-discrete:

σ0(Vϕ) = {0} ∪
{
ϕ̂(λ) : λ ∈ C, Reλ ≥ 0

}
, ϕ̂(λ) :=

∫ 1

0

ϕ(x)xλ dx, (1.2)

σm(Vϕ) = {0} ∪
{
ϕ̂(k) : k = 0, . . . ,m− 1

}
∪
{
ϕ̂(λ) : Reλ ≥ m

}
, m ≥ 1.

By %0(Vϕ) = C \ σ0(Vϕ) we denote the resolvent set of Vϕ : C[0, 1] → C[0, 1].
Let us also recall that for λ ∈ C, Reλ ≥ 0, the following relation holds

Vϕuλ = ϕ̂(λ)uλ, where uλ(t) = tλ, 0 < t ≤ T. (1.3)

In particular, Vϕ maps polynomials into polynomials and, due to this property,
it is easy to solve (1.1) approximating f by a polynomial. The polynomial
algorithms become more complicated [11] if we have to solve a more general
equation

µu(t) =

∫ t

0

t−1ϕ
(
t−1s

)
a(t, s)u(s) ds+ f(t), 0 ≤ t ≤ T ; (1.4)

here spline collocation methods are preferable. Since the applicability and
convergence conditions of spline collocation methods for equations (1.1) and
(1.4), and even for a class of related nonlinear equations, are the same in their
essence [12, 13], we confine ourselves to the case of the model equation (1.1).

Let us describe the method. For N ∈ N, denote h = T/N . For m ∈ N,
introduce the space SmN [0, T ] of splines uN such that

uN |[ih,(i+1)h] ∈ Pm−1, i = 0, . . . , N − 1,

where Pm−1 is the set of polynomials of degree not exceeding m − 1. We
accept that a spline uN ∈ SmN [0, T ] may have at the interior spline knots ih,
1 ≤ i ≤ N−1, two values, so that uN |[ih,(i+1)h] ∈ C[ih, (i+1)h], i = 0, . . . , N−1.
For uN ∈ SmN [0, T ], we denote by uN,i ∈ SmN [0, T ] the spline coinciding with
uN on [ih, (i + 1)h], being zero on other subintervals [lh, (l + 1)h], l 6= i. The
functions uN,i compose an m-dimensional subspace SN,i = SmN,i ⊂ SmN [0, T ].

Let us introduce the interpolation (collocation) parameters τk, k = 1, . . . ,m,

0 ≤ τ1 < τ2 < · · · < τm ≤ 1.

For v ∈ C[0, T ], denote by ΠN,iv ∈ SN,i, 0 ≤ i ≤ N − 1, the interpolation
polynomial defined by

(ΠN,iv)(ih+ τkh) = v(ih+ τkh), k = 1, . . . ,m.
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Let Lk ∈ Pm−1, k = 1, . . . ,m, be the Lagrange fundamental polynomials asso-
ciated with the interpolation knots τk, k = 1, . . . ,m, that is,

Lk(τj) = δj,k (Kronecker symbol), j, k = 1, . . . ,m.

Then the Li,k(t) := Lk(h−1t− i), k = 1, . . . ,m, are the fundamental polynomi-
als associated with the interpolation knots ih+τkh ∈ [ih, (i+1)h], k = 1, . . . ,m,
that is,

Li,k(ih+ τjh) = Lk
(
h−1(ih+ τjh)− i

)
= Lk(τj) = δj,k, j, k = 1, . . . ,m.

For v ∈ C[0, T ] we have the representation

(ΠN,iv)(t) =

m∑
k=1

v(ih+ τkh)Li,k(t), t ∈
[
ih, (i+ 1)h

]
, i = 0, . . . N − 1.

Define the interpolation operator PN : C[0, T ]→ SmN [0, T ] by

(PNv)(t) = (ΠN,iv)(t) for t ∈
[
ih, (i+ 1)h

]
, i = 0, . . . , N − 1,

and consider the spline collocation method

µuN = PNVϕuN + PNf (1.5)

for the approximate solution to equation (1.1).
We say that the collocation method (1.5) is applicable to equation (1.1)

if the homogeneous equation µuN = PNVϕuN has in SmN [0, T ] only the trivial
solution uN = 0, that is, if there exist the inverses to the m-dimensional oper-
ators µI −ΠN,iVϕ : SN,i → SN,i, i = 0, 1, . . . , N − 1; then we can recurrently
find uN,i from the equations

µuN,i = ΠN,iVϕuN,i +ΠN,if +

i−1∑
l=0

ΠN,iVϕuN,l, i = 0, 1, . . . , N − 1, (1.6)

where for i = 0 we have adopted the agreement that
∑−1
l=0 . . . = 0.

For µ ∈ %0(Vϕ), the operator µI − ΠN,0Vϕ : SN,0 → SN,0 is invertible
since due to (1.3) Vϕ maps SN,0 into SN,0. It is less obvious that µI−ΠN,iVϕ :
SN,i → SN,i is invertible also for all sufficiently large i ≥ i0, with i0 independent
of N . This claim is more clear from the matrix form of equations (1.6). The
ith equation of (1.6) is equivalent to the m ×m-system of linear equations to
determine the knot values uN,i(ih+ τjh) of uN,i (see [12]):

µuN,i(ih+ τjh) =

m∑
k=1

di,ij,kuN,i(ih+ τkh) + f(ih+ τjh)

+

i−1∑
l=0

m∑
k=1

di,lj,kuN,l(lh+ τkh), j = 1, . . . ,m, (1.7)

where for j, k = 1, . . . ,m,

Math. Model. Anal., 18(1):1–21, 2013.
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di,ij,k =

∫ 1

i/(i+τj)

ϕ(x)Lk
(
(i+ τj)x− i

)
dx, i = 0, . . . , N − 1,

with d0,01,k = δk,1

∫ 1

0

ϕ(x) dx, for i = 0, τ1 = 0,

di,lj,k =

∫ (l+1)/(i+τj)

l/(i+τj)

ϕ(x)Lk
(
(i+ τj)x− l

)
dx, l = 0, . . . , i− 1, i = 1, . . . , N − 1.

Hence the collocation method (1.5) is applicable to equation (1.1) iff

det(µIm −Di) 6= 0, i = 1, . . . , N − 1,

where Im is the m ×m identity matrix and Di = (di,ij,k)mj,k=1. For sufficiently
large i this condition is fulfilled since

‖Di‖ := max
1≤j≤m

m∑
k=1

∣∣di,ij,k∣∣ ≤ ∫ 1

i/(i+τm)

∣∣ϕ(x)
∣∣ dx max

0≤t≤τm

m∑
k=1

∣∣Lk(t)
∣∣

implies that ‖Di‖ → 0 as i → ∞. Thus the applicability condition of the
collocation method (1.5) reduces to

det(µIm −Di) 6= 0 for i = 1, . . . , i0 − 1, (1.8)

where i0 ≥ 1 is such that ‖Di0‖ < |µ|.
We further note that the matrices Di are independent of h (of N), so (1.8)

implies the applicability of the collocation method (1.5) for all N ≥ 1. In

particular, if the eigenvalues µ
(i)
j , j = 1, . . . ,m, of Di are such that

µ
(i)
j ∈ σ0(Vϕ), j = 1, . . . ,m, i = 1, . . . , i0 − 1, (1.9)

then the applicability condition (1.8) is fulfilled for any µ ∈ %0(Vϕ).

