MATHEMATICAL MODELLING AND ANALYSIS Volume 19 Number 5, November 2014, 696–705 http://dx.doi.org/10.3846/13926292.2014.980866 © Vilnius Gediminas Technical University, 2014

Publisher: Taylor&Francis and VGTU http://www.tandfonline.com/TMMA Print ISSN: 1392-6292

Online ISSN: 1648-3510

A Limit Theorem for Twists of L-Functions of Elliptic Curves

Virginija Garbaliauskienė^a and Antanas Laurinčikas^b

^aŠiauliai University

P. Višinskio str. 19, LT-77156 Šiauliai, Lithuania

^b Vilnius University

Naugarduko str. 24, LT-03225 Vilnius, Lithuania

E-mail(corresp.): virginija@fm.su.lt

E-mail: antanas.laurincikas@mif.vu.lt

Received June 19, 2014; revised October 2, 2014; published online November 1, 2014

Abstract. In the paper, a limit theorem for weakly convergent probability measures on the complex plane for twisted with Dirichlet character L-functions of elliptic curves with an increasing modulus of the character is proved.

Keywords: characteristic transform, Dirichlet character, elliptic curve, L-function of elliptic curve, probability measure, weak convergence.

AMS Subject Classification: 11M41; 44K15.

1 Introduction

The present paper is a continuation of [5] and [7]. Therefore, we briefly remind the limit theorems for the modulus and argument for twists of L-functions of elliptic curves obtained in [5] and [4], respectively.

Let E be an elliptic curve over the field of rational numbers given by the Weierstrass equation

 $y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Z}$

with non-zero discriminant $\Delta = -16(4a^3 + 27b^2)$. For a prime number p, denote by E_p the reduction of the curve E modulo p which is a curve over the finite field \mathbb{F}_p , and define $\lambda(p)$ by

$$|E(\mathbb{F}_p)| = p + 1 - \lambda(p),$$

where $|E(\mathbb{F}_p)|$ denotes the number of points of E_p . Let $s = \sigma + it$ be a complex variable. Then the *L*-function of the elliptic curve *E* is defined, for $\sigma > \frac{3}{2}$, by

$$L_E(s) = \prod_{p \mid \Delta} \left(1 - \frac{\lambda(p)}{p^s} \right)^{-1} \prod_{p \nmid \Delta} \left(1 - \frac{\lambda(p)}{p^s} + \frac{1}{p^{2s-1}} \right)^{-1}.$$

In view of the Taniyama-Shimura conjecture which was proved in [1], the function $L_E(s)$ continues analytically to an entire function.

Now let χ be a Dirichlet character modulo q. Then the twist $L_E(s,\chi)$ of $L_E(s)$ with the character χ is defined, for $\sigma > \frac{3}{2}$, by

$$L_E(s,\chi) = \prod_{p|\Delta} \left(1 - \frac{\lambda(p)\chi(p)}{p^s} \right)^{-1} \prod_{p\nmid\Delta} \left(1 - \frac{\lambda(p)\chi(p)}{p^s} + \frac{\chi^2(p)}{p^{2s-1}} \right)^{-1},$$

and continues analytically to an entire function. Moreover, the function $L_E(s)$, for $\sigma > \frac{3}{2}$, can be rewritten in the form

$$L_E(s,\chi) = \prod_{p|\Delta} \left(1 - \frac{\lambda(p)\chi(p)}{p^s} \right)^{-1} \prod_{p\nmid\Delta} \left(1 - \frac{\alpha(p)\chi(p)}{p^s} \right)^{-1} \left(1 - \frac{\beta(p)\chi(p)}{p^s} \right)^{-1},$$
(1.1)

where $\alpha(p)$ and $\beta(p)$ are complex conjugate numbers satisfying $\alpha(p)\beta(p) = p$ and $\alpha(p) + \beta(p) = \lambda(p)$.

