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rove the existence of periodic
pe condition by using variational

ation§l.andesman—Lazer type condition, variational

(W mPx(t) + (L z(t)) =
) —x(2m) = 2/(0) — 2’ (27)
a(t]) = x(t7),

Ax! () =2 (t) = 2'(t]) = Li(=(t;)), §=1,2,...,p,

where m € N, f : [0,27] x R — R is a Carathéodory function, e € L(0,27),
0<t; <ty <---<t,<2m and I; : R — R is continuous for every j.

e(t), a.e. te]0,2n],
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When Az’(t;) = 0, problem (1.1) becomes the well-known periodic bound-
ary value problem at resonance

{x’/(t) +mPx(t) + f(t,z(t)) = e:(t)o,. a.e. t € [0,27], (12)

x(0) — z(27) = 2/(0) — 2’ (2m)

There are many existence results for problem (1.2) in the literature. Let
us mention some pioneering works by Lazer [6], Lazer and Leach [7], and Lan-
desman and Lazer [5]. In [5], a key sufficient condition for the existence of
solutions of problem (1.2) is the so-called Landesman—Lazer condition

/0% e(t) sin(mt + 0) dt < /027r [(ggirg f(t, x)) sin™(
- (lim sup f(t, :c)) sin™ (mt + 9)] dt, 4 < 1.3)

T——00

where sin® (mt + ) = max {=£sin(mt + 6),0}.

It is well known that the theory of impulsivi tial eq¥@tions has been
recognized to not only be richer than tha
odel for numerous
y, engineering, etc. We
et and periodic boundary
equations with impulses in
the derivative or without impulses 3 s, by some authors via variational
Bter to some additional relevant results
investigate the problem (1.1) under a
dndition. Define

more general Landesma
r F(t F(t
F(t,x):/ ) :liminfﬁ, F_(t) = limsup ( ,x).
0

T— 00 €T T——00 X

st nonnegative constants ¢y, cg, ..., cp such that for all s € R,
()| <ejy G=12...,p;

(Hs) For all 0 € R,

P

2m
Z c;|sin(mt; + 6)] + / e(t) sin(mt 4 0) dt
0

j=1

< / " (F(t)sin® (mt + 0) — F_(t)sin™ (mt + 0)) dt.

We now can state the main theorem of this paper.
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Theorem 1. Assume that the conditions (Hi), (Hs2) and (Hs) hold. Then the
problem (1.1) has at least one 2w-periodic solution.

From Theorem 1 we can obtain the following corollary.
Corollary 1. Assume that the conditions (H;) and
(Hj) for all 6 € R,

2m 27
/ e(t) sin(mt +0) dt < / (F (t) sin* (mt+8) — F_(t) sin™ (mi +6)) dt
0 0
hold. Then the problem (1.2) has at least one 27-periodic soluti
Remark 1. By a simple calculation, one can easily derive

F,(t) = liminf Fit,z) > liminf f(¢,

T—+00 x T—>+00

F(t,x)

F_(t) = limsup

Tr—r— 00
us condition (H}%)
generalizes condition (1.3). Hence, our r@&ults imfiove the related results in
ts (such as see [10]). It
is an “almost” necessary
and sufficient condition when F+

fr = limgio0 f(t 2), f- f(t,Z) and f_(t) < f(t, @) < f4(t)
(see [8, page 70]). Moregf€r, § 2 consider the problem with impulses,
Theorem 1 is also a conf§ g i

e introduce some notations and some necessary definitions.

H={z € H(0,27): z(0) = z(2m)}

et = ([ @2 4) dt)%

Consider the functional ¢(z) defined on H by

() = ;/O% t) dt — /27r /O%F(t,x(t)) dt
+/027Te(t)x(t)dt+2/ I(t) dt. (2.1)

with the®horm
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Similarly as in [19], ¢(x) is continuously differentiable on H, and
2 2 27
’ _ ’ ! di — 2 dt — d
o' (x)v(t) /0 (' (t) dt —m /O x(t)v(t) dt /0 f(t,z(t)v(t) dt
27 p
+ / e(t)v(t) dt + Z Ii(z(t))o(ty), for Vu(t) € H. (2.2)
0 =

Now, we have the following lemma.

Lemma 1. If x € H is a critical point of ¢, then x is a 2w-periodig_solution
of Eq. (1.1).

The proof of Lemma 1 is similar as Lemma 2.1 in [2], so we
We say that ¢ satisfies (PS) if every sequence (z,
bounded in R and ¢'(z,,) — 0 (as n — 00) possesses a ¢ uence.
To prove the main result, we will use the followig j
due to Rabinowitz [11] (or see [8]).

