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Abstract. In this work we consider the one and multidimensional diffusional trans-
port in an s-component solid solution. The new model is expressed by the nonlinear
parabolic-elliptic system of strongly coupled differential equations with the initial and
the nonlinear coupled boundary conditions. It is obtained from the local mass con-
servation law for fluxes which are a sum of the diffusional and Darken drift terms,
together with the Vegard rule. The considered boundary conditions allow the physical
system to be not only closed but also open. We construct the implicit finite difference
methods (FDM) generated by some linearization idea, in the one and two-dimensional
cases. The theorems on existence and uniqueness of solutions of the implicit differ-
ence schemes, and the theorems concerned convergence and stability are proved. We
present the approximate concentrations, drift and its potential for a ternary mixture
of nickel, copper and iron. Such difference methods can be also generalized on the
three-dimensional case. The agreement between the theoretical results, numerical
simulations and experimental data is shown.
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1 Introduction

Quantitative description of the diffuse mass transport is particularly essential
for materials processing and hydrodynamics. It is important for the Navier–
Stokes problem, where it allows considering diffusion in multicomponent fluids
[13]. An inspiring effort dedicated to the rigorous mathematical treatment
of the flows occurring in multicomponent systems has begun with the work
of Darken [10] on the modeling of diffusive flows. In the case of the one-
dimensional binary closed mixture with constant concentration, c1+c2 = const,
the Darken method allows to transform the system of two partial differential
equations modeling the process

∂tci = −∂x
(
−Di(c1, c2)∂xci + civ

d
)

for i = 1, 2,

to one quasi-linear diffusion equation

∂tc1 = ∂x
(
D̃(c1)∂xc1

)
, (1.1)

with the initial and the simple boundary conditions (semi-infinite only), where
vd means a drift velocity. Equation (1.1) allows using the Boltzmann–Matano
transformation [3]. It introduces a similarity parameter λ = (x−x0)/

√
t, where

x0 is the position of the so-called Matano interface [18]. This ansatz transforms,
in a not equivalent way, the governing partial differential diffusion equation
(1.1) to a nonlinear ordinary differential equation. But in a multicomponent
case (three or more components, s ≥ 3) such the Darken reduction is not
effective, because leads to a system of equations. Analogous procedure is used
in a case of the Onsager phenomenological equations, where the fluxes are
coupled by interdiffusion coefficients Di(c1, . . . , cs−1) for i = 1, . . . , s.

The drift velocity vd is concerned with the Kirkendall effect [23]. It is the
motion of the boundary between two metals that occurs as a consequence of
the difference in diffusion rates of the metal atoms. The effect can be observed
for example by placing insoluble markers at the interface between a pure metal
and an alloy containing that metal, and heating to a temperature where atomic
diffusion is possible; the boundary will move relative to the markers. The
Kirkendall effect has important practical consequences. One of these is the
prevention or suppression of voids formed at the boundary interface in various
kinds of alloy to metal bondings. These are referred to as Kirkendall voids.

The Darken method was extended for multicomponent systems in [16].
Later it was proved that it is self-consistent with the Onsager phenomenological
description [4]. Several attempts to solve the problem in liquid mixtures were
little effective due to arbitrary selection of the reference frame for diffusion.
The most fundamental approach is given in [6], where a volume transport is
considered.

In the paper we study the model of interdiffusion introduced in [22] and
in some special case in [24], in the one-dimensional and the multidimensional
cases. The model is expressed by the strongly coupled nonlinear parabolic-
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elliptic system 
∂tci + div

(
−Di(c1, . . . , cs)∇ci + ci∇F

)
= 0,

4F = div
(∑s

k=1ΩkDk(c1, . . . , cs)∇ck
)
,∫

Ω
Fdx = 0,

(1.2)

for i = 1, . . . , s, where Ωk means the partial molar volume of the kth component
(see Section 2), with the initial and the nonlinear coupled boundary conditions.
It is obtained from the local mass conservation law for fluxes which are a sum
of the diffusional and Darken drift terms, together with the Vegard rule. This
rule is a straight application of the Euler homogeneous function theorem [12].
The strong coupling of the equations is caused by the potential F of the drift
velocity vd. In the one-dimensional case our model implies the well-known
evolutional model studied in [7, 8, 16,21,22]

∂tci+∂x
(
−Di(c1, . . . , cs)∂xci+ci

( s∑
k=1

ΩkDk(c1, . . . , cs)∂xck+K(t)
))

= 0, (1.3)

for i = 1, . . . , s. Note that the three-dimensional generalization of (1.3) has
been studied for example in [5, 9]. But in those papers it is assumed that a
some vector field equals zero because the divergence of this field equals zero.
It is not a mathematical way and physically a part of information from fluxes
is neglected. We omit this assumption by a postulate that the field of the drift
is potential. A detailed analysis of a concept of the drift velocity, a choice of
the reference frame, as well as the other physical, mathematical and numerical
consequences of the proposed formalism can be found in [4,7,8,11,16,25,26] and
in the references therein. In those papers concentration of a mixture must be
constant, while the Vegard rule assumed by us admits the overall concentration
depending on time and a space. We do not use the Darken reduction method
and the not equivalent Boltzmann–Matano substitution mentioned above.

The aim of the paper is giving the implicit finite difference methods (FDM)
of approximate solving of system (1.2) with the initial-boundary conditions
in the one and two-dimensional cases, and theirs mathematical analysis. In
the construction of the numerical methods an idea od some linearization is
used. The agreement between the theoretical results, numerical simulations
and experimental data is shown.

Let us stress that such strongly coupled systems as (1.2) or (1.3) (i.e., by the
second derivatives) mathematically have been seldom investigated. The system
(1.2) is a little similar in the structure to the Nernst–Planck–Poisson system
(NPP) [1, 2, 14, 15]. We suppose after analysis of the papers mentioned above,
concerned the NPP model that if the initial concentrations and the fluxes on
the boundaries are sufficiently regular, then system (1.2) has a unique regular
solution. It is a completely new model and our analytical investigations are
not finished.

In the paper we prove that the convergence and stability of our method with
respect to the concentrations are equivalent to the convergence and stability
with respect to the potential, in the suitable difference maximum norms. In
the proofs we use a technique studied in [17, 19, 20]. We assume additionally
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that some difference quotients are uniformly bounded with respect to meshes.
This property is observed in numerical experiments. Since our differential sys-
tem is parabolic–elliptic strongly nonlinear system, theoretical convergence and
stability analysis for the proposed numerical method is a challenge task. The
same problem is open for the NPP model.