The following theorem [12] tells us that, roughly speaking, if equation (1.1)
is uniquely solvable and the collocation method (1.5) is applicable to (1.1) then
the method converges and the convergence is of optimal accuracy order.

Theorem 1. Let ϕ ∈ L1(0, 1), f ∈ C[0, T ] and µ ∈ %0(Vϕ) in (1.1), and let
the applicability condition (1.8) be fulfilled. Then the collocation equation (1.5)
has, for N ≥ 1, a unique solution uN ∈ SmN [0, T ], and

‖u− uN‖∞ ≤ c0‖u− PNu‖∞ → 0 as N →∞,

where u ∈ C[0, T ] is the unique solution of equation (1.1). If f ∈ Cm[0, T ],
then also u ∈ Cm[0, T ] and

‖u− uN‖∞ ≤ cmhm
∥∥u(m)

∥∥
∞.

The constants c0 and cm are independent of N and f .
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We note that the cordial integral equation (1.1) is a special case of the
Mellin convolution equations [6, 8]. In general, the solution of those equations
(or perhaps its higher derivatives) will have a singularity at t = 0. A survey
of numerical methods for Mellin-type integral equations based on piecewise
polynomial approximation is presented in [7]. The use of graded meshes in
conjunction with collocation methods is one approach to deal with the loss of
optimal convergence order; the convergence analysis of these procedures has
been treated in [1, 6, 8, 9].

Due to (1.2), we see that the solution u of a cordial integral equation
(1.1) has no boundary singularities: if µ ∈ %0(Vϕ) and f ∈ Cm[0, T ] then
u ∈ Cm[0, T ]. Thus the possibility of using a uniform grid to achieve optimal
convergence orders is a privilege of the cordial integral equations. As easily
seen [12], for m = 1 (piecewise constant approximation of the solution u), the
applicability condition (1.8) is fulfilled for any non-negative ϕ ∈ L1(0, 1) and
any µ ∈ %0(Vϕ). The main purpose of the current article is to analyze the
case m = 2 (piecewise linear approximation of u); some theoretical results are
obtained also in the case m = 3 (piecewise quadratic approximation of u). An
analytical examination of condition (1.8) for m ≥ 3 in the general case is a
complicated task and remains as an open problem. On the other hand, in the
course of the computation process (1.7) it is easy to check whether (1.8) is
fulfilled or not; and there are different possibilities [12] to modify the method
if (1.8) is violated or if µ, the parameter of equation (1.1), happens to be too
close to the set of eigenvalues of some Di, 1 ≤ i ≤ i0 − 1.

In Section 2 we reformulate the applicability condition (1.8) for m = 2,
using the basis {1, t} of P1 instead of the Lagrange basis. The main theoretical
results of the article concern the case m = 2 and are established in Section 3.
In Section 4 we apply these results to some concrete cordial equations including
the Abel equation. In Section 5 we partly extend the results to the case m = 3.
In Section 6 we comment on the numerical check of the applicability condition
for different values of m and present some illustrative numerical examples.

2 Reformulation of the Applicability Condition

In theoretical considerations concerning the applicability of the collocation
method (1.5), the Newton basis {1, t, . . . , tm−1} of Pm−1 is sometimes prefer-
able to the Lagrange basis used in Section 1. Below we reformulate the appli-
cability condition (1.8) for m = 2 using the Newton basis {1, t} of P1. Let the
collocation parameters τj , 0 ≤ τ1 < τ2 ≤ 1, be given. Representing

uN,i(t) = γ0,i + γ1,it for ih ≤ t ≤ (i+ 1)h, 0 ≤ i ≤ N − 1,

we have, for ih ≤ t ≤ (i+ 1)h,

(VϕuN,i)(t) =

∫ t

ih

t−1ϕ
(
t−1s

)
(γ0,i + γ1,is) ds

= γ0,i

∫ 1

ih/t

ϕ(x) dx+ γ1,it

∫ 1

ih/t

xϕ(x) dx.

Math. Model. Anal., 18(1):1–21, 2013.
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The ith equation (1.6) is uniquely solvable iff the corresponding homogeneous
equation µuN,i = ΠN,iVϕuN,i has only the trivial solution uN,i = 0, that is, iff

µuN,i(ih+ τjh)− (VϕuN,i)(ih+ τjh) = 0, j = 1, 2 =⇒ γ0,i = γ1,i = 0,

or, equivalently, iff the 2× 2 homogeneous system(
µ−
∫ 1

i/(i+τj)

ϕ(x) dx
)
γ0,i+(i+τj)

(
µ−
∫ 1

i/(i+τj)

xϕ(x) dx
)
γ1,ih = 0, j = 1, 2,

has only the trivial solution γ0,i = γ1,ih = 0. Denoting

a
(i)
11 =

∫ 1

i/(i+τ1)

ϕ(x) dx, a
(i)
12 =

∫ 1

i/(i+τ1)

xϕ(x) dx,

a
(i)
21 =

∫ 1

i/(i+τ2)

ϕ(x) dx, a
(i)
22 =

∫ 1

i/(i+τ2)

xϕ(x) dx, (2.1)

we obtain the following formulation: for m = 2, the collocation method (1.5) is
applicable to equation (1.1) iff the parameter µ of equation (1.1) is such that,
for i = 1, . . . , N − 1,

det

(
µ− a(i)11 (i+ τ1)(µ− a(i)12 )

µ− a(i)21 (i+ τ2)(µ− a(i)22 )

)
= (τ2 − τ1)µ2 − biµ+ ci 6= 0,

where

bi = (i+ τ2)
(
a
(i)
11 + a

(i)
22

)
− (i+ τ1)

(
a
(i)
12 + a

(i)
21

)
, (2.2)

ci = (i+ τ2)a
(i)
11 a

(i)
22 − (i+ τ1)a

(i)
12 a

(i)
21 . (2.3)

If for some i, 1 ≤ i ≤ N − 1, it happens that

(τ2 − τ1)µ2 − biµ+ ci = 0, (2.4)

then the collocation method (1.5) is inapplicable to equation (1.1).
So we are interested in sufficient conditions onto the core ϕ ∈ L1(0, 1), the

collocation parameters τj (0 ≤ τ1 < τ2 ≤ 1) and the parameter µ ∈ %0(Vϕ)
which guarantee that µ is different from the roots

µ
(i)
1 =

bi − (b2i − 4(τ2 − τ1)ci)
1/2

2(τ2 − τ1)
, µ

(i)
2 =

bi + (b2i − 4(τ2 − τ1)ci)
1/2

2(τ2 − τ1)
(2.5)

of the quadratic equations (2.4), for i = 1, . . . , N − 1. Some results in this
connection are presented in Section 3.