Theorem 2. Let ¢ € C'(H,R) and H = H_
dim(H*) = co. We suppose that:

(a) There exist a bounded neighborhood
that plap < ;

(b) there exists a constant

(¢) ¢ satisfies (PS).

Then functional ¢ al point in H.

3 The of of orem 1

e firgt show that the functional ¢ satisfies the Palais—Smale
condi

sume that the conditions (Hy), (Hz) and (Hs) hold. Then ¢
satisfies (PS).

Proof. Tet M > 0 be a constant and {z,} C H be a sequence satisfying

1 2 m2 27 27
lo(xn)| = 7/ w2 dt — —/ x2 dt — F(t,x,)dt
2Jo 2 Jo 0

zn(tj)

+ /0 e(t)x, (t) dt+; /0 I;(t) dt

<M (3.1)

and
lim ||¢'(z,)|| = 0. (3.2)

n—o0
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We first prove that {x,} is bounded in H by contradiction. Assume that
{zy} is unbounded. Let {z;} be an arbitrary sequence bounded in H. It follows
from (3.2) that, for any k € N,

. / < . / —
Jim [ () 2| <l | () ||| 26| = 0.
Thus
lim ¢'(z,)zr =0 uniformly for k € N.
n—oo
Hence,

n—oo

lim (/27r (2,2, — mPap2) dt — /27r (f(t, mn)2k — e
0 0

Jj=1

By (Hy) and (Hs), we have

lim
n— o0

( 2 flt,xn)zi — e(t)zg g —
0

2|

From (3.3) and (3.4), we obtain

27
lim 2 M2 n zk> dt = 0. (3.5)
n—00 [l |
Set g — /&
n—

(ynz, —m ynzk) dt=0

and furthe \

lim [(yn — ) 2, — m*(yn — yl)zk] dt = 0. (3.6)
0

z in (3.6) by (yn — vi), we get

i (lyn = will* = (m® + Dllyn = w:l3) =0
i—00

Due to the compact imbedding H < L?(0,27), going to a subsequence,
Yn — Yo weakly in H, Yn — yo in L*(0,2m).

Therefore,
lim_[ly, — yill3 = 0.

n—0o0
—00
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Furthermore, we have
lim [y, — yil* =

’I’L—)DO
1— 00

which implies {y,} is Cauchy sequence in H. Thus, y, — yo in H. It follows
from (3.5) and the usual regularity argument for ordinary differential equations
(see [3, Chapter 4]) that

yo = k1 sinmt + kg cos mt, (3.7)

where k? + k2 = W (llyo]] = 1). (Different subsequences of {y,} corre-
spond with different &y and k2.) Write (3.7) as

1
Yo = 2 sm(mt +6),
where 0 satisfies sin § = —-2 and cosf = —-2u
VE2+EZ k24
: _ 1
Taking z, = Torios sm(mt +0), we get,

2m
/0 (), 2, — m? (3.8)

Thus, it follows from (3.3) and (3.

2m
e, [ [

sin(mt; + 6) (3.9)

1 .
Tn) — e(t)) <\/m sin(mt + 6) — yn> dt

1 sin(mt; +6) — yn(t]))] =0. (3.10)

V(m?2+1)r

It follows from (3.9) and (3.10) that

nll_{rolo [/0 7r(f(t, Tn) — e(t))yndt - Z I; (mn(tj))y”(tj)] =0.

Hence, replacing zi in (3.3) by y,, we have

27 2! ) T
lim <x’ L —mx n) dt = 0. (3.11)
n=oo fo  \" " ||| Ml
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Now, dividing (3.1) by ||z,||, we get

1 /2”< x!2 m2x2> gt — TRt x,) — e(t)z,
0

2 (e [ 0 [
T (t;)
1225 oIt )dt| M |$n
< 4 == (3.12)
||fcn|| [ S Tl Z el n||
Note that g7er — W sin(mt + 0) in H. Hence, from (3.11) and (3.12),

we have

27 p
F(t,z,) —e(t)x, o M
lim inf (t, 2n) — eft) dt <liminf| — + g ¢;
n—oo Jo nll nooo \ lzall =

Due to the compact imbedding H — C(0, 27),
sin(mt + 6) in C(0,27). Furthermore,

Sln(mt]+9) ’ = m

m2+ )

35, 7m(8) =

where

F _
_/ (t.2n) —Tn

F(t —
dt —/ lim sup (t,2n) —2n dt.
Ty, ||$n|| nooo  Tm ||Tall

[Fy(t)sin® (mt + 0) — F_(t)sin™ (mt + 0)] dt. (3.14)

1
RV

Hence, it follows from (3.13) and (3.14) that

Z c;|sin(mt; + 6)] + /o ! e(t) sin(mt + 0) dt

Jj=1

2
> / [Fy(t)sin™ (mt + 0) — F_(t)sin™ (mt + )] dt.
0
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This contradicts (Hs). It implies that the sequence (z,,) is bounded. Thus,
there exists g € H such that x,, — zo weakly in H. Due to the compact
imbedding H — L?(0,27) and H < C(0,27), going to a subsequence,

T, — xo in L*(0,27), Tn — xo 1n C(0,2m).