Define two multiplicative functions $a_z(m)$ and $b_z(m)$, $m \in \mathbb{N}$, where, for $p \nmid \Delta$ and $l \in \mathbb{N}$,

$$a_z(p^l) = \sum_{j=0}^l d_z(p^j) \alpha^j(p) d_z(p^{l-j}) \beta^{l-j}(p),$$

$$b_z(p^l) = \sum_{j=0}^l d_z(p^j) \overline{\alpha}^j(p) d_z(p^{l-j}) \overline{\beta}^{l-j}(p),$$

while, for $p \mid \Delta$ and $l \in \mathbb{N}$,

$$a_z(p^l) = b_z(p^l) = d_z(p^l)\lambda^l(p),$$

where

$$d_z(p^l) = \frac{\theta(\theta+1)\cdots(\theta+l-1)}{l!}$$
 with $\theta = \frac{z}{2}$.

Suppose that the modulus q of the character χ is a prime number and is not fixed, and put, for $Q \geq 2$,

$$\mu_Q(...) = M_Q^{-1} \sum_{\substack{q \le Q \ \chi = \chi \pmod{q} \\ \chi \ne \chi_0}} \sum_{\substack{1, \text{where} \ \chi \ne \chi_0}} 1, \text{ where } M_Q = \sum_{\substack{q \le Q \ \chi = \chi \pmod{q} \\ \chi \ne \chi_0}} \sum_{\substack{1, \text{where} \ \chi \ne \chi_0}} 1,$$

 χ_0 , as usual, denotes the principal character, and in place of dots a condition satisfied by a pair $(q, \chi(\text{mod } q))$ is to be written.

Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S, and, on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, define the probability measure $P_{\mathbb{R}}$ by the characteristic transforms

$$w_k(\tau) = \int_{\mathbb{R}\setminus\{0\}} |x|^{i\tau} \operatorname{sgn}^k dP_{\mathbb{R}} = \sum_{m=1}^{\infty} \frac{a_{i\tau}(m)b_{i\tau}(m)}{m^{2\sigma}}, \quad \tau \in \mathbb{R}, \ k = 0, 1.$$

Then a limit theorem for $|L_E(s,\chi)|$ proved in [5] is of the form.

Theorem 1. Suppose that $\sigma > \frac{3}{2}$. Then $\mu_Q(|L_E(s,\chi)| \in A)$, $A \in \mathcal{B}(\mathbb{R})$, converges weakly to the measure $P_{\mathbb{R}}$ as $Q \to \infty$.

In [3], a limit theorem for the argument of the function $L_E(s,\chi)$ has been proved. Denote by γ the unit circle on the complex plane, and let P_{γ} be a probability measure on $(\gamma, \mathcal{B}(\gamma))$ defined by the Fourier transform

$$g(k) = \int_{\gamma} x^k dP_{\gamma} = \sum_{m=1}^{\infty} \frac{a_k(m)b_{-k}(m)}{m^{2\sigma}}, \quad k \in \mathbb{Z}.$$

Then the main result of [4] is the following statement.

Theorem 2. Suppose that $\sigma > \frac{3}{2}$. Then

$$\mu_Q(\exp\{i\arg L_E(s,\chi)\}\in A), \quad A\in\mathcal{B}(\gamma),$$

converges weakly to the measure P_{γ} as $Q \to \infty$.

The aim of this note is to consider the weak convergence of the frequency

$$P_{Q,\mathbb{C}}(A) \stackrel{def}{=} \mu_Q(L_E(s,\chi) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

as $Q \to \infty$. In other words, we will obtain a limit theorem for the twists $L_E(s,\chi)$ as $Q \to \infty$ on the complex plane \mathbb{C} . This theorem joins Theorems 1 and 2.

Let, for brevity,

$$\theta_{\pm} = \theta(\tau, \pm k) = \frac{i\tau \pm k}{2}, \qquad \hat{\theta}_{\pm} = 2\theta_{\pm}, \quad \tau \in \mathbb{R}, \ k \in \mathbb{Z}.$$

On $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, define the probability measure $P_{\mathbb{C}}$ by the characteristic transform

$$w_k(\tau,k) = \int_{\mathbb{C}\backslash\{0\}} |z|^{i\tau} \mathrm{e}^{ik\arg z} \mathrm{d}P_{\mathbb{C}} = \sum_{m=1}^{\infty} \frac{a_{\hat{\theta}_+}(m)b_{\hat{\theta}_-}(m)}{m^{2\sigma}}, \quad \tau \in \mathbb{R}, \ k \in \mathbb{Z}.$$

Theorem 3. Suppose that $\sigma > \frac{3}{2}$. Then $P_{Q,\mathbb{C}}$ converges weakly to the measure $P_{\mathbb{C}}$ as $Q \to \infty$.

