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1 Introduction

We are concerned with periodic boundary value problem of second order im-
pulsive differential equations at resonance

x′′(t) +m2x(t) + f
(
t, x(t)

)
= e(t), a.e. t ∈ [0, 2π],

x(0)− x(2π) = x′(0)− x′(2π) = 0,

x(t+j ) = x(t−j ),

∆x′(tj) := x′(t+j )− x′(t−j ) = Ij
(
x(tj)

)
, j = 1, 2, . . . , p,

(1.1)

where m ∈ N, f : [0, 2π] × R → R is a Carathéodory function, e ∈ L1(0, 2π),
0 < t1 < t2 < · · · < tp < 2π, and Ij : R→ R is continuous for every j.
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When ∆x′(tj) ≡ 0, problem (1.1) becomes the well-known periodic bound-
ary value problem at resonance{

x′′(t) +m2x(t) + f
(
t, x(t)

)
= e(t), a.e. t ∈ [0, 2π],

x(0)− x(2π) = x′(0)− x′(2π) = 0.
(1.2)

There are many existence results for problem (1.2) in the literature. Let
us mention some pioneering works by Lazer [6], Lazer and Leach [7], and Lan-
desman and Lazer [5]. In [5], a key sufficient condition for the existence of
solutions of problem (1.2) is the so-called Landesman–Lazer condition∫ 2π

0

e(t) sin(mt+ θ) dt <

∫ 2π

0

[(
lim inf
x→+∞

f(t, x)
)

sin+(mt+ θ)

−
(

lim sup
x→−∞

f(t, x)
)

sin−(mt+ θ)
]
dt, ∀θ ∈ R, (1.3)

where sin±(mt+ θ) = max {± sin(mt+ θ), 0}.
It is well known that the theory of impulsive differential equations has been

recognized to not only be richer than that of differential equations without
impulses, but also provide a more adequate mathematical model for numerous
processes and phenomena studied in physics, biology, engineering, etc. We
refer the reader to the book [4]. Recently, the Dirichlet and periodic boundary
conditions problems for second-order differential equations with impulses in
the derivative or without impulses are studied by some authors via variational
method [1, 2, 9, 15, 17, 18, 19]. We also refer to some additional relevant results
[10, 12, 13, 14, 16]. In this paper, we will investigate the problem (1.1) under a
more general Landesman–Lazer type condition. Define

F (t, x) =

∫ x

0

f(t, s)ds, F+(t) = lim inf
x→+∞

F (t, x)

x
, F−(t) = lim sup

x→−∞

F (t, x)

x
.

Throughout this paper, we give the following fundamental assumptions.

(H1) There exists p ∈ L1([0, 2π], [0,+∞)) such that |f(t, x)| 6 p(t), for a.e. t ∈
[0, 2π] and for all x ∈ R;

(H2) There exist nonnegative constants c1, c2, . . . , cp such that for all s ∈ R,∣∣Ij(s)∣∣ 6 cj , j = 1, 2, . . . , p;

(H3) For all θ ∈ R,

p∑
j=1

cj
∣∣sin(mtj + θ)

∣∣+

∫ 2π

0

e(t) sin(mt+ θ) dt

<

∫ 2π

0

(
F+(t) sin+(mt+ θ)− F−(t) sin−(mt+ θ)

)
dt.

We now can state the main theorem of this paper.

Math. Model. Anal., 19(5):664–675, 2014.
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Theorem 1. Assume that the conditions (H1), (H2) and (H3) hold. Then the
problem (1.1) has at least one 2π-periodic solution.

From Theorem 1 we can obtain the following corollary.

Corollary 1. Assume that the conditions (H1) and

(H ′3) for all θ ∈ R,∫ 2π

0

e(t) sin(mt+θ) dt <

∫ 2π

0

(
F+(t) sin+(mt+θ)−F−(t) sin−(mt+θ)

)
dt

hold. Then the problem (1.2) has at least one 2π-periodic solution.