3 Applicability of Piecewise Linear Collocation

The main results of the present article are contained in Theorems 2 and 3.
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Theorem 2. (i) Let ϕ ∈ L1(0, 1) be non-negative and µ ∈ %0(Vϕ) in (1.1), and
let the collocation parameters be such that 0 = τ1 < τ2 ≤ 1. Then the piecewise
linear collocation method is applicable to equation (1.1) and hence convergent.

(ii) Let ϕ ∈ L1(0, 1) be non-negative and µ ∈ R be such that µ >
∫ 1

0
ϕ(x) dx

(= ‖Vϕ‖) in (1.1), and let the collocation parameters satisfy 0 < τ1 < τ2 ≤ 1.
Then the piecewise linear collocation method is applicable to equation (1.1) and
hence convergent.

(iii) Let τ1 ∈ (0, 1) and µ < 0 be given. Then, for any τ2 > τ1, sufficiently
close to τ1, there exists a non-negative core ϕ ∈ L∞(0, 1) (explicitly presented

in the proof) such that µ < −
∫ 1

0
ϕ(x) dx and µ coincides with µ

(1)
1 (defined

by (2.5), with i = 1). Thus the piecewise linear collocation method is inappli-
cable to equation (1.1) with this particular ϕ and the above µ, τ1, τ2, although
µ ∈ %0(Vϕ).

Proof of claim (i). Assume that ϕ ∈ L1(0, 1) is non-negative and let 0 = τ1 <

τ2 ≤ 1. From (2.1)–(2.5) we observe that a
(i)
11 = a

(i)
12 = 0,

bi = (i+ τ2)a
(i)
22 − ia

(i)
21 =

∫ 1

i/(i+τ2)

(
(i+ τ2)x− i

)
ϕ(x) dx ≥ 0, ci = 0,

µ
(i)
1 = 0, µ

(i)
2 =

bi
τ2

=

∫ 1

i/(i+τ2)

(i+ τ2)x− i
τ2

ϕ(x) dx ≤
∫ 1

i/(i+τ2)

ϕ(x) dx,

where we have taken into account that

0 ≤ (i+ τ2)x− i
τ2

≤ 1 for
i

i+ τ2
≤ x ≤ 1, i ≥ 1.

Due to (1.2) and (1.3), we have [0,
∫ 1

0
ϕ(x) dx] ⊂ σ0(Vϕ), thus µ

(i)
1 , µ

(i)
2 ∈

σ0(Vϕ); therefore, for any µ ∈ %0(Vϕ) (i ≥ 1) it is true that µ 6= µ
(i)
1 and

µ 6= µ
(i)
2 , that is, the applicability condition of the piecewise linear spline

collocation method is fulfilled.
Proof of claim (ii). Assume that ϕ ∈ L1(0, 1) is non-negative and let 0 < τ1 <

τ2 ≤ 1. If µ
(i)
1 and µ

(i)
2 are complex, the claim (ii) is trivial. Assuming that

µ
(i)
1 and µ

(i)
2 are real, we shall prove that µ

(i)
1 ≤ µ

(i)
2 ≤ ‖Vϕ‖, i ≥ 1. Note that

a
(i)
11 − a

(i)
12 + a

(i)
22 − a

(i)
21 = −

∫ i/(i+τ1)

i/(i+τ2)

(1− x)ϕ(x) dx ≤ 0, (3.1)

a
(i)
11 ≤ a

(i)
21 , a

(i)
22 ≤ a

(i)
21 .

Then

bi = (i+ τ2)
(
a
(i)
11 + a

(i)
22

)
− (i+ τ1)

(
a
(i)
12 + a

(i)
21

)
=
(
(i+ τ2)− (i+ τ1)

)(
a
(i)
11 + a

(i)
22

)
+ (i+ τ1)

(
a
(i)
11 + a

(i)
22 − a

(i)
12 − a

(i)
21

)
≤ (τ2 − τ1)

(
a
(i)
11 + a

(i)
22

)
≤ 2(τ2 − τ1)a

(i)
21 , i ≥ 1.

Math. Model. Anal., 18(1):1–21, 2013.
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Therefore, denoting

di(µ) := det

(
µ− a(i)11 (i+ τ1)(µ− a(i)12 )

µ− a(i)21 (i+ τ2)(µ− a(i)22 )

)
= (τ2 − τ1)µ2 − biµ+ ci,

we have

di
(
a
(i)
21

)
= det

(
a
(i)
21 − a

(i)
11 (i+ τ1)(a

(i)
21 − a

(i)
12 )

0 (i+ τ2)(a
(i)
21 − a

(i)
22 )

)
= (i+ τ2)

(
a
(i)
21 − a

(i)
11

)(
a
(i)
21 − a

(i)
22

)
≥ 0.

On the other hand, d′i(µ) = 2(τ2 − τ1)µ− bi and, since

d′i
(
a
(i)
21

)
= 2(τ2 − τ1)a

(i)
21 − bi ≥ 0, then d′i(µ) ≥ 0 for µ ≥ a(i)21 .

Therefore, we may conclude that di(µ) > 0 for µ > a
(i)
21 , hence

µ
(i)
1 ≤ µ

(i)
2 ≤ a

(i)
21 ≤

∫ 1

0

ϕ(x) dx, i ≥ 1.

We see that the condition µ >
∫ 1

0
ϕ(x) dx implies µ > µ

(i)
2 ≥ µ

(i)
1 , i ≥ 1, and

the applicability condition is thus fulfilled.
Proof of claim (iii). Let µ < 0 and 0 < τ1 < τ2 ≤ 1, τ2 < 3τ1 + 2τ21 . Denote

xj = 1/(1 + τj) (j = 1, 2), γ =
µ

x1(x1 + x2)/2− x2
.