2 Characteristic Transform of $P_{Q,\mathbb{C}}$

For the proof of Theorem 3, we apply the method of characteristic transforms of probability measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$. Thus, we start with a formula for the characteristic transform $w_Q(\tau, k)$ of the measure $P_{Q,\mathbb{C}}$. By the definition of $P_{Q,\mathbb{C}}$, we have that

$$w_{Q}(\tau, k) = \int_{\mathbb{C}\setminus\{0\}} |z|^{i\tau} e^{ik \arg z} dP_{Q,\mathbb{C}}$$

$$= \frac{1}{M_{Q}} \sum_{q \leq Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi \neq Q}} |L_{E}(s, \chi)|^{i\tau} e^{ik \arg L_{E}(s, \chi)}, \quad \tau \in \mathbb{R}, \ k \in \mathbb{Z}. \quad (2.1)$$

For arbitrary $\delta > 0$, denote by R the half-plane $\{s \in \mathbb{C} : \sigma \geq \frac{3}{2} + \delta\}$. Then, in view of the Hasse estimate

$$|\lambda(p)| \le 2\sqrt{p}$$

and (1.1), we have that $L_E(s,\chi) \neq 0$ for $s \in R$. Thus,

$$|L_E(s,\chi)| = (L_E(s,\chi)\overline{L_E(s,\chi)})^{\frac{1}{2}}$$

and

$$e^{i \arg L_E(s,\chi)} = \left(\frac{L_E(s,\chi)}{L_E(s,\chi)}\right)^{\frac{1}{2}}.$$

Using the Euler product (1.1), we find that, for $s \in R$,

$$= \prod_{p|\Delta} \left(1 - \frac{\lambda(p)\chi(p)}{p^s} \right)^{-\theta_+} \prod_{p|\Delta} \left(1 - \frac{\lambda(p)\overline{\chi}(p)}{p^{\overline{s}}} \right)^{-\theta_-}$$

$$\times \prod_{p\nmid\Delta} \left(1 - \frac{\alpha(p)\chi(p)}{p^s} \right)^{-\theta_+} \left(1 - \frac{\beta(p)\chi(p)}{p^s} \right)^{-\theta_+}$$

$$\times \prod_{p\nmid\Delta} \left(1 - \frac{\overline{\alpha}(p)\overline{\chi}(p)}{p^{\overline{s}}} \right)^{-\theta_-} \left(1 - \frac{\overline{\beta}(p)\overline{\chi}(p)}{p^{\overline{s}}} \right)^{-\theta_-}.$$

$$(2.2)$$

Here the multi-valued functions $\log(1-z)$ and $(1-z)^{-w}$, $w \in \mathbb{C} \setminus \{0\}$, in the region |z| < 1 are defined by continuous variation along any path lying in this region from the values $\log(1-z)|_{z=0} = 0$ and $(1-z)^{-w}|_{z=0} = 1$, respectively.

