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Abstract. In this paper, we study boundary value problems for q-difference equa-
tions and inclusions with nonlocal and integral boundary conditions. Some new exis-
tence and uniqueness results are obtained by using a variety of fixed point theorems.
Examples are given to illustrate the results.

Keywords: q-difference equations, nonlocal conditions, integral boundary conditions, exis-

tence, fixed point.

AMS Subject Classification: 34A08; 26A33; 34A60.

1 Introduction

The study of q-difference equations, initiated by Jackson [22, 23], Carmichael
[11], Mason [27] and Adams [1] in the first quarter of 20th century, has been
developed over the years, for instance, see [15, 17]. The q-difference equations
and operators have extensively been investigated in the context of quantum cal-
culus. In fact, q-calculus (quantum calculus) has a rich history and the details
of its basic notions, results and methods can be found in the text [24]. Apart
from the traditional treatment of quantum calculus, many interesting ques-
tions and problems, especially from theoretical point of view, either remained
open or were partially answered. In recent years, the topic has attracted the
attention of several researchers and a variety of new results can be found in
the papers [2, 3, 4, 5, 6, 8, 13, 14, 16, 18, 21, 26]. However, there are many aspects
of boundary value problems of q-difference equations that need attention. For
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instance, q-difference equations with nonlocal and integral boundary conditions
are yet to be addressed.

In this paper, motivated by some recent theoretical work on the topic, we
study the existence and uniqueness of solutions continuous at 0 for a boundary
value problem of nonlinear q-difference equations with nonlocal and integral
boundary conditions given by

D2
qx(t) = f

(
t, x(t)

)
, t ∈ Iq,

x(0) = x0 + g(x), x(1) = α

∫ ν

µ

x(s)dqs, x0 ∈ R,
(1.1)

where f ∈ C(Iq × R,R) is such that f(t, x(t)) is continuous at t = 0, Iq =
{qn : n ∈ N} ∪ {0, 1} , q ∈ (0, 1) is a fixed constant and µ, ν ∈ Iq with µ < ν,
that is, µ = qn1 , ν = qn2 , n1 > n2, n1, n2 ∈ N, g : C(Iq,R)→ R and α 6= 1+q

ν2−µ2 .

In (1.1), for the sake of brevity, we write g(x) = g(x(ti)), ti ∈ Iq, for example,
g(x) =

∑n
i=1 cix(ti). We emphasize that the nonlocal conditions of the form

x(0) = x0+g(x) are found to be more useful than the standard initial conditions
to describe some physical phenomena. For more details we refer to the work
by Byszewski [9, 10].

In Section 3, we present the existence results for the problem (1.1). The
first result is based on Banach’s contraction principle and the second one on a
fixed point theorem due to O’Regan. Concrete examples are provided for the
illustration of the established results.

In Section 4, we consider a multi-valued analogue of problem (1.1) given by
D2
qx(t) ∈ F

(
t, x(t)

)
, t ∈ Iq,

x(0) = x0 + g(x), x(1) = α

∫ ν

µ

x(s)dqs,
(1.2)

where F : Iq × R → P(R) is a multivalued map, P(R) is the family of all
nonempty subsets of R. The existence of solutions for the problem (1.2) is
shown by applying the nonlinear alternative for contractive maps.

2 Preliminaries

Let us recall some basic concepts of q-calculus [7, 17,24].
Let 0 < q < 1, and f a function defined on a q-geometric set A, i.e. qt ∈ A

for all t ∈ A. The q-difference operator is defined by

Dqf(t) =


f(t)− f(qt)

(1− q)t
, t ∈ A \ {0},

lim
n→∞

f(tqn)− f(0)

tqn
, t = 0,

provided that the limit exists and does not depend on t. The higher order
q-derivatives are given by

D0
qf(t) = f(t), Dn

q f(t) = DqD
n−1
q f(t), n ∈ N.
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The Jackson q-integration [22] is∫ a

0

f(t)dqt=a(1−q)
∞∑
n=0

qnf
(
aqn
)
,

∫ b

a

f(t)dq(t)=

∫ b

0

f(t)dq(t)−
∫ a

0

f(t)dq(t),

where a, b ∈ A, provided that the series converge. Here we remark that the

integral
∫ b
a
f(t)dq(t) is understood as a right inverse of the q-derivative.