Remark 1. By a simple calculation, one can easily derive

F+(t) = lim inf
x→+∞

F (t, x)

x
> lim inf

x→+∞
f(t, x),

F−(t) = lim sup
x→−∞

F (t, x)

x
6 lim sup

x→−∞
f(t, x).

A simple example f(t, x) = sin t+ cosx illustrates them. Thus condition (H ′3)
generalizes condition (1.3). Hence, our results improve the related results in
the literature mentioned above and some other results (such as see [10]). It
is remarkable that Landesman–Lazer condition (H ′3) is an “almost” necessary
and sufficient condition when F+ and F− are replaced by f+ and f+, where
f+ = limx→+∞ f(t, x), f− = limx→−∞ f(t, x) and f−(t) 6 f(t, x) 6 f+(t)
(see [8, page 70]). Moreover, since we consider the problem with impulses,
Theorem 1 is also a complement of the pioneering works.

The rest of the paper is organized as follows. In Section 2, we shall state
some notations, some necessary definitions and a saddle theorem due to Rabi-
nowitz. In Section 3, we shall prove Theorem 1.

2 Preliminaries

In the following, we introduce some notations and some necessary definitions.
Define

H =
{
x ∈ H1(0, 2π) : x(0) = x(2π)

}
with the norm

‖x‖ =

(∫ 2π

0

(
x′ 2 + x2

)
dt

) 1
2

.

Consider the functional ϕ(x) defined on H by

ϕ(x) =
1

2

∫ 2π

0

x′ 2(t) dt− m2

2

∫ 2π

0

x2(t) dt−
∫ 2π

0

F
(
t, x(t)

)
dt

+

∫ 2π

0

e(t)x(t) dt+

p∑
j=1

∫ x(tj)

0

Ij(t) dt. (2.1)
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Similarly as in [19], ϕ(x) is continuously differentiable on H, and

ϕ′(x)v(t) =

∫ 2π

0

x′(t)v′(t) dt−m2

∫ 2π

0

x(t)v(t) dt−
∫ 2π

0

f
(
t, x(t)

)
v(t) dt

+

∫ 2π

0

e(t)v(t) dt+

p∑
j=1

Ij
(
x(tj)

)
v(tj), for ∀v(t) ∈ H. (2.2)

Now, we have the following lemma.

Lemma 1. If x ∈ H is a critical point of ϕ, then x is a 2π-periodic solution
of Eq. (1.1).

The proof of Lemma 1 is similar as Lemma 2.1 in [2], so we omit it.
We say that ϕ satisfies (PS) if every sequence (xn) for which ϕ(xn) is

bounded in R and ϕ′(xn)→ 0 (as n→∞) possesses a convergent subsequence.
To prove the main result, we will use the following saddle point theorem

due to Rabinowitz [11] (or see [8]).

Theorem 2. Let ϕ ∈ C1(H,R) and H = H− ⊕H+, dim(H−) <∞,
dim(H+) =∞. We suppose that:

(a) There exist a bounded neighborhood D of 0 in H− and a constant α such
that ϕ|∂D 6 α;

(b) there exists a constant β > α such that ϕ|H+ > β;

(c) ϕ satisfies (PS).

Then functional ϕ has a critical point in H.

3 The proof of Theorem 1

In this section, we first show that the functional ϕ satisfies the Palais–Smale
condition.

Lemma 2. Assume that the conditions (H1), (H2) and (H3) hold. Then ϕ
defined by (2.1) satisfies (PS).