In the above notation, we have that, for |z| < 1,

$$(1-z)^{-\theta_{\pm}} = \sum_{l=0}^{\infty} d_{\hat{\theta}_{\mp}}(p^l) z^l.$$

Therefore, equality (2.2) shows that, for $s \in R$,

$$\begin{aligned}
&\left|L_{E}(s,\chi)\right|^{i\tau} e^{ik\arg L_{E}(s,\chi)} \\
&= \prod_{p|\Delta} \sum_{j=0}^{\infty} \frac{d_{\hat{\theta}_{+}}(p^{j})\lambda^{j}(p)\chi^{j}(p)}{p^{js}} \\
&\times \prod_{p|\Delta} \sum_{j=0}^{\infty} \frac{d_{\hat{\theta}_{-}}(p^{j})\lambda^{j}(p)\overline{\chi}^{j}(p)}{p^{j\overline{s}}} \prod_{p\nmid\Delta} \sum_{l=0}^{\infty} \frac{d_{\hat{\theta}_{+}}(p^{l})\alpha^{l}(p)\chi^{l}(p)}{p^{ls}} \\
&\times \prod_{p\nmid\Delta} \sum_{r=0}^{\infty} \frac{d_{\hat{\theta}_{+}}(p^{r})\beta^{r}(p)\chi^{r}(p)}{p^{rs}} \prod_{p\nmid\Delta} \sum_{l=0}^{\infty} \frac{d_{\hat{\theta}_{-}}(p^{l})\overline{\alpha}^{l}(p)\overline{\chi}^{l}(p)}{p^{l\overline{s}}} \\
&\times \prod_{p\nmid\Delta} \sum_{r=0}^{\infty} \frac{d_{\hat{\theta}_{-}}(p^{r})\overline{\beta}^{r}(p)\overline{\chi}^{r}(p)}{p^{r\overline{s}}}.
\end{aligned} (2.3)$$

Let $\hat{a}_z(m)$ and $\hat{b}_z(m)$ be multiplicative functions with respect to m defined, for $p \nmid \Delta$ and $l \in \mathbb{N}$, by

$$\hat{a}_z(p^l) = \sum_{j=0}^{l} d_z(p^j) \alpha^j(p) \chi^j(p) d_z(p^{l-j}) \beta^{l-j}(p) \chi^{l-j}(p)$$
 (2.4)

and

$$\hat{b}_z(p^l) = \sum_{j=0}^l d_z(p^j) \overline{\alpha}^j(p) \overline{\chi}^j(p) d_z(p^{l-j}) \overline{\beta}^{l-j}(p) \overline{\chi}^{l-j}(p), \qquad (2.5)$$

and, for $p \mid \Delta$ and $l \in \mathbb{N}$, by

$$\hat{a}_z(p^l) = d_z(p^l)\lambda^l(p)\chi^l(p)$$
(2.6)

and

$$\hat{b}_z(p^l) = d_z(p^l)\lambda^l(p)\overline{\chi}^l(p). \tag{2.7}$$

For $|\tau| \leq c$, with arbitrary c > 0, and $l \in \mathbb{N}$, we have that

$$|d_{\hat{\theta}_{\pm}}(p^{l})| \leq \frac{|\theta_{\pm}|(|\theta_{\pm}|+1)...(|\theta_{\pm}|+l-1)}{l!}$$

$$\leq |\theta_{\pm}| \prod_{v=1}^{l} \left(1 + \frac{|\theta_{\pm}|}{v}\right) \leq (l+1)^{c_{1}}, \tag{2.8}$$

where c_1 depends on c and k, only. By the definition of the quantities $\alpha(p)$ and $\beta(p)$, we find that $|\alpha(p)| = |\beta(p)| = \sqrt{p}$. Thus, for $p \nmid \Delta$ and $l \in \mathbb{N}$, equalities (2.4) and (2.5) give the bounds

$$\left|\hat{a}_{\hat{\theta}_{+}}(p^{l})\right| \le p^{\frac{l}{2}} \sum_{i=0}^{l} (j+1)^{c_{1}} (l-j+1)^{c_{1}} \le p^{\frac{l}{2}} (l+1)^{2c_{1}+1}$$
 (2.9)

and

$$|\hat{b}_{\hat{\theta}}(p^l)| \le p^{\frac{l}{2}}(l+1)^{2c_1+1}.$$
 (2.10)

It is known [6] that, for $p \mid \Delta$, the numbers $\lambda(p)$ take the values 1 or 0. Therefore, in view of (2.6)–(2.8), for $p \mid \Delta$ and $l \in \mathbb{N}$,

$$\left|\hat{a}_{\hat{\theta}_{\perp}}(p^l)\right| \le (l+1)^{c_1}, \quad \left|\hat{b}_{\hat{\theta}_{-}}(p^l)\right| \le (l+1)^{c_1}.$$
 (2.11)