The paper is organized in the following way. In Section 2 the initial-
boundary differential problem is formulated. Sections 3 and 4 deal with the
construction of the implicit finite difference methods, the theorems on existence,
uniqueness of solutions to the suitable difference schemes and some convergence
and stability properties in the one and two-dimensional cases, respectively.
Moreover, the examples of physical problems and numerical experiments are
given in these sections.

2 Strong formulation of an interdiffusion model

In [22] the following model of interdiffusion is constructed. Let an open and
bounded set Ω ⊂ Rn with a piecewise smooth boundary ∂Ω, T > 0 and
s ∈ N \ {1} be fixed, and denote R+ = (0,∞). The symbol Ω means the
closure of Ω.

The following data are given:

1. Ωi = const ∈ R+ − the partial molar volume of the ith component of
the mixture, i = 1, . . . , s.

2. Di :
[
0, 1

Ω1

]
× . . . ×

[
0, 1

Ωs

]
→ R+ − the diffusion coefficient of the ith

component of the mixture, i = 1, . . . , s.

3. c0i : Ω → R+ − the initial concentration of the ith component of the
mixture, i = 1, . . . , s.

4. ji : [0, T ]×∂Ω → R − the evolution of a mass flow of the ith component
of the mixture through the boundary ∂Ω, i = 1, . . . , s.

The following functions are unknown:

1. ci : [0, T ] × Ω → R+ − the concentration of the ith component of the
mixture, i = 1, . . . , s.

2. vd : [0, T ]×Ω → Rn − the drift velocity.

We assume that each component of the mixture is a continuous medium,
i.e. it satisfies the local mass conservation law (continuity equation)

∂tci + divJi = 0 on [0, T ]×Ω, i = 1, . . . , s, (2.1)

where

Ji = −Di(c1, . . . , cs)∇ci + civ
d on [0, T ]×Ω, i = 1, . . . , s (2.2)

is a flux of the ith component of the mixture, and it is a sum of the diffusional
and Darken drift fluxes. Note that (2.2) is a generalization of the Fick flux
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formula. Moreover, we postulate the constant partial molar volumes and the
noncompressible transport (Vegard rule)

s∑
i=1

Ωici = 1 on [0, T ]×Ω. (2.3)

Consider the initial condition on the concentrations

ci(0, x) = c0i(x) on Ω, (2.4)

and the boundary conditions

Ji ◦ n = ji(t, x) on [0, T ]× ∂Ω, i = 1, . . . , s, (2.5)

where n is the outside normal to the boundary ∂Ω.
Multiplying (2.1) by Ωi, adding its by sides and using (2.2), (2.3) we obtain

the volume continuity equation

div
(
−

s∑
i=1

ΩiDi(c1, . . . , cs)∇ci + vd
)
= 0 on [0, T ]×Ω.

We postulate that there exists a potential F of the drift vd:

∇F = vd. (2.6)

In consequence

4F = div
( s∑
i=1

ΩiDi(c1, . . . , cs)∇ci
)

on [0, T ]×Ω.

Moreover, multiplying (2.2) by Ωi and n, adding its by sides and using (2.3),
(2.5) we get

∂F

∂n
=

s∑
i=1

Ωi
(
Di(c1, . . . , cs)

∂ci
∂n

+ ji(t, x)
)

on [0, T ]× ∂Ω.

The solution of the problem of interdiffusion in the s-component solid solu-
tion are the functions ci, i = 1, . . . , s and F which fulfill the strongly coupled
nonlinear parabolic-elliptic system

∂tci + div
(
−Di(c1, . . . , cs)∇ci + ci∇F

)
= 0 on [0, T ]×Ω,

4F = div
(∑s

k=1ΩkDk(c1, . . . , cs)∇ck
)

on [0, T ]×Ω,∫
Ω
Fdx = 0 on [0, T ],

(2.7)

with the initial condition

ci(0, x) = c0i(x) on Ω, (2.8)
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and the coupled nonlinear boundary conditions{
−Di(c1, . . . , cs)

∂ci
∂n + ci

∂F
∂n = ji(t, x) on [0, T ]× ∂Ω,

∂F
∂n =

∑s
k=1Ωk

(
Dk(c1, . . . , cs)

∂ck
∂n + jk(t, x)

)
on [0, T ]× ∂Ω,

(2.9)

i = 1, . . . , s. We assume the constant volume∫
∂Ω

s∑
i=1

Ωiji(t, x)dS = 0

for t ∈ [0, T ]. It can be treated as the compatibility condition to the elliptic
subsystem be well posed. This condition follows immediately from the Gauss
theorem. Moreover, we assume the Vegard rule on the initial concentrations

s∑
i=1

Ωic0i(x) = 1 on Ω,

(see (2.3), (2.4)).

Remark 1. If n = 1 and vd is continuous, then there exists F in (2.6). Moreover,
in this case system (2.7) with the boundary conditions (2.9) imply by integra-
tion of the elliptic equation on F , the strongly coupled nonlinear evolution
system

∂tci + ∂x
(
−Di(c1, . . . , cs)∂xci

+ ci

( s∑
k=1

ΩkDk(c1, . . . , cs)∂xck +K(t)
))

= 0, on [0, T ]×Ω, (2.10)

and the coupled nonlinear boundary conditions

−Di(c1, . . . , cs)
∂ci
∂n

+ ci

( s∑
k=1

ΩkDk(c1, . . . , cs)
∂ck
∂n

+K(t)n
)

= ji(t, x), on [0, T ]× ∂Ω, (2.11)

i = 1, . . . , s, where

K(t) =

s∑
i=1

Ωiji(t, Λ) = −
s∑
i=1

Ωiji(t,−Λ),

Ω = (−Λ,Λ). The one dimensional model (2.10), (2.8), (2.11) is well-known
for many years [7, 8, 16,21,22].