Clearly, we have 1/2 ≤ x2 < x1 < 1. An elementary check confirms that
x1(x1 + x2)/2− x2 < 0 and hence γ > 0 under certain conditions on µ and τ1,
τ2. Consider the core

ϕ(x) = γ χ[x2,x1],

where χ[a,b] denotes the characteristic function of the interval [a, b]. In accor-
dance with (2.1)–(2.5), for i = 1 we have

a
(1)
11 = a

(1)
12 = 0, c1 = 0,

a
(1)
21 = γ

∫ x1

x2

dx = γ(x1 − x2), a
(1)
22 = γ

∫ x1

x2

x dx =
γ

2
(x21 − x22),

b1 = x−12 a
(1)
22 − x

−1
1 a

(1)
21 = γx−11 x−12 (x1 − x2)

{
x1(x1 + x2)/2− x2

}
< 0,

µ
(1)
1 =

b1

x−12 − x
−1
1

= γ
(
x1(x1 + x2)/2− x2

)
, µ

(1)
2 = 0,

and µ
(1)
1 = µ by the definition of γ. Clearly, if τ2 > τ1 is sufficiently close to τ1

(or, if x2 < x1 is sufficiently close to x1) then

x1(x1 + x2)

2
− x2 < −(x1 − x2)
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(for x2 = x1 this inequality results in x21 − x1 < 0). Since

‖Vϕ‖ := ‖Vϕ‖C[0,T ]→C[0,T ] =

∫ 1

0

ϕ(x) dx = γ(x1 − x2),

we obtain µ
(1)
1 < −‖Vϕ‖, hence µ = µ

(1)
1 ∈ %0(Vϕ) for τ2 > τ1 close to τ1. This

completes the proof of the present theorem. ut

Lemma 1. Let ϕ ∈ L1(0, 1) be non-negative and the collocation parameters
satisfy 0 ≤ τ1 < τ2 ≤ 1. If the bi, ci, defined in (2.2) and (2.3), are such that
bi ≥ 0, ci ≥ 0 (1 ≤ i ≤ N − 1), then the piecewise linear collocation method is
applicable to equation (1.1) for any µ ∈ R ∩ %0(Vϕ), and hence convergent.

Proof. Again, the claim is trivial if µ
(i)
1 and µ

(i)
2 are complex. If the roots

µ
(i)
1 and µ

(i)
2 are real then it follows from the conditions bi ≥ 0, ci ≥ 0 that

0 ≤ (b2i − 4(τ2 − τ1)ci)
1/2 ≤ bi (see (2.5)); this implies that 0 ≤ µ(i)

1 ≤ µ
(i)
2 and

the applicability condition is fulfilled for µ < 0, µ ∈ %0(Vϕ). For µ > ‖Vϕ‖,
the applicability condition is fulfilled by the statements (i), (ii) of Theorem 2,
where [0, ‖Vϕ‖] ⊂ σ0(Vϕ). ut

Below we examine conditions for ϕ ≥ 0 which guarantee that bi ≥ 0, ci ≥ 0
for all i ≥ 1 and any choice of the collocation parameters.

Lemma 2. Let ϕ ∈ L1(0, 1) ∩ C(0, 1) be non-negative. If the function
Φ(x) = xϕ(x)/(1 − x) is non-decreasing on [1/2, 1) then bi ≥ 0 for all i ≥ 1
and all choices of τ1, τ2 such that 0 ≤ τ1 < τ2 ≤ 1.

Proof. For a fixed i ≥ 1, denote xj := x
(i)
j = i/(i+ τj), j = 1, 2, and let

g(x1, x2) := gi(x1, x2) = x1
(
a
(i)
11 + a

(i)
22

)
− x2

(
a
(i)
12 + a

(i)
21

)
,

where i/(i+ 1) ≤ x2 < x1 ≤ 1. Note that bi = ix−11 x−12 g(x1, x2) ≥ 0 iff g ≥ 0.
So it is sufficient to prove that g(x1, x2) ≥ 0 for i/(i+ 1) ≤ x2 < x1 ≤ 1. Using
(2.1), we have the expressions

a
(i)
11 =

∫ 1

x1

ϕ(x) dx, a
(i)
12 =

∫ 1

x1

xϕ(x) dx,

a
(i)
21 =

∫ 1

x2

ϕ(x) dx, a
(i)
22 =

∫ 1

x2

xϕ(x) dx,

to be substituted into the derivatives

∂g

∂x1
= a

(i)
11 + a

(i)
22 − x1ϕ(x1) + x1x2ϕ(x1),

∂g

∂x2
= −x1x2ϕ(x2)−

(
a
(i)
12 + a

(i)
21

)
+ x2ϕ(x2).

Math. Model. Anal., 18(1):1–21, 2013.
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With the help of (3.1) and making use of the non-decreasing property of Φ, we
obtain

∂g

∂x1
+

∂g

∂x2
= a

(i)
11 + a

(i)
22 −

(
a
(i)
12 + a

(i)
21

)
+ x2ϕ(x2)(1− x1)− x1ϕ(x1)(1− x2)

≤ x2ϕ(x2)(1− x1)− x1ϕ(x1)(1− x2)

= (1− x1)(1− x2)

(
x2ϕ(x2)

1− x2
− x1ϕ(x1)

1− x1

)
≤ 0.

Thus
∂g

∂x1
+

∂g

∂x2
≤ 0 for i/(i+ 1) ≤ x2 < x1 < 1,

which means that g is non-increasing along the straight lines x2 = x1 − θ,
θ ∈ (0, 1). Since

g(1, x2) =

∫ 1

x2

(x− x2)ϕ(x) dx ≥ 0 for i/(i+ 1) ≤ x2 < 1,

it then g(x1, x2) ≥ 0 for i/(i+ 1) ≤ x2 < x1 ≤ 1, thus completing the proof of
this lemma. ut

Remark 1. The non-decreasing property of Φ for a non-negative ϕ ∈ L1(0, 1)∩
C1(0, 1) in Lemma 2 can be expressed in the form

ϕ(x) + x(1− x)ϕ′(x) ≥ 0 for
1

2
≤ x < 1; (3.2)

a simplified sufficient condition for (3.2) and for the non-decreasing behaviour
of Φ is given by

ϕ(x) + xϕ′(x) ≥ 0 for
1

2
≤ x < 1. (3.3)

Condition (3.3) will appear in another context when we examine conditions for
ci ≥ 0.

Lemma 3. Let ϕ ∈ L1(0, 1) ∩ C(0, 1) be non-negative. Then the inequality
ci ≥ 0 holds for all i ≥ 1 and all choices of the collocation parameters 0 ≤ τ1 <
τ2 ≤ 1 if and only if ϕ satisfies the inequality

xϕ(x)

∫ 1

x

(s− x)ϕ(s) ds−
∫ 1

x

ϕ(s) ds

∫ 1

x

sϕ(s) ds ≤ 0 for
1

2
≤ x < 1. (3.4)

Proof. We examine the inequality ci ≥ 0 for a fixed i ≥ 1 and omit the upper

index i in the x
(i)
j :

x1 = x
(i)
1 := i/(i+ τ1), x2 = x

(i)
2 := i/(i+ τ2), i/(i+ 1) ≤ x2 < x1 ≤ 1.