For 0 ∈ A, f is called q-regular at zero if limn→∞ f(tqn) = f(0) for every
t ∈ A, t 6= 0. It is important to note that continuity at zero implies q-regularity
at zero but the converse is not true (see an example on page 7 in [7]).

Definition 1. Let f be a function defined on a q-geometric set A. Then f is
q-integrable on A if and only if

∫ t
0
f(µ)dqµ exists for all t ∈ A.

The q-integration by parts rule is∫ b

a

u(qt)Dqv(t)dqt = u(b)v(b)− u(a)v(a) +

∫ b

a

Dqu(t)v(t)dqt,

provided that u and v are q-regular at zero functions.
Let f be a q-regular at zero function defined on a q-geometric set A con-

taining zero. Then

F (z) =

∫ z

c

f(s)dqs, z ∈ A

is q-regular at zero, where c is a fixed point in A. Furthermore, DqF (z) exists
for every z ∈ A and

DqF (z) = f(z), z ∈ A.

Conversely, if a and b are two points in A, then∫ b

a

Dqf(s)dqs = f(b)− f(a).

In the sequel, we denote by C = C(Iq,R) the space of all functions from
Iq → R which are continuous at 0.

Lemma 1. Let α 6= 1+q
ν2−µ2 and let y ∈ C(Iq,R). Then boundary value problem

D2
qx(t) = y(t), t ∈ Iq,

x(0) = x0 + g(x), x(1) = α

∫ ν

µ

x(s)dqs, µ < ν, µ, ν ∈ Iq
(2.1)

is equivalent to a q-integral equation

x(t) =

∫ t

0

(t− qs) y(s)dqs+
α(1 + q)t

1 + q − α(ν2 − µ2)

×
∫ ν

µ

∫ s

0

(s− rq)y(r)dqrdqs−
(1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)y(s)dqs

+

[
1 +

(1 + q)(α(ν − µ)− 1)t

1 + q − α(ν2 − µ2)

](
x0 + g(x)

)
. (2.2)
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Proof. As argued in [7], a solution continuous at zero of the equation D2
qx(t) =

y(t) can be written as

x (t) =

∫ t

0

(t− qs) y(s)dqs+ c0t+ c1, t ∈ Iq, (2.3)

where c0, c1 are constants (for functions not necessarily continuous at zero, the
constants c0, c1 are q-periodic functions [7]). Using the boundary conditions
given in (2.1), we find that c1 = x0 + g(x) and

c0 =
1 + q

1 + q − α(ν2 − µ2)

[
α

∫ ν

µ

∫ s

0

(s− rq)y(r)dqrdqs

−
∫ 1

0

(1− qs)y(s)dqs+
(
α(ν − µ)− 1

)(
x0 + g(x)

)]
.

Substituting c0, c1 in (2.3), we obtain (2.2). The converse follows by applying
the operator Dq on (2.2) and using the q-integration by parts formula. ut

3 Existence Results – The Single-Valued Case

In view of Lemma 1, we introduce an operator Q : C → C as

(Qx)(t) =

∫ t

0

(t− qs) f
(
s, x(s)

)
dqs

+
α(1 + q)t

1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)f
(
r, x(r)

)
dqrdqs

− (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)f(s, x(s))dqs

+

[
1 +

(1 + q)(α(ν − µ)− 1)t

1 + q − α(ν2 − µ2)

](
x0 + g(x)

)
. (3.1)

Observe that the operator Q defined by (3.1) is well defined in view of the
definition of the function f and (1.1) has a solution if the operator equation
Qx = x has a fixed point.