Now estimates (2.9)–(2.11) and the multiplicativity of the functions $\hat{a}_z(m)$ and $\hat{b}_z(m)$ yield

$$\left|\hat{a}_{\hat{\theta}_{+}}(m)\right| = \sqrt{m} \prod_{\substack{p^{l} \mid m \\ l+1}} (l+1)^{2c_{1}+1} = \sqrt{m} d^{2c_{1}+1}(m),$$
 (2.12)

$$\left|\hat{b}_{\hat{\theta}_{-}}(m)\right| \le \sqrt{m}d^{2c_1+1}(m),$$
 (2.13)

where d(m) denotes the divisor function. Since

$$d(m) = \mathcal{O}_{\varepsilon}(m^{\varepsilon}) \tag{2.14}$$

with every $\varepsilon > 0$, the above estimates show that the series

$$\sum_{m=1}^{\infty} \frac{a_{\hat{\theta}_+}(m)}{m^s} \quad \text{and} \quad \sum_{m=1}^{\infty} \frac{b_{\hat{\theta}_-}(m)}{m^{\overline{s}}}$$

converge absolutely for $|\tau| \leq c$, $k \in \mathbb{Z}$ and $s \in R$. Therefore, taking into account (2.3), we obtain that, for $|\tau| \leq c$, $k \in \mathbb{Z}$ and and $s \in R$,

$$\begin{split} & \left| L_{E}(s,\chi) \right|^{i\tau} \mathrm{e}^{ik\arg L_{E}(s,\chi)} \\ & = \prod_{p \mid \Delta} \sum_{j=0}^{\infty} \frac{\hat{a}_{\hat{\theta}_{+}}(p^{j})}{p^{js}} \prod_{p \mid \Delta} \sum_{l=0}^{\infty} \frac{\hat{b}_{\hat{\theta}_{-}}(p^{l})}{p^{l\overline{s}}} \prod_{p \nmid \Delta} \sum_{j=0}^{\infty} \frac{\hat{a}_{\hat{\theta}_{+}}(p^{j})}{p^{js}} \prod_{p \nmid \Delta} \sum_{l=0}^{\infty} \frac{\hat{b}_{\hat{\theta}_{-}}(p^{l})}{p^{l\overline{s}}} \\ & = \sum_{m=1}^{\infty} \frac{\hat{a}_{\hat{\theta}_{+}}(m)}{m^{s}} \sum_{n=1}^{\infty} \frac{\hat{b}_{\hat{\theta}_{-}}(n)}{n^{\overline{s}}}. \end{split}$$

Substituting this into (2.1), we find that

$$w_{Q}(\tau, k) = \frac{1}{M_{Q}} \sum_{\substack{q \le Q \\ x = \chi \pmod{q} \\ x \ne \chi_{Q}}} \sum_{m=1}^{\infty} \frac{\hat{a}_{\hat{\theta}_{+}}(m)}{m^{s}} \sum_{n=1}^{\infty} \frac{\hat{b}_{\hat{\theta}_{-}}(n)}{n^{\overline{s}}}.$$
 (2.15)

3 Proof of Theorem 3

For the proof of Theorem 3, we apply the following continuity theorem in terms of characteristic transforms for probability measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$. Let P_n , $n \in \mathbb{N}$, and P be probability measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$. We say that P_n , as $n \to \infty$, converges weakly in the sense of \mathbb{C} to P if P_n converges weakly to P as $n \to \infty$, and, additionally,

$$\lim_{n \to \infty} P_n(\{0\}) = P(\{0\}).$$

Denote by $w_n(\tau, k)$ the characteristic transform of the measure P_n .

Lemma 1. Suppose that

$$\lim_{n \to \infty} w_n(\tau, k) = w(\tau, k), \quad \tau \in \mathbb{R}, \ k \in \mathbb{Z},$$

where the function $w(\tau,0)$ is continuous at the point $\tau=0$. Then, on $(\mathbb{C},\mathcal{B}(\mathbb{C}))$, there exists a probability measure P such that P_n converges weakly in the sense of \mathbb{C} to P as $n \to \infty$. In this case, $w(\tau,k)$ is the characteristic transform of the measure P.