Remark 2. If n = 2 or n = 3, Ω is a connected region and rot vd = 0, then
there exists F also in (2.6). Nearly all of the diffusion processes in solids
show negligible turbulence, thus it can be neglected and the postulate about
rot vd = 0 is appropriate.
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3 Implicit difference method and example, case n=1

Let Ω = (−Λ,Λ). We assume to test our model that the diffusion coefficients
Di are constant and the physical system is closed, i.e. ji(t, Λ) = ji(t,−Λ) ≡ 0
for t ∈ [0, T ], i = 1, . . . , s. The initial-boundary differential problem (2.7)–(2.9)
takes now a form

∂tci = Di∂xxci − ∂xci∂xF − ci∂xxF on [0, T ]×Ω,
∂xxF =

∑s
k=1ΩkDk∂xxck on [0, T ]×Ω,∫

Ω
Fdx = 0 on [0, T ],

(3.1)

ci(0, x) = c0i(x) on Ω, (3.2){
−Di∂xci + ci

∑s
k=1ΩkDk∂xck = 0 on [0, T ]× ∂Ω,

∂xF =
∑s
k=1ΩkDk∂xck on [0, T ]× ∂Ω,

(3.3)

i = 1, . . . , s. Taking into account the Vegard rule (2.3), we calculate

cs =
1

Ωs

(
1−

s−1∑
i=1

Ωici

)
,

and then (3.1)–(3.3) are reduced as follows
∂tci = Di∂xxci − ∂xci∂xF − ci∂xxF on [0, T ]×Ω,
∂xxF =

∑s−1
k=1Ωk(Dk −Ds)∂xxck on [0, T ]×Ω,∫

Ω
Fdx = 0 on [0, T ],

(3.4)

ci(0, x) = c0i(x) on Ω̄, (3.5){
−Di∂xci + ci

∑s−1
k=1Ωk(Dk −Ds)∂xck = 0 on [0, T ]× ∂Ω,

∂xF =
∑s−1
k=1Ωk(Dk −Ds)∂xck on [0, T ]× ∂Ω,

(3.6)

i = 1, . . . , s− 1. We assume additionally that

s−1∑
i=1

Ωic0i(x) ≤ 1 on Ω.

3.1 Implicit difference method

Define a mesh on Ω in the following way. Let h = 2Λ/(M + 1) and τ = T/K
stand for the space and time steps of the mesh, respectively, where M,K ∈ N
are given. Define nodal points (tµ, xm) as follows

xm = −Λ+mh, m = 0, 1, . . . ,M + 1,

tµ = µτ, µ = 0, 1, . . . ,K.

We define an implicit difference scheme for the elliptic subsystem on F in
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(3.4)–(3.6). It is a system of linear algebraic equations of the form

−Fµ+1
0 + Fµ+1

1 = Pµ0 (c) :=
∑s−1
k=1Ωk

(
Dk −Ds

)(
−cµk,0 + cµk,1

)
,

Fµ+1
m−1 − 2Fµ+1

m + Fµ+1
m+1 = Pµm(c)

:=
∑s−1
k=1Ωk

(
Dk −Ds

)(
cµk,m−1 − 2cµk,m + cµk,m+1

)
,

Fµ+1
M − Fµ+1

M+1 = PµM+1(c) :=
∑s−1
k=1Ωk

(
Dk −Ds

)(
cµk,M − c

µ
k,M+1

)
,

Fµ+1
0 + 2

∑M
m=1 F

µ+1
m + Fµ+1

M+1 = 0,

(3.7)

for m = 1, . . . ,M , µ = 0, . . . ,K − 1. For each µ it is the system of M + 3
equations with M + 2 unknowns.

Then we define an implicit difference scheme for the concentrations ci, i =
1, . . . , s− 1 as a system of linear algebraic equations of the form

qµi,0c
µ+1
i,0 + qµi,1c

µ+1
i,1 = Qµi,0 := 0,

dµi,m−1c
µ+1
i,m−1 + vµi,mc

µ+1
i,m + uµi,m+1c

µ+1
i,m+1 = Qµi,m := eµi,mc

µ
i,m,

qµi,Mc
µ+1
i,M + qµi,M+1c

µ+1
i,M+1 = Qµi,M+1 := 0,

(3.8)

where

κ =
τ

h2
, vµi,m = 1 + 2κDi,

dµi,m−1 = −κDi −
1

4
κ
(
Fµ+1
m+1 − F

µ+1
m−1

)
,

uµi,m+1 = −κDi +
1

4
κ
(
Fµ+1
m+1 − F

µ+1
m−1

)
,

eµi,m = 1− κ
(
Fµ+1
m−1 − 2Fµ+1

m + Fµ+1
m+1

)
,

qµi,0 = qµi,M+1 = Di, qµi,1 = −Di +

s−1∑
k=1

Ωk
(
Dk −Ds

)(
cµk,1 − c

µ
k,0

)
,

qµi,M = −Di +

s−1∑
k=1

Ωk
(
Dk −Ds

)(
cµk,M − c

µ
k,M+1

)
,

for m = 1, . . . ,M , i = 1, . . . , s− 1 and µ = 0, . . . ,K − 1. For each µ and i it is
the system of M + 2 equations with M + 2 unknowns.

If v
µ(m)
i,m 6= 0, then we make a sequence of the Gauss substitutions

v
µ(0)
i,k = qµi,k, k = 0, 1, v

µ(m)
i,m = vµi,m − d

µ
i,m−1

(
v
µ(m−1)
i,m−1

)−1
v
µ(m−1)
i,m ,

v
µ(m)
i,m−1 = 0, v

µ(m)
i,m+1 = uµi,m+1, v

µ(M+1)
i,M+1 = qµi,M+1 − q

µ
i,M

(
v
µ(M)
i,M

)−1
v
µ(M)
i,M+1,

v
µ(M+1)
i,M = 0, Q

µ(0)
i,0 = Qµi,0, Q

µ(m)
i,m = Qµi,m − d

µ
i,m−1

(
v
µ(m−1)
i,m−1

)−1
Q
µ(m−1)
i,m−1 ,

Q
µ(M+1)
i,M+1 = Qµi,M+1 − q

µ
i,M

(
v
µ(M)
i,M

)−1
Q
µ(M)
i,M ,

(3.9)
m = 1, . . . ,M , i = 1, . . . , s− 1.