With these notations formula (2.3) takes the form

ci = ix−12

∫ 1

x1

ϕ(s) ds

∫ 1

x2

sϕ(s) ds− ix−11

∫ 1

x1

sϕ(s) ds

∫ 1

x2

ϕ(s) ds.
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Since ϕ is non-negative, then
∫ 1

x1
ϕ(s) ds = 0 implies ϕ(x) = 0 on (x1, 1) yield-

ing
∫ 1

x1
sϕ(s) ds = 0 and ci = 0. Therefore, we may assume that

∫ 1

x1
ϕ(s) ds > 0

which implies
∫ 1

x2
ϕ(s) ds > 0, and we can write

ci = i

∫ 1

x1

ϕ(s) ds

∫ 1

x2

ϕ(s) ds

( ∫ 1

x2
sϕ(s) ds

x2
∫ 1

x2
ϕ(s) ds

−
∫ 1

x1
sϕ(s) ds

x1
∫ 1

x1
ϕ(s) ds

)
.

We observe that ci ≥ 0 for any x1, x2, and i/(i + 1) ≤ x2 < x1 ≤ 1 (for any
τ1 < τ2 satisfying 0 ≤ τ1 < τ2 ≤ 1) iff the function

g(x) =

∫ 1

x
sϕ(s) ds

x
∫ 1

x
ϕ(s) ds

is non-increasing, i.e., if g′(x) ≤ 0 for x ∈ [ i
i+1 , 1). Since

g′(x) =
xϕ(x)

∫ 1

x
(s− x)ϕ(s) ds−

∫ 1

x
ϕ(s) ds

∫ 1

x
sϕ(s) ds

(x
∫ 1

x
ϕ(s) ds)2

the condition takes the form (3.4); for i = 1 the interval is [ 12 , 1). ut

Theorem 3. Assume ϕ ∈ L1(0, 1)∩C1(0, 1) is non-negative and satisfies (3.3),
and

(1− x)ϕ(x)

∫ 1

x

ϕ(s) ds→ 0 as x→ 1. (3.5)

Then the piecewise linear collocation method is, for any µ ∈ R ∩ %0(Vϕ) and
all choices of the collocation parameters τ1, τ2 (0 ≤ τ1 < τ2 ≤ 1), applicable to
equation (1.1) and hence convergent.

Proof. In view of Lemmas 1–3 and Remark 1, we only have to show that
condition (3.4) is fulfilled. Denote

γ(x) = xϕ(x)

∫ 1

x

(s− x)ϕ(s) ds−
∫ 1

x

ϕ(s) ds

∫ 1

x

sϕ(s) ds,
1

2
≤ x < 1.

Due to (3.3), for 1
2 ≤ x < 1,

γ′(x) =
(
ϕ(x) + xϕ′(x)

) ∫ 1

x

(s− x)ϕ(s) ds+ ϕ(x)

∫ 1

x

sϕ(s) ds ≥ 0. (3.6)

Secondly, we have γ(x) → 0 as x → 1. In order to prove this, let us denote

ψ(s) =
∫ 1

s
ϕ(t)dt. Integrating by parts and using (3.5) we obtain∫ 1

x

(s− x)ϕ(s) ds =

∫ 1

x

ψ(s) ds, 0 ≤
∫ 1

x

(s− x)ϕ(s) ds ≤ (1− x)ψ(x),

0 ≤ ϕ(x)

∫ 1

x

(s− x)ϕ(s) ds ≤ (1− x)ϕ(x)

∫ 1

x

ϕ(s) ds→ 0 as x→ 1,

so that γ(x)→ 0 as x→ 1. Finally, (3.6) implies that γ(x) ≤ 0 for 1
2 ≤ x < 1,

i.e., (3.4) is fulfilled. ut

Math. Model. Anal., 18(1):1–21, 2013.
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4 Application to Some Concrete Cordial Equations

Consider the Abel type equation

µu(t) =

∫ t

0

t−αs−β
(
tγ − sγ

)−ν
u(s) ds+ f(t), 0 ≤ t ≤ T, (4.1)

in the role of (1.1). The integral operator

(Vϕβ,γ,νu)(t) =

∫ t

0

t−αs−β
(
tγ − sγ

)−ν
u(s) ds, 0 ≤ t ≤ T,

is cordial with the core

ϕβ,γ,ν(x) = x−β(1− xγ)−ν , 0 < x < 1, (4.2)

provided that the real parameters α, β, γ, ν satisfy the conditions

γ > 0, 0 ≤ ν < 1, β < 1, α+ β + γν = 1. (4.3)

The first three conditions in (4.3) imply that ϕβ,γ,ν ∈ L1(0, 1) whereas the
equality α+ β + γν = 1 determines α as a function of the other parameters β,
γ, ν and is responsible for the cordiality, i.e., for the equality (Vϕβ,γ,νu)(t) =∫ t
0
t−1ϕβ,γ,ν(t−1s)u(s) ds. It holds [10, 11]

σ0(Vϕβ,γ,ν ) ∩ R =
[
0, ‖Vϕβ,γ,ν‖

]
, ‖Vϕβ,γ,ν‖ =

1

γ

Γ (1− ν)Γ ( 1−β
γ )

Γ (1− ν + 1−β
γ )

.

In the case ν = 0 we have

α+ β = 1,
1

γ

Γ (1− ν)Γ ( 1−β
γ )

Γ (1− ν + 1−β
γ )

=
1

1− β
=

1

α
.

Theorem 4. For all choices of the collocation parameters τ1, τ2, satisfying
0 ≤ τ1 < τ2 ≤ 1, and all values of µ ∈ %0(Vϕβ,γ,ν ) ∩ R (i.e., for µ < 0 as well
as for µ > ‖Vϕβ,γ,ν‖), the piecewise linear collocation method is applicable to
equation (4.1), with conditions (4.3), and hence convergent.

Proof. The function ϕβ,γ,ν(x) > 0 is smooth for 0 < x < 1 and satisfies
conditions (3.3) and (3.5):

ϕβ,γ,ν(x) + xϕ′β,γ,ν(x) = (1− β)ϕβ,γ,ν(x) + γνxγ−β(1− xγ)−ν−1 > 0,

(1− x)ϕβ,γ,ν(x) ∼ γ−ν(1− x)1−ν → 0 as x→ 1.

An application of Theorem 3 completes the proof. ut

Consider now the following equation

µu(t) =

∫ t

0

t−αsα−1u(s) ds+ f(t), 0 ≤ t ≤ T, (4.4)
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which was first introduced in [5]; there a (fourth order) Hermite type collocation
method based on cubic splines in the continuity class C1 was considered, where
the approximate solution was required to satisfy both the original and the
differentiated form of the equation at the mesh points. Further studies for
(4.4) include [2, 4].