Proof of the lemma is given in [7], [8].

Proof of Theorem 3. Using formula (2.15), we will obtain the asymptotics for $w_Q(\tau,k)$ as $Q\to\infty$. Let $r=\log Q$. Then estimates (2.12)–(2.14) show that, uniformly in $s\in R$, $|\tau|\leq c$, and, for any fixed $k\in\mathbb{Z}$ and $\varepsilon>0$,

$$\sum_{m>r} \frac{\hat{a}_{\hat{\theta}_{+}}(m)}{m^{s}} = O_{\varepsilon} \left(\sum_{m>r} \frac{1}{m^{1+\delta-\varepsilon}} \right) = O_{\varepsilon} (r^{-\delta+\varepsilon})$$

and

$$\sum_{m>r} \frac{\hat{b}_{\hat{\theta}_{-}}(m)}{m^{\overline{s}}} = \mathcal{O}_{\varepsilon} (r^{-\delta+\varepsilon}).$$

Substituting this in (2.15), we obtain that, for $s \in R$, $|\tau| \le c$ and any fixed $k \in \mathbb{Z}$,

$$\begin{split} w_Q(\tau,k) &= \frac{1}{M_Q} \sum_{q \leq Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} \left(\left(\sum_{m \leq r} \frac{\hat{a}_{\hat{\theta}_+}(m)}{m^s} + \mathcal{O}_{\varepsilon} (r^{-\delta + \varepsilon}) \right) \right) \\ & \left(\sum_{n \leq r} \frac{\hat{b}_{\hat{\theta}_-}(n)}{n^{\overline{s}}} + \mathcal{O}_{\varepsilon} (r^{-\delta + \varepsilon}) \right) \right) \end{split}$$

$$= \frac{1}{M_Q} \sum_{q \leq Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} \left(\sum_{m \leq r} \frac{\hat{a}_{\hat{\theta}_+}(m)}{m^s} \sum_{n \leq r} \frac{\hat{b}_{\hat{\theta}_-}(n)}{n^s} \right)
+ \mathcal{O}_{\varepsilon} \left(r^{-\delta + \varepsilon} \frac{1}{M_Q} \sum_{q \leq Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} \left(\left| \sum_{m \leq r} \frac{\hat{a}_{\hat{\theta}_+}(m)}{m^s} \right| \left| \sum_{n \leq r} \frac{\hat{b}_{\hat{\theta}_-}(n)}{n^s} \right| \right) \right)
+ \mathcal{O}_{\varepsilon} \left(r^{-\delta + \varepsilon} \right)
= \frac{1}{M_Q} \sum_{q \leq Q} \sum_{\chi = \chi \pmod{q}} \left(\sum_{m \leq r} \frac{\hat{a}_{\hat{\theta}_+}(m)}{m^s} \sum_{n \leq r} \frac{\hat{b}_{\hat{\theta}_-}(n)}{n^s} \right) + \mathcal{O}_{\varepsilon} \left(r^{-\delta + \varepsilon} \right).$$
(3.1)

Here we have used the estimates

$$\sum_{m \leq r} \frac{\hat{a}_{\hat{\theta}_+}(m)}{m^s} = \mathcal{O}\bigg(\sum_{m \leq r} \frac{1}{m^{1+\delta-\varepsilon}}\bigg) = \mathcal{O}(1), \quad \sum_{n \leq r} \frac{\hat{b}_{\hat{\theta}_-}(n)}{n^{\overline{s}}} = \mathcal{O}(1),$$

which are uniform in $s \in R$ and $|\tau| \le c$.