Theorem 1. (i) For all the steps h, τ , system (3.7) has exactly one solution

Math. Model. Anal., 24(2):276–296, 2019.
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Fµ+1 for given concentrations (cµ1 , . . . , c
µ
s−1) of the form

Fµ+1
M+1 =

∑s−1
k=1Ωk(Dk −Ds)

[
−cµk,0 − 2

∑M
l=1 c

µ
k,l + (1 + 2M)cµk,M+1

]
2(M + 1)

,

Fµ+1
m =Fµ+1

m+1−
s−1∑
k=1

Ωk(Dk −Ds)(c
µ
k,m+1 − c

µ
k,m), m = M, . . . , 0. (3.10)

(ii) System (3.8) has exactly one solution (cµ+1
1 , . . . , cµ+1

s−1 ) for given concentra-
tions (cµ1 , . . . , c

µ
s−1) and potential Fµ+1 if and only if the steps h, τ are such

small that v
µ(m)
i,m 6= 0, m = 0, . . . ,M + 1, i = 1, . . . , s− 1. It has the formula

cµ+1
i,M+1 =

(
v
µ(M+1)
i,M+1

)−1
Q
µ(M+1)
i,M+1 , (3.11)

cµ+1
i,m =

(
v
µ(m)
i,m

)−1 (
Q
µ(m)
i,m − vµ(m)

i,m+1c
µ+1
i,m+1

)
, m = M, . . . , 0,

for i = 1, . . . , s− 1.

Proof. We will prove firstly point (i). Let any µ be fixed and let concentrations
(cµ1 , . . . , c

µ
s−1) be known. Adding the first equation to the second one, the new

second equation to the third one, and so on, leads to the system

−1 1 0 0 · · · 0 0 0 0
0 −1 1 0 · · · 0 0 0 0
0 0 −1 1 · · · 0 0 0 0
...

. . .
...

0 0 0 0 · · · 0 0 −1 1
0 0 0 0 · · · 0 0 0 0
1 2 2 2 · · · 2 2 2 1





Fµ+1
0

Fµ+1
1

Fµ+1
2

...

Fµ+1
M

Fµ+1
M+1


=



∑0
j=0 P

µ
j (c)∑1

j=0 P
µ
j (c)∑2

j=0 P
µ
j (c)

...∑M
j=0 P

µ
j (c)∑M+1

j=0 Pµj (c)

0


.

It follows from elementary calculations that
∑M+1
j=0 Pµj (c) = 0. Hence, the last

equation but one can be omitted and after next eliminations we get the equiv-
alent system, where the (M + 1)th equation is defined as

2(M + 1)Fµ+1
M+1 =

M∑
l=0

(1 + 2l)

l∑
j=0

Pµj (c),

with the square (M+2)×(M+2) nonsingular matrix. It has a unique solution
of the form (3.10), because

l∑
j=0

Pµj (c) =

s−1∑
k=1

Ωk(Dk −Ds)(c
µ
k,l+1 − c

µ
k,l),

M∑
l=0

(1 + 2l)

l∑
j=0

Pµj (c)

=

s−1∑
k=1

Ωk(Dk −Ds)
[
−cµk,0 − 2

M∑
l=1

cµk,l + (1 + 2M)cµk,M+1

]
, l = 0, . . . ,M.

Now we will prove point (ii). Let any µ and i be fixed and let concentrations
(cµ1 , . . . , c

µ
s−1) and potential Fµ+1 be known. We see that the matrix in (3.8) has
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a tridiagonal form. Assume that the steps h, τ are such small that v
µ(m)
i,m 6= 0,

m = 0, . . . ,M+1 in (3.9). In consequence, after the use of the Gauss elimination
method (3.9), system (3.8) has the equivalent form

v
µ(0)
i,0 v

µ(0)
i,1 0 0 · · · 0 0 0

0 v
µ(1)
i,1 v

µ(1)
i,2 0 · · · 0 0 0

0 0 v
µ(2)
i,2 v

µ(2)
i,3 · · · 0 0 0

...
...

. . .
...

0 0 0 0 · · · 0 v
µ(M)
i,M v

µ(M)
i,M+1

0 0 0 0 · · · 0 0 v
µ(M+1)
i,M+1




cµ+1
i,0

cµ+1
i,1

...

cµ+1
i,M+1



=


Q
µ(0)
i,0

Q
µ(1)
i,1

...

Q
µ(M+1)
i,M+1

 .

It has a unique solution of the form (3.11). ut

Remark 3. Unfortunately we are not able till now to give an effective formula
on the steps h, τ , independent on Fµ+1

i,m−1, Fµ+1
i,m , Fµ+1

i,m+1, in order to the matrix
generating system (3.8) be nonsingular.

Let (c, F ), c = (c1, . . . , cs−1) be the solution of (3.4)–(3.6) and let (w,G),
w = (w1, . . . , ws−1) be the solution of (3.7), (3.8). Define the errors of the
difference method

r = c− w, R = F −G,
the maximum norms

‖r‖0 = max
{
|rµi,m| : µ = 0, . . . ,K, i = 1, . . . , s− 1, m = 0, . . . ,M + 1

}
,

‖R‖0 = max
{
|Rµm| : µ = 1, . . . ,K, m = 0, . . . ,M + 1

}
,

and the seminorms

‖r‖(µ) = max
{
|rµ̃i,m| : µ̃ = 0, . . . , µ, i = 1, . . . , s− 1, m = 0, . . . ,M + 1

}
,

where µ = 0, . . . ,K. Define also the difference quotients

δ+rµi,m =
rµi,m+1 − r

µ
i,m

h
, δ−rµi,m =

rµi,m − r
µ
i,m−1

h
,

δrµi,m =
rµi,m+1 − r

µ
i,m−1

2h
, δ(2)rµi,m =

rµi,m−1 − 2rµi,m + rµi,m+1

h2
,

and analogously δRµm, δ(2)Rµm. We introduce the following seminorms

‖δr‖0 = max
{
|δrµi,m| : µ = 0, . . . ,K, i = 1, . . . , s− 1, m = 1, . . . ,M

}
,

‖δ(2)r‖0 = max
{
|δ(2)rµi,m| : µ = 0, . . . ,K, i = 1, . . . , s− 1, m = 1, . . . ,M

}
,

‖δR‖0 = max
{
|δRµm| : µ = 1, . . . ,K, m = 1, . . . ,M

}
,

‖δ(2)R‖0 = max
{
|δ(2)Rµm| : µ = 1, . . . ,K, m = 1, . . . ,M

}
.
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Moreover, we consider the maximum norms

‖r‖1 = ‖r0‖+ ‖δr‖0, ‖r‖2 = ‖r0‖+ ‖δr‖0 + ‖δ(2)r‖0,
‖R‖1 = ‖R0‖+ ‖δR‖0, ‖R‖2 = ‖R0‖+ ‖δR‖0 + ‖δ(2)R‖0.