We see that (4.4) is a special case of the cordial equation (4.1), with condi-
tions (4.3) being satisfied by the parameter values ν = 0, α+ β = 1, and with
core ϕα(x) = xα−1 (0 < x < 1), α > 0. For the spectrum of the operator

(Vϕαu)(t) =

∫ t

0

t−αsα−1u(s) ds,

formula (1.2) yields (see [10])

σ0(Vϕα) =

{
λ ∈ C :

(
Reλ− 1

2α

)2

+ (Imλ)2 ≤ 1

4α2

}
,

σ0(Vϕα) ∩ R =
[
0, ‖Vϕα‖

]
, ‖Vϕα‖ = 1/α. (4.5)

By Theorem 4, the piecewise linear collocation method is applicable to equation
(4.4) and hence convergent, for any real µ satisfying either µ < 0 or µ > 1/α.
Below we extend this result to complex µ ∈ %0(Vϕα).

Theorem 5. For all choices of the collocation parameters τ1, τ2, satisfying
0 ≤ τ1 < τ2 ≤ 1, and any µ ∈ %0(Vϕα), the piecewise linear collocation method
is applicable to equation (4.4) and hence convergent.

Proof. We have to show that, for all choices of the collocation parameters τ1,

τ2, 0 ≤ τ1 < τ2 ≤ 1, and all i, 1 ≤ i ≤ N − 1, it holds µ
(i)
1 , µ

(i)
2 ∈ σ0(Vϕα). For

real µ
(i)
1 , µ

(i)
2 we know this from previous considerations, so let us consider the

case of complex

µ
(i)
j =

bi ± (b2i − 4(τ2 − τ1)ci)
1/2

2(τ2 − τ1)
, b2i < 4(τ2 − τ1)ci,

with

Reµ
(i)
j =

bi
2(τ2 − τ1)

,
(
Imµ

(i)
j

)2
=

4(τ2 − τ1)ci − b2i
4(τ2 − τ1)2

, j = 1, 2.

According to (4.5), the inclusions µ
(i)
j ∈ σ0(Vϕα), j = 1, 2, hold iff(

bi
2(τ2 − τ1)

− 1

2α

)2

+
4(τ2 − τ1)ci − b2i

4(τ2 − τ1)2
≤ 1

4α2
,

i.e., bi − 2αci ≥ 0. Now denote xj := x
(i)
j = i/(i + τj), j = 1, 2, and

g(x1, x2) := i−1x1x2(bi − 2αci). Then the last inequality is equivalent to

g(x1, x2) = x1(a11 + a22 − 2αa11a22)− x2(a12 + a21 − 2αa12a21) ≥ 0 (4.6)

Math. Model. Anal., 18(1):1–21, 2013.
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for 1/2 ≤ 1/(i + 1) ≤ x2 < x1 ≤ 1, 1 ≤ i ≤ N − 1; arguing for a fixed i, we

omit the upper index also in the a
(i)
jk to obtain

a11 =

∫ 1

x1

ϕα(x) dx =
1− xα1
α

, a12 =

∫ 1

x1

xϕα(x) dx =
1− xα+1

1

α+ 1
,

a21 =

∫ 1

x2

ϕα(x) dx =
1− xα2
α

, a22 =

∫ 1

x2

xϕα(x) dx =
1− xα+1

2

α+ 1
.

We see that a11 and a12 are functions of x1 whereas a21 and a22 are functions
of x2. For 1/2 ≤ x2 < 1, we have

g(x1, x2)|x1=x2
= 0, g(1, x2) = a22−x2a21 =

∫ 1

x2

(x−x2)ϕα(x) dx > 0. (4.7)

Further, elementary evaluations yield

(∂/∂x1)g = a11 + a22 − 2αa11a22 +
{
x2(1− 2αa21)− (1− 2αa22)

}
,

(∂/∂x1)g|x1=x2
=

1− x22 + α2(1− x2)xα2
α(α+ 1)

> 0 for 1/2 ≤ x2 < 1, (4.8)

(∂/∂x1)2g = xα−11

(
α(1− x2)− 1

)
for 1/2 ≤ x2 < x1 ≤ 1. (4.9)

According to (4.9), (∂/∂x1)2g does not change its sign for x1 ∈ (x2, 1] and
fixed x2. Together with (4.7) and (4.8) this implies (4.6). ut

5 Applicability of Piecewise Quadratic Collocation

Some of the results of Sections 3 and 4 can be extended to piecewise quadratic
collocation, by using the following lemma.

Lemma 4. Let ϕ ∈ L1(0, 1), µ ∈ %0(Vϕ), m ≥ 1. Assume that, for any choice
of the collocation parameters 0 ≤ τ1 < · · · < τm ≤ 1, the homogeneous equation
µvN = PNVϕ1

vN , with ϕ1(x) = xϕ(x), has only the trivial solution vN = 0,
i.e., the spline collocation method of degree m − 1, with arbitrary collocation
parameters τ1, . . . , τm (0 ≤ τ1 < · · · < τm ≤ 1), is applicable to equation
µu = Vϕ1

u+f . Denote by P ′N : C[0, T ]→ Sm+1
N [0, T ] the interpolation operator

corresponding to the collocation parameters τ ′1, . . . , τ
′
m+1, with τ ′1 = 0 and any

0 < τ ′2 < · · · < τ ′m+1 ≤ 1. Then the homogeneous equation µuN = P ′NVϕuN has
only the trivial solution uN = 0, i.e., the spline collocation method of degree m,
with τ ′1 = 0 and arbitrary τ ′2, . . . , τ

′
m+1 (0 < τ ′2 < · · · < τ ′m+1 ≤ 1) is applicable

to equation (1.1).

Proof. Let u0N ∈ S
m+1
N [0, T ] be a solution to equation µuN = P ′NVϕuN . We

have to show that u0N = 0. Since µ ∈ %0(Vϕ), u0N |[0,h] ∈ Pm, and Vϕ maps
Pm into Pm, we have u0N |[0,h] = 0. Let ` ≥ 1 be the greatest integer such that
u0N |[0,`h] = 0, ` ≤ N . Below we demonstrate that ` < N leads to a contradiction
with the definition of `, hence ` = N and u0N = 0.
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Due to the equality µu0N = P ′NVϕu
0
N , we have

µu0N (`h+ τ ′kh)− (Vϕu
0
N )(`h+ τ ′kh) = 0, k = 1, . . . ,m+ 1. (5.1)