By (2.4)–(2.7), using the multiplicativity of $\hat{a}_{\hat{\theta}_{+}}(m)$ and $\hat{b}_{\hat{\theta}_{-}}(n)$, the complete multiplicativity of Dirichlet characters as well as the notation for $a_{\hat{\theta}_{+}}(m)$ and $b_{\hat{\theta}_{-}}(n)$, we find that

$$\begin{split} \hat{a}_{\hat{\theta}_{+}}(m) &= \prod_{p^{l} \mid m \atop p^{l+1} \nmid m, \ p \nmid \Delta} \sum_{j=0}^{l} d_{\hat{\theta}_{+}} \left(p^{j} \right) \alpha^{j}(p) d_{\hat{\theta}_{+}} \left(p^{l-j} \right) \beta^{l-j}(p) \chi \left(p^{l} \right) \\ &\times \prod_{p^{l} \mid m \atop p^{l+1} \nmid m, \ p \mid \Delta} d_{\hat{\theta}_{+}} \left(p^{l} \right) \lambda^{l}(p) \chi \left(p^{l} \right) \\ &= \chi(m) \prod_{p^{l} \mid m \atop p^{l+1} \nmid m, \ p \nmid \Delta} \sum_{j=0}^{l} d_{\hat{\theta}_{+}} \left(p^{j} \right) \alpha^{j}(p) d_{\hat{\theta}_{+}} \left(p^{l-j} \right) \beta^{l-j}(p) \\ &\times \prod_{p^{l} \mid m \atop p^{l+1} \nmid m, \ p \mid \Delta} d_{\hat{\theta}_{+}} \left(p^{l} \right) \lambda^{l}(p) = a_{\hat{\theta}_{+}}(m) \chi(m), \quad \hat{b}_{\hat{\theta}_{-}}(m) = b_{\hat{\theta}_{-}}(m) \overline{\chi}(m). \end{split}$$

Thus, (3.1) can be written in the form

$$w_{Q}(\tau, k) = \sum_{m \leq r} \frac{a_{\hat{\theta}_{+}}(m)}{m^{s}} \sum_{n \leq r} \frac{b_{\hat{\theta}_{-}}(n)}{n^{s}} \frac{1}{M_{Q}} \sum_{q \leq Q} \sum_{\substack{\chi \equiv \chi \pmod{q} \\ \chi \neq \chi_{0}}} \chi(m) \overline{\chi}(n) + O_{\varepsilon}(r^{-\delta + \varepsilon}).$$

$$(3.2)$$

First we suppose that $m \neq n$. Then, clearly,

$$\sum_{q \leq Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} \chi(m) \overline{\chi}(n) = \sum_{q \leq Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(m)|^2$$

$$= M_Q - \sum_{\substack{q \mid m \\ \chi \neq 0}} (q - 2) = M_Q + \mathcal{O}\left(\sum_{\substack{q \leq r}} q\right) = M_Q + \mathcal{O}(r^2). \tag{3.3}$$

If $m \neq n$, then, in view of the formula

$$\sum_{\chi=\chi \pmod{q}} \chi(m)\overline{\chi}(n) = \begin{cases} q-1 & \text{if } m \equiv n \pmod{q}, \\ 0 & \text{if } m \not\equiv n \pmod{q} \end{cases}$$

with (m,q)=1, we find that

$$\begin{split} \sum_{q \leq Q} \sum_{\substack{\chi = \chi (\operatorname{mod} q) \\ \chi \neq \chi_0}} \chi(m) \overline{\chi}(n) &= \sum_{q \leq Q} \sum_{\substack{\chi = \chi (\operatorname{mod} q) \\ q \mid (m-n)}} \chi(m) \overline{\chi}(n) \\ &+ \sum_{q \leq Q} \sum_{\substack{\chi = \chi (\operatorname{mod} q) \\ q \nmid (m-n)}} \chi(m) \overline{\chi}(n) + \mathcal{O}\left(\sum_{q \leq Q} 1\right) \\ &= \mathcal{O}\left(\sum_{q \leq r} q\right) + \mathcal{O}\left(\frac{Q}{\log Q}\right) = \mathcal{O}\left(\frac{Q}{\log Q}\right). \end{split}$$

Therefore, in view of the estimate [8]

$$M_Q = \frac{Q^2}{2\log Q} + \mathcal{O}\left(\frac{Q^2}{\log^2 Q}\right),\,$$

we obtain from (3.2) and (3.3) that, uniformly in $s \in R$, $|\tau| \le c$, and any fixed $k \in \mathbb{Z}$

$$w_Q(\tau, k) = \sum_{m=1}^{\infty} \frac{a_{\hat{\theta}_+}(m)b_{\hat{\theta}_-}(m)}{m^{2\sigma}} + o(1)$$
 (3.4)

as $Q \to \infty$.