Define two operators from C → C as

(Q1x)(t) =

∫ t

0

(t− qs) f
(
s, x(s)

)
dqs

+
α(1 + q)t

1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)f
(
r, x(r)

)
dqrdqs

− (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)f
(
s, x(s)

)
dqs, t ∈ Iq (3.2)

and

(Q2x)(t) =

[
1 +

(1 + q)(α(ν − µ)− 1)t

1 + q − α(ν2 − µ2)

](
x0 + g(x)

)
, t ∈ Iq. (3.3)



BVP for Nonlocal q-Difference Equations & Inclusions 651

Clearly
(Qx)(t) = (Q1x)(t) + (Q2x)(t), t ∈ Iq. (3.4)

In the forthcoming results, the functions f and g are taken to be the same
as defined in the problem (1.1).

Theorem 1. Assume that

(A1) |f(t, x)− f(t, y)| ≤ L|x− y|, ∀t ∈ Iq, L > 0, x, y ∈ R;

(A2) g : C → R is such that |g(u)− g(v)| ≤ `‖u− v‖ ∀u, v ∈ C with

` <

[
1 +

(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

]−1
;

(A3) γ = L

{
1

1 + q
+

|α|
|1 + q − α(ν2 − µ2)|

(ν3 − µ3)

(1 + q + q2)
+

1

|1 + q − α(ν2 − µ2)|

}
+ `

[
1 +

(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

]
< 1.

Then the boundary value problem (1.1) has a unique solution.

Proof. In view of the definition of Q and assumptions (A1) and (A2), for
x, y ∈ C and for each t ∈ Iq, we obtain∣∣(Qx)(t)− (Qy)(t)

∣∣
≤
∫ t

0

(t− qs)
∣∣f(s, x(s)

)
− f

(
s, y(s)

)∣∣dqs+
|α|(1 + q)

|1 + q − α(ν2 − µ2)|

×
∫ ν

µ

(∫ s

0

(s− qm)
∣∣f(m,x(m)

)
− f

(
m, y(m)

)∣∣dqm)dqs
+

(1 + q)

|1 + q − α(ν2 − µ2)|

∫ 1

0

(1− qs)
∣∣f(s, x(s)

)
− f

(
s, y(s)

)∣∣dqs
+

[
1 +

(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

]∣∣g(x)− g(y)
∣∣

≤ L‖x− y‖
{∫ t

0

(t− qs)dqs

+
|α|(1 + q)

|1 + q − α(ν2 − µ2)|

∫ ν

µ

(∫ s

0

(s− qm)dqm

)
dqs

+
(1 + q)

|1 + q − α(ν2 − µ2)|

∫ 1

0

(1− qs)dqs
}

+

[
1 +

(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

]
`‖x− y‖

≤ L
{

1

1 + q
+

|α|
|1 + q − α(ν2 − µ2)|

(ν3 − µ3)

(1 + q + q2)

+
1

|1 + q − α(ν2 − µ2)|

}
‖x−y‖+

[
1 +

(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

]
`‖x−y‖,

Math. Model. Anal., 19(5):647–663, 2014.
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and hence taking the norm on Iq yields

‖Qx−Qy‖ ≤ γ‖x− y‖.

As γ < 1 by (A3), therefore Q is a contraction map from the space C into
itself. Thus, the conclusion of the theorem follows by the contraction mapping
principle (Banach fixed point theorem). ut

Next, we introduce a fixed point theorem due to O’Regan [28] which will
be used to prove the next result.