Replacing zi by z,, — x; in above equality, we get

2m
Jim (/0 ((zf, — 2})* = m?(z,, — 2;)?) dt

1—00

(3.16)

(3.17)

Jim [l — i =0,
11— 00

which implies z, — xo in H. It shows that ¢ satisfies (PS). O
Now, we can give the proof of Theorem 1.
Proof of Theorem 1. Denote H™ = span{sin(m + 1)t,cos(m + 1)t,...} and
H~ =R ® span{sint, cost,sin 2t, cos 2t, . . . ,sin mt, cosmt}.
We first prove that

liminf p(z) = —co, for x € H™ (3.18)

llzll—o0

Math. Model. Anal., 19(5):664-675, 2014.
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by contradiction. Assume that there exists a sequence (x,) C H~ such that
|zn|| = o0 (as n — oo) and there exists a constant ¢_ satisfying

liminf (z,) > c_. (3.19)

n—oo

By (H1), we have

=0 Jo [y

By (Ha), we get

Tn t]

Jo
nhl{loz |xn||2 =0

From (3.19) and the definition of ¢, we obtain

1 2w 12 2,.2 27TF
i |5 [ g [T I
0

n—o0 252 0 ]I

= 0.

By the definition of H~, we have, for =z € @_,

27
/ (x’2 —m2z?) dt
0

> 1)zl <. (3.23)

sin(mt +6), 6 eR.

Set y, = . #ince diti H- < oo, going to a subsequence, there exists
— yo in H and y, — yo in L?(0,27). Then (3.20),
3) imply that

1
=————sin(mt+6), 0k
yo (m2 4 1)m ( )

By (3.19), we have, for n large enough,

27 2 2.2 27 o Znt)[
1/ —mx; dtf/ F(t,xy,) )z, dt+zf > -
0 0

2 E IIwnII ||wn|| 2|

(3.24)

It follows from x,, € H~ that

27 12 2.2
/ Ty =M (3.25)
0 [N
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From (3.24), (3.25) and (H3), we get, for n large enough,

27
c— F(t»xn) B mn f
— < - dt + E =0 I
0| /0 IImnII IIwnH

T E(tan) —e(t)an L Zn (¢
<o [ ) =t) dt+2j| (1))

[ [l

Thus,

2
- T(E(txn) Tn

hmlnf/ < : —e t) < lim inf E cj 1
n—oo Jg T *) ||z n|| n—00 J

P 1 . -
= j;cj 7(1%2 e |sin(mt; + 0)| = 7(m2 ey

Using a argument similarly as in the proof of Le

p

27
ch\sin(mtj+9)]+/ e(t t+0)d
0

Jj=1

> / 27T(F+(t)sin+( 1) (mt +0)) di
0

which is a contradiction to
Next, we prove that

|Zlloo <mallzll, llzll2 < mellz|.

d (Hs), one has

1 2 /2 2 ) 2m
e) '2/0 dt — 2/0 a:dt—/o [F(t,z) — e(t)z] dt

P x(t;)
+Z/ I(t) dt
j=1"0

1 m2 27
< §||35||2 + 7m§||ac||2 +/ (|p®)||=] + |e(t)||2l) dt + ch|x
0
1+ m?m3
< LI o2 b (Ll + ell) ol + S egmlal. (320
j=1

Math. Model. Anal., 19(5):664-675, 2014.
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Hence, ¢ is bounded on bounded sets of H.
By the definition of H*, we have, for z € HT,

l2]* = ((m +1)% + 1) ||=]3. (3.27)
Thus, from (3.26) and (3.27), we obtain

1 2 m2 27 27
p(x) = f/ o2 dt — —/ 2 dt — / [F(t,x) — e(t)z] dt
2 Jo 2 Jo 0

P raty)
+) / I(t) dt
j=1"0

2m +1 9
2 o lz[|T—m + |lellx +
2((m+1)2+1)” H 1<|p||1 || Hl

which implies
lim ¢(x) =00, for all *
llzll—o0
Up to now, the conditions (a) and (b) of em 2 af@gatisfied. According
to Lemma 2, (¢) is also satisfied. Hence, i Theorem 2, Eq. (1.1) has at least

one solution. This completes the proof.

4 Conclusions

A generalized Landesman4#az8
solutions of second ord @

tained.
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