The functions $a_{\hat{\theta}_+}(m)$ and $b_{\hat{\theta}_-}(m)$ are continuous in τ . Therefore, the uniform convergence for $|\tau| \leq c$ of the series

$$w(\tau, k) = \sum_{m=1}^{\infty} \frac{a_{\hat{\theta}_{+}}(m)b_{\hat{\theta}_{-}}(m)}{m^{2\sigma}}$$

shows that the function $w(\tau, 0)$ is continuous at $\tau = 0$. Therefore, (3.4) together with Lemma 1 proves the theorem. \square

4 Concluding Remarks

Denote by $L(s,\chi)$ the Dirichlet L-functions. E. Stankus in [9] obtained, for $\sigma > \frac{1}{2}$, the weak convergence for

$$P_Q(A) \stackrel{def}{=} \mu_Q(L_E(s,\chi) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

as $Q \to \infty$. Let P be a probability measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ defined by the characteristic transform

$$w_R(\tau, k) = \sum_{m=1}^{\infty} \frac{d_{\hat{\theta}_+}(m)d_{\hat{\theta}_-}(m)}{m^{2\sigma}}, \quad \sigma > \frac{1}{2}, \ \tau \in \mathbb{R}, \ k \in \mathbb{Z}_0.$$

Then he proved that P_Q converges weakly to P as $Q \to \infty$. This theorem connects limit theorems for $|L(s,\chi)|$ and $\arg L(s,\chi)$ obtained by P.D.T.A. Elliott in [2] and [3], respectively.

Thus, a limit theorem for Dirichlet *L*-functions is valid also on the left of the absolute convergence half-plane $\sigma > 1$. For the proof of such a theorem, the convergence, for $\sigma > \frac{1}{2}$, of the series

$$L(s,\chi) = \sum_{m=1}^{\infty} \frac{\chi(m)}{m^s}, \quad \chi \neq \chi_0$$

is essentially used. Differently from Dirichlet L-functions, we do not have any information on the convergence of the series for $L_E(s,\chi)$, $\chi \neq \chi_0$, in the half-plane $\sigma > 1$. Therefore, we can prove Theorem 3 only in the half-plane of absolute convergence of the series for $L_E(s,\chi)$. However, we conjecture that Theorem 3 remains also true for $\sigma > 1$.

References

- C. Breuil, B. Conrad, F. Diamond and R. Taylor. On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc., 14:843–939, 2001. http://dx.doi.org/10.1090/S0894-0347-01-00370-8.
- [2] P.D.T.A. Elliott. On the distribution of the values of *L*-series in the half-plane $\sigma > \frac{1}{2}$. *Indag. Math.*, **31**(3):222–234, 1971. http://dx.doi.org/10.1016/S1385-7258(71)80030-6.
- [3] P.D.T.A. Elliott. On the distribution of the arg $L(s,\chi)$ in the half-plane $\sigma > \frac{1}{2}$. Acta Arith., **20**:155–169, 1972.
- [4] V. Garbaliauskienė and A. Laurinčikas. Limit theorems for twists of L-functions of elliptic curves. II. Math. Model. Anal., 17(1):90–99, 2012. http://dx.doi.org/10.3846/13926292.2012.645170.
- V. Garbaliauskienė, A. Laurinčikas and E. Stankus. Limit theorems for twists of L-functions of elliptic curves. Lith. Math. J, 50(2):187–197, 2010. http://dx.doi.org/10.1007/s10986-010-9079-z.
- [6] H. Iwaniec and E. Kowalski. Analytic Number Theory, volume 53 of Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., 2000.
- [7] A. Laurinčikas. Value-distribution of complex-valued functions. *Liet. Matem. Rink.*, 15(2):25–39, 1975. (In Russian)
- [8] A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer Academic Publishers, Dordrecht, Boston, London, 1996.
- [9] E. Stankus. The distribution of L-functions. Liet. Matem. Rink., 15(2):127–134, 1975. (In Russian)