Theorem 2. Assume that (c, F ) ∈ C1,2([0, T ] × Ω,Rs), c = (c1, . . . , cs−1) is
the solution of (3.4)–(3.6) and (w,G), w = (w1, . . . , ws−1) is the solution of
(3.7), (3.8). Then there exist real valued functions αi(τ, h), i = 0, 1, 2 such
that

‖R‖0 ≤ 2

s−1∑
k=1

Ωk|Dk −Ds|‖r‖0 + α0(τ, h), (3.12)

‖δR‖0 ≤
s−1∑
k=1

Ωk|Dk −Ds|‖δr‖0 + α1(τ, h),

‖δ(2)R‖0 ≤
s−1∑
k=1

Ωk|Dk −Ds|‖δ(2)r‖0 + α2(τ, h),

and lim
(τ,h)→(0,0)

αi(τ, h) = 0, i = 0, 1, 2.

Proof. We define discrete functions εµ+1
m , εµ+1 as follows

−Fµ+1
0 + Fµ+1

1 = Pµ0 (c) + hεµ+1
0 ,

Fµ+1
m−1 − 2Fµ+1

m + Fµ+1
m+1 = Pµm(c) + h2εµ+1

m ,

Fµ+1
M − Fµ+1

M+1 = PµM+1(c) + hεµ+1
M+1,

Fµ+1
0 + 2

∑M
m=1 F

µ+1
m + Fµ+1

M+1 = 1
hε
µ+1,

(3.13)

for m = 1, . . . ,M , i = 1, . . . , s − 1, µ = 0, . . . ,K − 1. The regularity of the
differential solution (c, F ) implies the existence of a real valued function ε(τ, h)
such that for m = 0, . . . ,M + 1, i = 1, . . . , s− 1, µ = 0, . . . ,K − 1,

|εµ+1
m |, |εµ+1| ≤ ε(τ, h), lim

(τ,h)→(0,0)
ε(τ, h) = 0. (3.14)

Let µ ∈ {0, . . . ,K − 1} be fixed. Observe that the elliptic error Rµ+1 is the
solution of the system of algebraic equations

−Rµ+1
0 +Rµ+1

1 = Pµ0 (r) + hεµ+1
0 ,

Rµ+1
m−1 − 2Rµ+1

m +Rµ+1
m+1 = Pµm(r) + h2εµ+1

m ,

Rµ+1
M −Rµ+1

M+1 = PµM+1(r) + hεµ+1
M+1,

Rµ+1
0 + 2

∑M
m=1R

µ+1
m +Rµ+1

M+1 = 1
hε
µ+1,

(3.15)

m = 1, . . . ,M , where the parabolic error rµ is treated as given. Reasoning
similarly as in the proof of Theorem 1 we get

Rµ+1
M+1=

∑s−1
k=1Ωk(Dk−Ds)

[
−rµk,0−2

∑M
l=1 r

µ
k,l + (1 + 2M)rµk,M+1

]
+εµ+1

2(M + 1)
,

Rµ+1
m =Rµ+1

m+1 −
s−1∑
k=1

Ωk(Dk−Ds)(r
µ
k,m+1−r

µ
k,m)−εµ+1

m , m=M, . . . , 0, (3.16)
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where

εµ+1=

M∑
l=0

(1 + 2l)
(
hεµ+1

0 + h2
l∑

j=1

εµ+1
j

)
+

1

h
εµ+1, εµ+1

m =hεµ+1
0 + h2

m∑
j=1

εµ+1
j .

Note that

δRµ+1
m =

s−1∑
k=1

Ωk(Dk −Ds)δr
µ
k,m + ε

µ+1
m , m = 1, . . . ,M, (3.17)

δ(2)Rµ+1
m =

s−1∑
k=1

Ωk(Dk −Ds)δ
(2)rµk,m + εµ+1

m , m = 1, . . . ,M,

where

ε
µ+1
m = −εµ+1

0 − h
m−1∑
l=1

εµ+1
l − 1

2
hεµ+1
m .

Put

α0(τ, h) =
[
(1 + 2Λ)h+ Λ2 + Λ+

1

Λ

]
ε(τ, h), (3.18)

α1(τ, h) =
(1

2
h+ 1 + 2Λ

)
ε(τ, h), α2(τ, h) = ε(τ, h).

It follows from (3.14), (3.16)–(3.18) that

∣∣Rµ+1
m

∣∣ ≤ 2

s−1∑
k=1

Ωk|Dk −Ds|‖r‖0 + α0(τ, h), m = 0, . . . ,M + 1,

∣∣δRµ+1
m

∣∣ ≤ s−1∑
k=1

Ωk|Dk −Ds|‖δr‖0 + α1(τ, h), m = 1, . . . ,M,

∣∣δ(2)Rµ+1
m

∣∣ ≤ s−1∑
k=1

Ωk|Dk −Ds|‖δ(2)r‖0 + α2(τ, h), m = 1, . . . ,M,

and in consequence (3.12). ut

Theorem 3. Assume that (c, F ) ∈ C1,2([0, T ] × Ω,Rs), c = (c1, . . . , cs−1) is
the solution of (3.4)–(3.6) and (w,G), w = (w1, . . . , ws−1) is the solution of
(3.7), (3.8). Let moreover∣∣δGµm∣∣≤ A, ∣∣δ(2)Gµm∣∣≤ B, ∣∣δ+wµi,0∣∣, ∣∣δ−wµi,M+1

∣∣≤ C, (3.19)

Ah ≤ 2Di,
h

τ
≤ D, lim

(τ,h)→(0,0)

h

τ
= 0, (3.20)

i = 1, . . . , s − 1, m = 1, . . . ,M , µ = 0, . . . ,K, where A,C,D ≥ 0, B > 0 are
some constants. Then there exists a real valued function β(τ, h) and a constant
d ≥ 0 such that

‖r‖0 ≤
eLT − 1

L

[(
1 + h

C

Di

s−1∑
k=1

Ωk|Dk −Ds|
)
d
(
‖δR‖0 + ‖δ(2)R‖0

)
+β(τ, h)

]
(3.21)
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and lim
(τ,h)→(0,0)

β(τ, h) = 0, where

L =
CD

Di

s−1∑
k=1

Ωk|Dk −Ds|+
(
1 + 2Λ

C

Di

s−1∑
k=1

Ωk|Dk −Ds|
)
B.