Proof. Let M > 0 be a constant and {xn} ⊂ H be a sequence satisfying

∣∣ϕ(xn)
∣∣ =

∣∣∣∣∣12
∫ 2π

0

x′ 2n dt− m2

2

∫ 2π

0

x2n dt−
∫ 2π

0

F (t, xn) dt

+

∫ 2π

0

e(t)xn(t) dt+

p∑
j=1

∫ xn(tj)

0

Ij(t) dt

∣∣∣∣∣ 6M (3.1)

and

lim
n→∞

∥∥ϕ′(xn)
∥∥ = 0. (3.2)

Math. Model. Anal., 19(5):664–675, 2014.
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We first prove that {xn} is bounded in H by contradiction. Assume that
{xn} is unbounded. Let {zk} be an arbitrary sequence bounded in H. It follows
from (3.2) that, for any k ∈ N,

lim
n→∞

∣∣ϕ′(xn)zk
∣∣ 6 lim

n→∞

∥∥ϕ′(xn)
∥∥‖zk‖ = 0.

Thus

lim
n→∞

ϕ′(xn)zk = 0 uniformly for k ∈ N.

Hence,

lim
n→∞

(∫ 2π

0

(
x′nz

′
k −m2xnzk

)
dt−

∫ 2π

0

(
f(t, xn)zk − e(t)zk

)
dt

+

p∑
j=1

Ij
(
xn(tj)

)
zk(tj)

)
= 0. (3.3)

By (H1) and (H2), we have

lim
n→∞

(∫ 2π

0

f(t, xn)zk − e(t)zk
‖xn‖

dt−
∑p
j=1 Ij(xn(tj))zk(tj)

‖xn‖

)
= 0. (3.4)

From (3.3) and (3.4), we obtain

lim
n→∞

∫ 2π

0

(
x′n
‖xn‖

z′k −m2 xn
‖xn‖

zk

)
dt = 0. (3.5)

Set yn = xn/‖xn‖. Then we have

lim
n→∞

∫ 2π

0

(
y′nz
′
k −m2ynzk

)
dt = 0

and furthermore,

lim
n→∞
i→∞

∫ 2π

0

[
(yn − yi)′z′k −m2(yn − yi)zk

]
dt = 0. (3.6)

Replacing zk in (3.6) by (yn − yi), we get

lim
n→∞
i→∞

(
‖yn − yi‖2 − (m2 + 1)‖yn − yi‖22

)
= 0.

Due to the compact imbedding H ↪→ L2(0, 2π), going to a subsequence,

yn ⇀ y0 weakly in H, yn → y0 in L2(0, 2π).

Therefore,

lim
n→∞
i→∞

‖yn − yi‖22 = 0.
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Furthermore, we have

lim
n→∞
i→∞

‖yn − yi‖2 = 0,

which implies {yn} is Cauchy sequence in H. Thus, yn → y0 in H. It follows
from (3.5) and the usual regularity argument for ordinary differential equations
(see [3, Chapter 4]) that

y0 = k1 sinmt+ k2 cosmt, (3.7)

where k21 + k22 = 1
(m2+1)π (‖y0‖ = 1). (Different subsequences of {yn} corre-

spond with different k1 and k2.) Write (3.7) as

y0 =
1√

(m2 + 1)π
sin(mt+ θ),

where θ satisfies sin θ = k2√
k21+k

2
2

and cos θ = k1√
k21+k

2
2

.

Taking zk = 1√
(m2+1)π

sin(mt+ θ), we get, for any n ∈ N,

∫ 2π

0

(
x′nz

′
k −m2xnzk

)
dt = 0. (3.8)

Thus, it follows from (3.3) and (3.8) that

lim
n→∞

[∫ 2π

0

(
f(t, xn)− e(t)

) 1√
(m2 + 1)π

sin(mt+ θ) dt

−
p∑
j=1

Ij
(
xn(tj)

) 1√
(m2 + 1)π

sin(mtj + θ)

]
= 0. (3.9)

By (H1) and (H2), we obtain

lim
n→∞

[∫ 2π

0

(
f(t, xn)− e(t)

)( 1√
(m2 + 1)π

sin(mt+ θ)− yn
)
dt

−
p∑
j=1

Ij
(
xn(tj)

)( 1√
(m2 + 1)π

sin(mtj + θ)− yn(tj)

)]
= 0. (3.10)

It follows from (3.9) and (3.10) that

lim
n→∞

[∫ 2π

0

(
f(t, xn)− e(t)

)
yndt−

p∑
j=1

Ij
(
xn(tj)

)
yn(tj)

]
= 0.