Lemma 2. Denote by U an open set in a closed, convex set C of a Banach
space E. Assume 0 ∈ U. Also assume that F (Ū) is bounded and that F : Ū → C
is given by F = F1 + F2, in which F1 : Ū → E is continuous and completely
continuous and F2 : Ū → E is a nonlinear contraction (i.e., there exists a
nonnegative nondecreasing function φ : [0,∞)→ [0,∞) satisfying φ(z) < z for
z > 0, such that ‖F2(x)− F2(y)‖ ≤ φ(‖x− y‖) for all x, y ∈ Ū). Then, either

(C1) F has a fixed point u ∈ Ū ; or

(C2) there exist a point u ∈ ∂U and λ ∈ (0, 1) with u = λF (u), where Ū and
∂U, respectively, represent the closure and boundary of U.

Let Ωr =
{
x ∈ C : ‖x‖ < r

}
and denote the maximum number by

Mr = max
{∣∣f(t, x)

∣∣ : (t, x) ∈ Iq × [−r, r]
}
.

Theorem 2. Suppose that (A1) and (A2) hold. In addition we assume that

(A4) g(0) = 0;

(A5) there exists a nonnegative function p ∈ C and a nondecreasing function
ψ : [0,∞)→ [0,∞) such that∣∣f(t, u)

∣∣ ≤ p(t)ψ(|u|) for any (t, u) ∈ Iq × R;

(A6) supr∈(0,∞)
r

k0|x0|+p0ψ(r) >
1

1−k0` , where

p0 =

∫ 1

0

(1− qs) p(s)dqs+
|α|(1 + q)

|1 + q − α(ν2 − µ2)|

∫ ν

µ

∫ s

0

(s− rq)p(r)dqrdqs

+
(1 + q)

|1 + q − α(ν2 − µ2)|

∫ 1

0

(1− qs)p(s)dqs

and

k0 = 1 +
(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

.

Then the boundary value problem (1.1) has at least one solution on Iq.
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Proof. Consider the operator Q : C → C defined by (3.4), that is,

(Qx)(t) = (Q1x)(t) + (Q2x)(t), t ∈ Iq,

where the operators Q1 and Q2 are respectively defined by (3.2) and (3.3).
From (A6) there exists a number r0 > 0 such that

r0
k0|x0|+ p0ψ(r0)

>
1

1− k0`
. (3.5)

We shall prove that the operators Q1 and Q2 satisfy all the conditions of
Lemma 2. Our proof consists of a series of steps.

Step 1. The operator Q1 is continuous and completely continuous. We first
show that Q1(Ω̄r0) is bounded. For any x ∈ Ω̄r0 , we have

‖Q1x‖ ≤
∫ t

0

(t− qs)
∣∣f(s, x(s)

)∣∣dqs
+

|α|(1 + q)

|1 + q − α(ν2 − µ2)|

∫ ν

µ

(∫ s

0

(s− qm)
∣∣f(m,x(m)

)∣∣dqm)dqs
+

(1 + q)

|1 + q − α(ν2 − µ2)|

∫ 1

0

(1− qs)
∣∣f(s, x(s)

)∣∣dqs
≤Mr0

{
1

1 + q
+

|α|
|1 + q − α(ν2 − µ2)|

(ν3 − µ3)

(1 + q + q2)

+
1

|1 + q − α(ν2 − µ2)|

}
.

This shows that Q1(Ω̄r0) is uniformly bounded.
In addition, for any t1, t2 ∈ Iq, we have∣∣(Q1x)(t2)− (Q1x)(t1)

∣∣
≤
∣∣∣∣∫ t2

0

(t2 − qs) f
(
s, x(s)

)
dqs−

∫ t1

0

(t1 − qs) f
(
s, x(s)

)
dqs

∣∣∣∣
+
|α|(1 + q)|t2 − t1|
1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)
∣∣f(r, x(r)

)∣∣dqrdqs
+

(1 + q)|t2 − t1|
1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)
∣∣f(s, x(s)