Proof. We define discrete functions γµ+1
m as follows

qµi,0c
µ+1
i,0 + qµi,1c

µ+1
i,1 = Qµi,0 + hγµ+1

i,0 ,

dµi,m−1c
µ+1
i,m−1 + vµi,mc

µ+1
i,m + uµi,m+1c

µ+1
i,m+1 = Qµi,m + τγµ+1

i,m ,

qµi,Mc
µ+1
i,M + qµi,M+1c

µ+1
i,M+1 = Qµi,M+1 + hγµ+1

i,M+1,

for i = 1, . . . , s − 1, m = 1, . . . ,M , µ = 0, . . . ,K − 1. The regularity of the
differential solution (c, F ) implies the existence of a real valued function γ(τ, h)
such that for i = 1, . . . , s− 1, m = 0, . . . ,M + 1, µ = 0, . . . ,K − 1,

|γµ+1
i,m | ≤ γ(τ, h), lim

(τ,h)→(0,0)
γ(τ, h) = 0. (3.22)

Moreover, by this regularity there is a constant d ≥ 0 such that∣∣cµi,m∣∣, ∣∣δcµi,m∣∣, ∣∣δ+cµi,0∣∣, ∣∣δ−cµi,M+1

∣∣≤ d (3.23)

for i = 1, . . . , s− 1, m = 1, . . . ,M , µ = 0, . . . ,K.
Suppose that µ ∈ {0, . . . ,K − 1} is fixed. In the case m ∈ {1, . . . ,M} we

have

rµ+1
i,m =

(
1− τδ(2)Gµ+1

m

)
rµi,m + τ

(
Diδ

(2)rµ+1
i,m − δG

µ+1
m δrµ+1

i,m

)
+ τ
(
−δcµ+1

i,m δRµ+1
m − cµi,mδ

(2)Rµ+1
m

)
+τγµ+1

i,m .

The above relation and (3.19), (3.20), (3.22), (3.23) give the estimates

(1 + 2Diκ)
∣∣rµ+1
i,m

∣∣≤ (1 + τB)
∣∣rµi,m∣∣+κ∣∣Di −

h

2
δGµ+1

m

∣∣∣∣rµ+1
i,m+1

∣∣
+ κ
∣∣Di +

h

2
δGµ+1

m

∣∣∣∣rµ+1
i,m−1

∣∣+τd(∣∣δRµ+1
m

∣∣+∣∣δ(2)Rµ+1
m

∣∣)+τγ(τ, h),

(1 + 2Diκ)
∣∣rµ+1
i,m

∣∣≤ (1 + τB)
∥∥r∥∥

(µ)
+2Diκ

∥∥r∥∥
(µ+1)

+ τd
(∥∥δR∥∥

0
+
∥∥δ(2)R∥∥

0

)
+τγ(τ, h),∣∣rµ+1

i,m

∣∣≤ (1 + τB)
∥∥r∥∥

(µ)
+τd

(∥∥δR∥∥
0
+
∥∥δ(2)R∥∥

0

)
+τγ(τ, h). (3.24)

Now consider the case m = 0. Using (3.19), (3.22), (3.23) we can write

rµ+1
i,0 =

(
1− h

Di

s−1∑
k=1

Ωk(Dk −Ds)δ
+wµk,0

)
rµ+1
i,1

− cµ+1
i,1

h

Di

s−1∑
k=1

Ωk(Dk −Ds)δ
+rµk,0 +

h

Di
γµ+1
i,0 ,
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∣∣rµ+1
i,0

∣∣≤ (1 + h
C

Di

s−1∑
k=1

Ωk|Dk −Ds|
)∣∣rµ+1

i,1

∣∣+hd(C + d)

Di

s−1∑
k=1

Ωk|Dk −Ds|

+ h
1

Di
γ(τ, h). (3.25)

Put

β(τ, h)=
h

τ

d(C+d)

Di

s−1∑
k=1

Ωk
∣∣Dk−Ds

∣∣+(1+h
C

Di

s−1∑
k=1

Ωk
∣∣Dk−Ds

∣∣+ D

Di

)
γ(τ, h).

The formulas(3.24), (3.25) imply the estimate

∣∣rµ+1
i,0

∣∣≤ (1 + τL
)∥∥r∥∥

(µ)
+τ
(

1 + h
C

Di

s−1∑
k=1

Ωk|Dk −Ds|
)

× d
(∥∥δR∥∥

0
+
∥∥δ(2)R∥∥

0

)
+τβ(τ, h). (3.26)

Analogously we obtain the same estimate in the case m = M + 1,

∣∣rµ+1
i,M+1

∣∣≤ (1 + τL
)∥∥r∥∥

(µ)
+τ
(

1 + h
C

Di

s−1∑
k=1

Ωk|Dk −Ds|
)

× d
(∥∥δR∥∥

0
+
∥∥δ(2)R∥∥

0

)
+τβ(τ, h). (3.27)

From (3.24), (3.26), (3.27) we get the recurrence inequality

∥∥r∥∥
(µ+1)

≤
(
1 + τL

)∥∥r∥∥
(µ)

+τ
(

1 + h
C

Di

s−1∑
k=1

Ωk|Dk −Ds|
)

× d
(∥∥δR∥∥

0
+
∥∥δ(2)R∥∥

0

)
+τβ(τ, h). (3.28)

The recurrence inequality (3.28) gives

‖r‖(µ) ≤
eLT−1

L

[(
1+h

C

Di

s−1∑
k=1

Ωk|Dk−Ds|
)
d
(
‖δR‖0 + ‖δ(2)R‖0

)
+β(τ, h)

]
,

µ = 0, . . . ,K, and finally (3.21) holds. ut

Remark 4. It follows from Theorem 2 that the convergence of the difference
method with respect to the concentrations implies the convergence with respect
to the potential in the norms ‖ ‖i, i = 0, 1, 2, respectively. On the other hand,
it follows from Theorem 3 that the convergence of the difference method with
respect to the potential in the norm ‖ ‖2 implies the convergence with respect to
the concentrations in the norm ‖ ‖0. Moreover, if the initial concentrations are
of such regularity that the solution (c, F ) of (3.4)–(3.6) belongs to C2,3([0, T ]×
Ω,Rs), then the truncation errors r,R = O(τ + h).