Hence, replacing zk in (3.3) by yn, we have

lim
n→∞

∫ 2π

0

(
x′n

x′n
‖xn‖

−m2xn
xn
‖xn‖

)
dt = 0. (3.11)

Math. Model. Anal., 19(5):664–675, 2014.



RETRACTED

670 J. Li, J. Luo and Z. Wang

Now, dividing (3.1) by ‖xn‖, we get∣∣∣∣∣12
∫ 2π

0

(
x′ 2n
‖xn‖

− m2x2n
‖xn‖

)
dt−

∫ 2π

0

F (t, xn)− e(t)xn
‖xn‖

∣∣∣∣∣
6

M

‖xn‖
+
|
∑p
j=1

∫ xn(tj)

0
Ij(t) dt|

‖xn‖
6

M

‖xn‖
+

p∑
j=1

cj
|xn(tj)|
‖xn‖

. (3.12)

Note that xn

‖xn‖ →
1√

(m2+1)π
sin(mt+ θ) in H. Hence, from (3.11) and (3.12),

we have

lim inf
n→∞

∫ 2π

0

F (t, xn)− e(t)xn
‖xn‖

dt 6 lim inf
n→∞

(
M

‖xn‖
+

p∑
j=1

cj
|xn(tj)|
‖xn‖

)

=

p∑
j=1

cj

∣∣∣∣ 1√
(m2+1)π

sin(mtj+θ)

∣∣∣∣ =
1√

(m2+1)π

p∑
j=1

cj
∣∣sin(mtj+θ)

∣∣. (3.13)

Due to the compact imbedding H ↪→ C(0, 2π), we have xn

‖xn‖ →
1√

(m2+1)π
×

sin(mt+ θ) in C(0, 2π). Furthermore,

lim
n→∞

xn(t) =

{
+∞, ∀t ∈ I+,
−∞, ∀t ∈ I−,

where

I+ :=
{
t ∈ [0, 2π]

∣∣ sin(mt+ θ) > 0
}
, I− :=

{
t ∈ [0, 2π]

∣∣ sin(mt+ θ) < 0
}
.

Using Fatou’s lemma, we get

lim inf
n→∞

∫ 2π

0

F (t, xn)

‖xn‖
dt

= lim inf
n→∞

[∫
I+

F (t, xn)

xn

xn
‖xn‖

dt−
∫
I−

F (t, xn)

xn

−xn
‖xn‖

dt

]
>
∫
I+

lim inf
n→∞

F (t, xn)

xn

xn
‖xn‖

dt−
∫
I−

lim sup
n→∞

F (t, xn)

xn

−xn
‖xn‖

dt.

Thus, by a simple computation, we have

lim inf
n→∞

∫ 2π

0

F (t, xn)

‖xn‖
dt

>
1√

(m2 + 1)π

∫ 2π

0

[
F+(t) sin+(mt+ θ)− F−(t) sin−(mt+ θ)

]
dt. (3.14)

Hence, it follows from (3.13) and (3.14) that
p∑
j=1

cj
∣∣sin(mtj + θ)

∣∣+

∫ 2π

0

e(t) sin(mt+ θ) dt

>
∫ 2π

0

[
F+(t) sin+(mt+ θ)− F−(t) sin−(mt+ θ)

]
dt.
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This contradicts (H3). It implies that the sequence (xn) is bounded. Thus,
there exists x0 ∈ H such that xn ⇀ x0 weakly in H. Due to the compact
imbedding H ↪→ L2(0, 2π) and H ↪→ C(0, 2π), going to a subsequence,

xn → x0 in L2(0, 2π), xn → x0 in C(0, 2π).