Since τ ′1 = 0, we have, in particular, µu0N,`+1(`h) =
∫ `h
0

s
`hϕ
(
s
`h

)
u0N (s) ds = 0,

where u0N,`+1 := u0N |[`h,(`+1)h]; since µ 6= 0 for µ ∈ %0(Vϕ), we conclude that

u0N,`+1(`h) = 0. Thus the left and right hand side limits of u0N at the knot

`h coincide (are equal to 0), and u0N is continuous and piecewise continuously
differentiable on [0, (` + 1)h). Furthermore, from (5.1) we conclude that the
derivative of µu0N − Vϕu0N vanishes at some m intermediate points `h+ τkh ∈
(`h, (` + 1)h) with τ ′k < τk < τ ′k+1, k = 1, . . . ,m. Denoting v0N (t) = d

dtu
0
N (t),

we observe that

d

dt

(
Vϕu

0
N

)
(t) =

d

dt

∫ t

0

t−1ϕ
(
t−1s

)
u0N (s) ds =

d

dt

∫ 1

0

ϕ(x)u0N (tx) dx

=

∫ 1

0

xϕ(x)v0N (tx) dx =

∫ 1

0

ϕ1(x)v0N (tx) dx =
(
Vϕ1

v0N
)
(t)

for 0 ≤ t ≤ (`+ 1)h. Thus

µv0N (`h+ τkh)−
(
Vϕ1

v0N
)
(`h+ τkh) = 0, k = 1, . . . ,m,

hence v0N,`+1 = ΠN,`Vϕ1v
0
N,`+1, where v0N,`+1 = v0N |[`h,(`+1)h] is a polynomial

of degree m− 1, and the interpolation operator ΠN,` corresponds to the poly-
nomials of degree m − 1 and the interpolation (collocation) points τ1, . . . , τm,
0 < τ1 < · · · < τm < 1, specified above. Due to the assumption of the lemma,
we get v0N,`+1 = 0 which implies u0N,`+1 = 0 and contradicts the definition of `.
Thus ` = N which completes the proof of Lemma 4. ut

With the help of Lemma 4 we extend Theorems 3, 4 and 5 for piecewise
quadratic collocation as follows.

Theorem 6. Assume ϕ ∈ L1(0, 1) ∩ C1(0, 1) is non-negative and satisfies
conditions (3.3) and (3.5). Then the piecewise quadratic collocation method
with τ1 = 0 and arbitrary τ2, τ3, satisfying 0 < τ2 < τ3 ≤ 1, is, for any
µ ∈ R ∩ %0(Vϕ), applicable to equation (1.1) and hence convergent.

Proof. It is easily proved that ϕ1(x) = xϕ(x) satisfies (3.3) and (3.5). By
Theorem 3, the piecewise linear collocation method with any τ1, τ2 (0 ≤ τ1 <
τ2 ≤ 1) is applicable to equation µu = Vϕ1

u + f , µ ∈ R ∩ %0(Vϕ). Then, by
Lemma 4, the piecewise quadratic collocation method with τ1 = 0 and arbitrary
τ2, τ3, 0 < τ2 < τ3 ≤ 1, is for µ ∈ R ∩ %0(Vϕ) applicable to equation (1.1). ut

Theorem 7. For τ1 = 0, all choices of the collocation parameters τ2, τ3, sat-
isfying 0 < τ2 < τ3 ≤ 1, and any µ ∈ %0(Vϕβ,γ,ν ) ∩R (i.e., for µ < 0 as well as
for µ > ‖Vϕβ,γ,ν‖), the piecewise quadratic collocation method is applicable to
equation (4.1) subject to (4.3) and hence convergent.

Math. Model. Anal., 18(1):1–21, 2013.
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Table 1. Eq. (6.1); cubic collocation with the Gauss points.
Maximum of errors at mesh points and convergence rates.

µ = −0.4 µ = 4

N eN eN/e2N p eN eN/e2N p

4 1.898 × 10−4 – – 1.235 × 10−4 – –
8 1.126 × 10−5 16.86 4.08 7.140 × 10−5 17.29 4.11
16 6.658 × 10−7 16.91 4.08 4.127 × 10−7 17.30 4.11
32 3.959 × 10−8 16.82 4.07 2.407 × 10−8 17.14 4.10
64 2.374 × 10−9 16.67 4.06 2.191 × 10−9 16.40 4.03
128 1.44 × 10−10 16.51 4.04 1.350 × 10−10 16.30 4.02

Table 2. Eq. (6.1); cubic collocation with the Chebyshev points.
Maximum of errors at mesh points and convergence rates.

µ = −0.4 µ = 4

N eN eN/e2N p eN eN/e2N p

4 1.74 × 10−4 – – 8.503 × 10−5 – –
8 1.008 × 10−5 17.26 4.11 4.988 × 10−6 17.04 4.09
16 5.970 × 10−7 16.89 4.08 2.981 × 10−7 16.73 4.06
32 3.595 × 10−8 16.61 4.05 1.807 × 10−8 16.49 4.04
64 1.422 × 10−9 16.93 4.08 1.107 × 10−9 16.33 4.03
128 1.118 × 10−10 15.82 3.98 6.824 × 10−11 16.22 4.02

Proof. We know that the core function ϕβ,γ,ν(x) > 0 is smooth for 0 < x < 1
and satisfies conditions (3.3) and (3.5) (cf. the proof of Theorem 4). Applying
Theorem 6 we obtain the statement of the present theorem. ut

Theorem 8. For τ1 = 0, all choices of the collocation parameters τ2, τ3, sat-
isfying 0 < τ2 < τ3 ≤ 1, and any µ ∈ %0(Vϕα) (described in (4.5)), with α > 0,
the piecewise quadratic collocation method is applicable to equation (4.4) and
hence convergent.

Proof. Noting that xϕα(x) = ϕα+1(x), we obtain the claim of the present
theorem by Lemma 4 and Theorem 5. ut

6 Numerical Experiments

In the first part of this section we start by presenting some results which il-
lustrate the performance of the collocation method. Then Subsection 6.2 is
devoted to the numerical investigation of the applicability of the method.

6.1 Numerical results by cubic collocation

Example 1. We consider the integral equation

µu(t) =

∫ t

0

s−1/2(t− s)−1/2u(s) ds+ f(t), 0 ≤ t ≤ 1, (6.1)
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Table 3. Eq. (6.1); cubic collocation with c1 = 0, c2 = 1/4, c3 = 1/2, c4 = 3/4.
Maximum of errors at collocation points and convergence rates.

µ = −0.4 µ = 4

N EN EN/E2N p EN EN/E2N p

4 2.727 × 10−2 – – 6.69 × 10−5 – –
8 1.538 × 10−3 17.73 4.1 4.50 × 10−6 14.85 3.9
16 6.800 × 10−6 22.63 4.5 2.86 × 10−7 15.72 4.0
32 3.005 × 10−7 22.63 4.5 1.79 × 10−8 16.01 4.0
64 1.328 × 10−8 22.63 4.5 1.11 × 10−9 16.11 4.0
128 5.869 × 10−10 22.63 4.5 6.88 × 10−11 16.12 4.0

which is obtained from (4.1) setting γ = 1, β = ν = 1/2 and α = 1−β−γν = 0.
In the case f(t) = ( 256

315 + µ)t9/2 its exact solution is given by u(t) = t9/2.