Remark 5. It can be proved that the difference method studied is stable in the
similar manner as it is convergent, that is the stability with respect to the
concentrations is equivalent to the stability with respect to the potential. The
proof is analogous to the proofs of Theorems 2, 3.
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3.2 Example and numerical experiments

To illustrate a class of problems which can be treated with our method, we con-
sider an example of a ternary mixture of nickel (Ni), copper (Cu) and iron (Fe)
with constants Di, i = 1, 2, 3. The examples with Di depending on densities ci
(the dependence is of a polynomial type) are given in [25,27].

Let the physical data be given:

s = 3, Ni− Cu− Fe, Λ = 0.035, (Ω1, Ω2, Ω3) = (6.5, 7.0, 7.1),

(D1, D2, D3) = (1.58 · 10−13, 5.73 · 10−12, 2.99 · 10−11),

(c01, c02, c03) = (0.069846, 0.047244, 0.030175) in [−Λ, 0],

(c01, c02, c03) = (0.0, 0.047244, 0.094119) in (0, Λ].

For the times 0, 7 and 28 days we obtain with the finite difference method
(FDM) given in Subsection 3.1 the following results (in Figures (1–2) the cal-
culations are made on the mesh with 150 space nodal points):

Figure 1. Distributions of concentrations ci (i = 1, 2, 3) for the times 0, 7 and 28 days
respectively: c1 – blue, c2 – red, c3 – green.

Figure 2. Distributions of dryft vd = ∇F for the times 0, 7 and 28 days respectively.

4 Implicit difference method and example, case n=2

Let Ω = (−Λ,Λ) × (−Λ,Λ). We assume to test our model that the diffusion
coefficients Di are constant and the physical system is closed, i.e. ji(t, x) ≡ 0
for (t, x) ∈ [0, T ] × ∂Ω, i = 1, ..., s. Reasoning similarly as in Section 2, the
initial-boundary differential problem (2.7)–(2.9) takes a form
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∂tci = Di(∂x1x1
ci + ∂x2x2

ci)− ∂x1
ci∂x1

F

−∂x2ci∂x2F − ci(∂x1x1F + ∂x2x2F ) on [0, T ]×Ω,
∂x1x1F+∂x2x2F =∑s−1

k=1Ωk(Dk −Ds)(∂x1x1
ck + ∂x2x2

ck) on [0, T ]×Ω,∫
Ω
Fdx = 0 on [0, T ],

(4.1)

ci(0, x) = c0i(x) on Ω, (4.2)

{
−Di∂xj

ci + ci
∑s−1
k=1Ωk(Dk −Ds)∂xj

ck = 0 on [0, T ]× ∂Ω,
∂xj

F =
∑s−1
k=1Ωk(Dk −Ds)∂xj

ck on [0, T ]× ∂Ω,
(4.3)

j = 1, 2, i = 1, ..., s− 1. The concentration cs we calculate from the formula

cs =
1

Ωs

(
1−

s−1∑
i=1

Ωici

)
.

We assume additionally that

s−1∑
i=1

Ωic0i(x) ≤ 1 on Ω.

4.1 Implicit difference method

We define a mesh on Ω in the similar way as in Section 2. Let h = 2Λ/(M + 1)
and τ = T/K stand for the space and time steps of the mesh, respectively,
where M,K ∈ N are given. Define nodal points (tµ, x1l, x2m) as follows

x1l = −Λ+ lh, x2m = −Λ+mh, l, m = 0, 1, . . . ,M + 1,

tµ = µτ, µ = 0, 1, . . . ,K.

We define an implicit difference scheme for the elliptic subsystem on F in
(4.1)–(4.3). It is a system of linear algebraic equations of the form

Fµ+1
0,0 − 1

2F
µ+1
0,1 − 1

2F
µ+1
1,0 = Pµ0,0(c) := 0,

Fµ+1
l,0 − Fµ+1

l,1 = Pµl,0(c) :=
∑s−1
k=1Ωk

(
Dk −Ds

)(
cµk,l,0 − c

µ
k,l,1

)
,

Fµ+1
M+1,0 −

1
2F

µ+1
M+1,1 −

1
2F

µ+1
M,0 = PµM+1,0(c) := 0,

Fµ+1
0,m − F

µ+1
1,m = Pµ0,m(c) :=

∑s−1
k=1Ωk

(
Dk −Ds

)(
cµk,0,m − c

µ
k,1,m

)
,

4Fµ+1
l,m − Fµ+1

l+1,m − F
µ+1
l−1,m − F

µ+1
l,m+1 − F

µ+1
l,m−1 = Pµl,m(c)

:=
∑s−1
k=1Ωk

(
Dk−Ds

)(
4cµk,l,m−c

µ
k,l+1,m−c

µ
k,l−1,m−c

µ
k,l,m+1 − c

µ
k,l,m−1

)
,

Fµ+1
M+1,m−F

µ+1
M,m=PµM+1,m(c) :=

∑s−1
k=1Ωk

(
Dk−Ds

)(
cµk,M+1,m − c

µ
k,M,m

)
,

Fµ+1
0,M+1 −

1
2F

µ+1
0,M −

1
2F

µ+1
1,M+1 = Pµ0,M+1(c) := 0,

Fµ+1
l,M+1 − F

µ+1
l,M = Pµl,M+1(c) :=

∑s−1
k=1Ωk

(
Dk −Ds

)(
cµk,l,M+1 − c

µ
k,l,M

)
,

Fµ+1
M+1,M+1 −

1
2F

µ+1
M+1,M −

1
2F

µ+1
M,M+1 = PµM+1,M+1(c) := 0,

1
4

(
Fµ+1
0,0 + Fµ+1

0,M+1 + Fµ+1
M+1,0 + Fµ+1

M+1,M+1

)
+ 1

2

∑M
k=1

(
Fµ+1
0,k + Fµ+1

M+1,k + Fµ+1
k,0 + Fµ+1

k,M+1

)
+
∑M
j=1

∑M
k=1 F

µ+1
j,k = PµM+2,0(c) := 0,
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292 B. Bożek, L. Sapa and M. Danielewski

for l,m = 1, . . . ,M , µ = 0, . . . ,K−1. For each µ it is the system of M2+4M+5
equations with M2 + 4M + 4 unknowns.