From (3.3), we obtain

lim
n→∞
i→∞

(∫ 2π

0

(
(x′n − x′i)z′k −m2(xn − xi)zk

)
dt−

∫ 2π

0

(
f(t, xn)− f(t, xi)

)
zk dt

+

p∑
j=1

(
Ij
(
xn(tj)

)
− Ij

(
xi(tj)

))
zk(tj)

)
= 0.

Replacing zk by xn − xi in above equality, we get

lim
n→∞
i→∞

(∫ 2π

0

(
(x′n − x′i)2 −m2(xn − xi)2

)
dt

−
∫ 2π

0

(
f(t, xn)− f(t, xi)

)
(xn − xi) dt

+

p∑
j=1

(
Ij
(
xn(tj)

)
− Ij

(
xi(tj)

))(
xn(tj)− xi(tj)

))
= 0. (3.15)

By (H1) and (H2), we have

lim
n→∞
i→∞

∫ 2π

0

(
f(t, xn)− f(t, xi)

)
(xn − xi) dt = 0 (3.16)

lim
n→∞
i→∞

p∑
j=1

(
Ij
(
xn(tj)

)
− Ij

(
xi(tj)

))(
xn(tj)− xi(tj)

)
= 0. (3.17)

Thus, it follows from (3.15), (3.16) and (3.17) that

lim
n→∞
i→∞

∫ 2π

0

[
(x′n − x′i)2 −m2(xn − xi)2

]
dt = 0.

Therefore,
lim
n→∞
i→∞

‖xn − xi‖2 = 0,

which implies xn → x0 in H. It shows that ϕ satisfies (PS). ut

Now, we can give the proof of Theorem 1.

Proof of Theorem 1. Denote H+ = span
{

sin(m+ 1)t, cos(m+ 1)t, . . .
}

and

H− = R⊕ span{sin t, cos t, sin 2t, cos 2t, . . . , sinmt, cosmt}.

We first prove that

lim inf
‖x‖→∞

ϕ(x) = −∞, for x ∈ H− (3.18)

Math. Model. Anal., 19(5):664–675, 2014.
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by contradiction. Assume that there exists a sequence (xn) ⊂ H− such that
‖xn‖ → ∞ (as n→∞) and there exists a constant c− satisfying

lim inf
n→∞

ϕ(xn) > c−. (3.19)

By (H1), we have

lim
n→∞

∫ 2π

0

F (t, xn)− e(t)xn
‖xn‖2

dt = 0. (3.20)

By (H2), we get

lim
n→∞

p∑
j=1

∫ xn(tj)

0
Ij(t) dt

‖xn‖2
= 0. (3.21)

From (3.19) and the definition of ϕ, we obtain

lim inf
n→∞

[
1

2

∫ 2π

0

x′ 2n −m2x2n
‖xn‖2

dt−
∫ 2π

0

F (t, xn)−e(t)xn
‖xn‖2

dt+

p∑
j=1

∫ xn(tj)

0
Ij(t) dt

‖xn‖2

]
> 0. (3.22)

By the definition of H−, we have, for x ∈ H−,∫ 2π

0

(
x′ 2 −m2x2

)
dt = ‖x‖2 −

(
m2 + 1

)
‖x‖22 6 0. (3.23)

The equality in (3.23) holds only for

x =
1√

(m2 + 1)π
sin(mt+ θ), θ ∈ R.

Set yn = xn

‖xn‖ . Since dimH− < ∞, going to a subsequence, there exists

y0 ∈ H− such that yn → y0 in H and yn → y0 in L2(0, 2π). Then (3.20),
(3.21), (3.22) and (3.23) imply that

y0 =
1√

(m2 + 1)π
sin(mt+ θ), θ ∈ R.

By (3.19), we have, for n large enough,

1

2

∫ 2π

0

x′ 2n −m2x2n
‖xn‖

dt−
∫ 2π

0

F (t, xn)− e(t)xn
‖xn‖

dt+

p∑
j=1

∫ xn(tj)

0
Ij(t) dt

‖xn‖
>

c−
‖xn‖

.