Associated with (6.1) is the integral operator

(Vϕβ,γ,νu) =

∫ t

0

t−1/2s−1/2(t− s)−1/2u(s) ds,

which is cordial with core ϕ(x) = x−1/2(1−x)−1/2 and whose spectrum is such
that

σ0(Vϕ) ∩ R =
[
0, ‖Vϕ‖

]
=

[
0,
Γ (1/2)Γ (1/2)

Γ (1)

]
= [0, π].

Let uN ∈ S4
N denote the approximate solution of equation (6.1) obtained

by the collocation method (1.7) based on cubic splines, that is, with m = 4.
Denote the errors at the mesh points by eNi = uN (ih)− u(ih), i = 0, 1, . . . , N,
and eN = maxi=0,1,...,N |eNi |. Similarly, we define the errors at the collocation
points by eNil = uN ((i+τl)h)−u((i+τl)h) and EN = maxi=0,1,...,N |eNil |, for i =
0, 1, . . . , N , l = 1, 2, . . . ,m. By p we denote the experimental convergence
exponent such that eN ∼ N−p or EN ∼ N−p.

In Tables 1–3 we have listed the maximum of the errors at the mesh points
and at the collocation points, in the cases µ ∈ {−0.4, 4}, using several choices of
collocation parameters. Note that the values µ = −0.4 and µ = 4 are outside
the interval [0, π]. The global convergence order on [0, 1] is of course 4; in
Table 3, for µ = −0.4 we observe superconvergence behaviour at the collocation
points.

6.2 Numerical check of the applicability condition

Here we are concerned with illustrating the applicability condition (1.9) of the
collocation method (1.7) to equation (4.4). We have undertaken an exhaustive
numerical study for different values of m ≥ 2 and various standard colloca-
tion parameters (including equidistant, Gauss, Radau, Lobatto and Chebyshev
points, among others). Some of the computational results are graphically il-
lustrated in Figures 1–3. Recall that σ0(Vϕα) ∩ R = [0, 1/α] and assume that
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Figure 1. Eq. (4.4); eigenvalues of Di, i = 1, 2, . . .; linear spline collocation with Gauss
points.

µ ∈ ρ0(Vϕα). The applicability condition concerns the invertibility of the op-
erator µI −ΠN,iVϕα , i = 0, 1 . . . , N − 1, which is equivalent to the condition
det(µIm −Di) 6= 0 being satisfied for all i = 0, 1 . . . , N − 1.

Let c∗ := max0≤x≤τm
∑m
k=1|Lk(x)|. For big i such that c∗

∫ 1

i/(i+τm)
xα−1dx <

|µ| the operator µI − ΠN,iVϕα is invertible. Let iα,µ be the first i ∈ N such

that c∗
∫ 1

i/(i+τm)
xα−1 dx < |µ|. Then we can conclude that the operator µI −

ΠN,iVϕα is invertible for i ≥ iα,µ.

For i = 1, . . . , iα,µ−1 we investigate the invertibility of of µIm−ΠN,iVϕα by
computing the eigenvalues µ(i) ∈ σ0(ΠN,iVϕα) = σ(Di), i = 1, . . . ,m. Namely,
if |µ(i) − 1

2α | <
1
2α , that is, if µ(i) ∈ σ(Di), i = 1, . . . ,m, then µ ∈ ρ0(Vϕα) is

different from µ(i), i = 1, . . . ,m, hence the operator µIm−ΠN,iVϕα is invertible
and the collocation method is applicable to equation (4.4).

The graphics below show the distribution of the computed eigenvalues for
α ∈ {1.1, 5, 20, 50}, in the cases of linear and cubic spline collocation (Figures 1
and 2, respectively), using the Gauss points as collocation parameters; and also
in the case of quintic spline collocation using the Chebyshev points (Figure 3).
We can see that the µ(i) belong to the circle with center in (1/2α, 0) and radius
1/(2α). Moreover, in all the numerical experiments we have carried out, the
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Figure 2. Eq. (4.4); eigenvalues of Di, i = 1, 2, . . .; cubic spline collocation with Gauss
points.

condition (1.9) was fulfilled (in the frame of the computation accuracy).
The question of the applicability of the collocation method was not ad-

dressed in [4] and [2], where a conjecture was used that the method is always
applicable to equation (4.4). This claim is trivially true for m = 1, µ ∈ %0(Vϕα);
Theorems 5 and 8 confirm it analytically for m = 2 and m = 3, µ ∈ %0(Vϕα),
with τ1 = 0 in the case m = 3. Our numerical check supports the conjecture
that the spline collocation method is applicable to equation (4.4) for arbitrary
m ∈ N, µ ∈ %0(Vϕα) and any choice of collocation parameters.
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Figure 3. Eq. (4.4); Eigenvalues of Di, i = 1, 2, . . .; five degree spline collocation case
with Chebyshev points.

References

[1] G.A. Chandler and I.G. Graham. Product integration-collocation methods for
noncompact integral operator equations. Math. Comp., 50(1–2):125–138, 1998.

[2] T. Diogo. Collocation and iterated collocation methods for a class of weakly
singular Volterra integral equations. J. Comput. Appl. Math., 229(2):363–372,
2009. http://dx.doi.org/10.1016/j.cam.2008.04.002.

[3] T. Diogo, N.B. Franco and P. Lima. High order product integration methods for
a Volterra integral equation with logarithmic singular kernel. Commun. Pure
Appl. Anal., 3(2):217–235, 2004. http://dx.doi.org/10.3934/cpaa.2004.3.217.

[4] T. Diogo and P. Lima. Superconvergence of collocation methods for a class
of weakly singular Volterra integral equations. J. Comput. Appl. Math.,
218(2):307–316, 2008. http://dx.doi.org/10.1016/j.cam.2007.01.023.

[5] T. Diogo, S. McKee and T. Tang. A Hermite-type collocation method for the
solution of an integral equation with a certain weakly singular kernel. IMA J. Nu-
mer. Anal., 11(4):595–605, 1991. http://dx.doi.org/10.1093/imanum/11.4.595.

[6] J. Elschner. On spline approximation for a class of non-compact integral equa-
tions. Math. Nachr., 146(17–20):271–321, 1990.
http://dx.doi.org/10.1002/mana.19901461703.

http://dx.doi.org/10.1016/j.cam.2008.04.002
http://dx.doi.org/10.3934/cpaa.2004.3.217
http://dx.doi.org/10.1016/j.cam.2007.01.023
http://dx.doi.org/10.1093/imanum/11.4.595
http://dx.doi.org/10.1002/mana.19901461703


Applicability of Spline Collocation 21

[7] J. Elschner and I.G. Graham. Numerical methods for integral equations of Mellin
type. J. Comput. Appl. Math., 125(1–2):423–437, 2000.
http://dx.doi.org/10.1016/S0377-0427(00)00483-0.
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