Then we define an implicit difference scheme for the concentrations ci, i =
1, . . . , s− 1 as a system of linear algebraic equations of the form

cµ+1
i,0,0 − 1

2c
µ+1
i,0,1 − 1

2c
µ+1
i,1,0 = Qµi,0,0 := 0,

sµi,l,0c
µ+1
i,l,0 + sµi,l,1c

µ+1
i,l,1 = Qµi,l,0 := 0,

cµ+1
i,M+1,0 −

1
2c
µ+1
i,M+1,1 −

1
2c
µ+1
i,M,0 = QµM+1,0 := 0,

qµi,0,mc
µ+1
i,0,m + qµi,1,mc

µ+1
i,1,m = Qµi,0,m := 0,

vµi,l,mc
µ+1
i,l,m + rµi,l+1,mc

µ+1
i,l+1,m + lµi,l−1,mc

µ+1
i,l−1,m + uµi,l,m+1c

µ+1
i,l,m+1

+dµi,l,m−1c
µ+1
i,l,m−1 = Qµi,l,m := eµi,l,mc

µ
i,l,m,

qµi,M+1,mc
µ+1
i,M+1,m + qµi,M,mc

µ+1
i,M,m = Qµi,M+1,m := 0,

cµ+1
i,0,M+1 −

1
2c
µ+1
i,0,M −

1
2c
µ+1
i,1,M+1 = Qµi,0,M+1 := 0,

sµi,l,M+1c
µ+1
i,l,M+1 + sµi,l,Mc

µ+1
i,l,M = Qµi,l,M+1 := 0,

cµ+1
i,M+1,M+1 −

1
2c
µ+1
i,M+1,M −

1
2c
µ+1
i,M,M+1 = Qµi,M+1,M+1 := 0,

where

κ =
τ

h2
, vµi,l,m = 1 + 4κDi,

pµi,l−1,m = −κDi − 0.25κ
(
Fµ+1
l+1,m − F

µ+1
l−1,m

)
,

rµi,l+1,m = −κDi + 0.25κ
(
Fµ+1
l+1,m − F

µ+1
l−1,m

)
,

dµi,l,m−1 = −κDi − 0.25κ
(
Fµ+1
l,m+1 − F

µ+1
l,m−1

)
,

uµi,l,m+1 = −κDi + 0.25κ
(
Fµ+1
l,m+1 − F

µ+1
l,m−1

)
,

eµi,l,m = 1− κ
(
Fµ+1
l+1,m + Fµ+1

l−1,m − 4Fµ+1
l,m + Fµ+1

l,m+1 + Fµ+1
l,m−1

)
,

qµi,0,m = qµi,M+1,m = sµi,l,0 = sµi,l,M+1 = Di,

qµi,1,m = −Di +

s−1∑
k=1

Ωk
(
Dk −Ds

)(
cµk,1,m − c

µ
k,0,m

)
,

qµi,M,m = −Di +

s−1∑
k=1

Ωk
(
Dk −Ds

)(
cµk,M,m − c

µ
k,M+1,m

)
,

sµi,l,1 = −Di +

s−1∑
k=1

Ωk
(
Dk −Ds

)(
cµk,l,1 − c

µ
k,l,0

)
,

sµi,l,M = −Di +

s−1∑
k=1

Ωk
(
Dk −Ds

)(
cµk,l,M − c

µ
k,l,M+1

)
,

l,m = 1, . . . ,M , i = 1, . . . , s − 1 and µ = 0, . . . ,K − 1. For each µ and i it is
the system of M2 + 4M + 4 equations with M2 + 4M + 4 unknowns.

Remark 6. Similar theorems and remarks to Theorems 1–3 and Remarks 3–5
are true. The proofs are analogous.
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4.2 Example and numerical experiments

To illustrate a class of problems which can be treated with our method, we
consider an example of a ternary mixture of nickel (Ni), copper (Cu) and iron
(Fe) with constants Di, i = 1, 2, 3.

Let the physical data be given:

s = 3, Ni− Cu− Fe, Λ = 0.035, (Ω1, Ω2, Ω3) = (6.5, 7.0, 7.1),

(D1, D2, D3) = (1.58 · 10−13, 5.73 · 10−12, 2.99 · 10−11),

(c01, c02, c03) = (0.03, 0.064857, 0.0908451)

in Z1 =
{

(x1, x2) :
(
x1 − Λ/4

)2
+
(
x1 − Λ/4

)2≤ (Λ/√5
)2}

,

(c01, c02, c03) = (0.04, 0.0, 0.0366197)

in Z2 =
{

(x1, x2) :
(
x1 + Λ/4

)2
+
(
x1 + Λ/4

)2≤ (Λ/√5
)2} \ Z1,

(c01, c02, c03) = (0.01, 0.08285715, 0.0908451)

in Z3 =
(
[−Λ,Λ]× [−Λ,Λ]

)
\(Z1 ∪ Z2).

For the times 0, 7 and 28 days we obtain with the finite difference method
(FDM) given in Subsection 4.1 the following results (in Figures 3–8 the calcu-
lations are made on the mesh with 21× 21 space nodal points):

Figure 3. Distributions of Ni concentration c1 for the times 0, 7 and 28 days respectively.

Figure 4. Distributions of Cu concentration c2 for the times 0, 7 and 28 days
respectively.
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Figure 5. Distributions of Fe concentration c3 for the times 0, 7 and 28 days respectively.

Figure 6. Evolution of the potential F distribution for the times 0, 7 and 28 days
respectively.
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Figure 7. Evolution of the field ∇F for the times 0, 7 and 28 days respectively.

Figure 8. Evolution of the norm ‖∇F‖ for the times 0, 7 and 28 days respectively.
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component (r≥2) one dimensional mixture showing constant concen-
tration. Computer Methods in Materials Science, 8:31–46, 2008.
https://doi.org/10.1103/PhysRevB.50.13336.

[9] M. Danielewski and H. Leszczyński. Computation of trajectories
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