(3.24)

It follows from xn ∈ H− that∫ 2π

0

x′ 2n −m2x2n
‖xn‖

6 0. (3.25)
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From (3.24), (3.25) and (H2), we get, for n large enough,

c−
‖xn‖

6 −
∫ 2π

0

F (t, xn)− e(t)xn
‖xn‖

dt+

p∑
j=1

∫ xn(tj)

0
Ij(t) dt

‖xn‖

6 −
∫ 2π

0

F (t, xn)− e(t)xn
‖xn‖

dt+

p∑
j=1

cj
|xn(tj)|
‖xn‖

.

Thus,

lim inf
n→∞

∫ 2π

0

(
F (t, xn)

xn
− e(t)

)
xn
‖xn‖

dt 6 lim inf
n→∞

p∑
j=1

cj
|xn(tj)|
‖xn‖

=

p∑
j=1

cj
1√

(m2 + 1)π

∣∣sin(mtj + θ)
∣∣ =

1√
(m2 + 1)π

p∑
j=1

cj
∣∣sin(mtj + θ)

∣∣.
Using a argument similarly as in the proof of Lemma 2, we get

p∑
j=1

cj
∣∣sin(mtj + θ)

∣∣+

∫ 2π

0

e(t) sin(mt+ θ) dt

>
∫ 2π

0

(
F+(t) sin+(mt+ θ)− F−(t) sin−(mt+ θ)

)
dt,

which is a contradiction to (H3). Then (3.18) holds.
Next, we prove that

lim
‖x‖→∞

ϕ(x) =∞, for all x ∈ H+,

and ϕ is bounded on bounded sets.
Because of the compact imbedding of H ↪→ C(0, 2π) and H ↪→ L2(0, 2π),

there exists constants m1,m2 such that

‖x‖∞ 6 m1‖x‖, ‖x‖2 6 m2‖x‖.

Then by (H1) and (H2), one has

∣∣ϕ(x)
∣∣ =

∣∣∣∣∣12
∫ 2π

0

x′ 2 dt− m2

2

∫ 2π

0

x2 dt−
∫ 2π

0

[
F (t, x)− e(t)x

]
dt

+

p∑
j=1

∫ x(tj)

0

Ij(t) dt

∣∣∣∣∣
6

1

2
‖x‖2 +

m2

2
m2

2‖x‖2 +

∫ 2π

0

(∣∣p(t)∣∣|x|+ ∣∣e(t)∣∣|x|) dt+

p∑
j=1

cj
∣∣x(tj)

∣∣
6

1 +m2m2
2

2
‖x‖2 +m1

(
‖p‖1 + ‖e‖1

)
‖x‖+

p∑
j=1

cjm1‖x‖. (3.26)
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Hence, ϕ is bounded on bounded sets of H.
By the definition of H+, we have, for x ∈ H+,

‖x‖2 >
(
(m+ 1)2 + 1

)
‖x‖22. (3.27)

Thus, from (3.26) and (3.27), we obtain

ϕ(x) =
1

2

∫ 2π

0

x′ 2 dt− m2

2

∫ 2π

0

x2 dt−
∫ 2π

0

[
F (t, x)− e(t)x

]
dt

+

p∑
j=1

∫ x(tj)

0

Ij(t) dt

>
2m+ 1

2((m+ 1)2 + 1)
‖x‖2 −m1

(
‖p‖1 + ‖e‖1 +

p∑
j=1

cj

)
‖x‖,

which implies
lim
‖x‖→∞

ϕ(x) =∞, for all x ∈ H+.

Up to now, the conditions (a) and (b) of Theorem 2 are satisfied. According
to Lemma 2, (c) is also satisfied. Hence, by Theorem 2, Eq. (1.1) has at least
one solution. This completes the proof. ut

4 Conclusions

A generalized Landesman–Lazer type condition for the existence of periodic
solutions of second order impulsive differential equations at resonance was ob-
tained.
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