)∣∣dqs
≤Mr0

∣∣∣∣∫ t1

0

(t2 − t1)dqs

∣∣∣∣+Mr0

∣∣∣∣∫ t2

t1

(t2 − qs)dqs
∣∣∣∣

+Mr0

|α|(1 + q)|t2 − t1|
|1 + q − α(ν2 − µ2)|

∫ ν

µ

∫ s

0

(s− rq)dqrdqs

+Mr0

(1 + q)|t2 − t1|
|1 + q − α(ν2 − µ2)|

∫ 1

0

(1− qs)dqs,

which is independent of x, and tends to zero as t2 − t1 → 0. Thus, Q1 is
equicontinuous. Hence, Arzelá-Ascoli theorem applies and thereby we conclude

Math. Model. Anal., 19(5):647–663, 2014.
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that Q1(Ω̄r0) is compact and hence completely continuous. Now, let xn ⊂ Ω̄r0
with ‖xn − x‖ → 0. Then the limit |xn(t)− x(t)| → 0 is uniformly valid on Iq.
From the uniform continuity of f(t, x) on the compact set Iq × [−r0, r0], it
follows that ‖f(t, xn(t)) − f(t, x(t))‖ → 0 uniformly on Iq. Hence ‖Q1xn −
Q1x‖ → 0 as n → ∞ which proves the continuity of Q1. Hence Step 1 is
complete.

Step 2. The operator Q2 : Ω̄r0 → C is contractive. This is a consequence of
(A2). Indeed, we have∣∣(Q2x)(t)− (Q2y)(t)

∣∣ =

∣∣∣∣[1 +
(1 + q)(α(ν − µ)− 1)t

1 + q − α(ν2 − µ2)

][
g(x)− g(y)

]∣∣∣∣
≤
[
1 +

(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

]
`‖x− y‖.

Taking the supremum over t ∈ Iq, we get

‖Q2x−Q2y‖ ≤ L0‖x− y‖, L0 :=

[
1 +

(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

]
` < 1.

Step 3. The set Q(Ω̄r0) is bounded. By (A2) and (A4), we get∥∥Q2(x)
∥∥ ≤ (1 +

(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

)(
|x0|+ `r0

)
for any x ∈ Ω̄r0 . This, with the boundedness of the set Q1(Ω̄r0) implies that
the set Q(Ω̄r0) is bounded.

Step 4. The case (C2) in Lemma 2 does not hold. To this end, we suppose
that (C2) holds. Then, we have that there exist λ ∈ (0, 1) and x ∈ ∂Ωr0 such
that x = λQx. So, we have ‖x‖ = r0 and

x(t) = λ

∫ t

0

(t− qs) f
(
s, x(s)

)
dqs

+ λ
α(1 + q)t

1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)f
(
r, x(r)

)
dqrdqs

− λ (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)f
(
s, x(s)

)
dqs

+ λ

[
1 +

(1 + q)(α(ν − µ)− 1)t

1 + q − α(ν2 − µ2)2

](
x0 + g(x)

)
.

With hypotheses (A4)–(A6), we have

r0 ≤ ψ(r0)

{∫ 1

0

(1− s)p(s)dqs

+
|α|(1 + q)

|1 + q − α(ν2 − µ2)|

∫ ν

µ

∫ s

0

(s− rq)p(r)dqrdqs

+
(1 + q)

|1 + q − α(ν2 − µ2)|

∫ 1

0

(1− qs)p(s)dqs
}

+

[
1 +

(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

] (
|x0|+ `r0

)
,
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which implies that

r0 ≤ k0`r0 + k0|x0|+ p0ψ(r0).

In consequence,
r0

k0|x0|+ p0ψ(r0)
≤ 1

1− k0`
,

which contradicts (3.5). Thus, the operators Q1 and Q2 satisfy all the condi-
tions of Lemma 2. Hence, the operator Q has at least one fixed point x ∈ Ω̄r0 ,
which is the solution of the problem (1.1). ut

Now we give concrete examples for the illustration of our results.

Example 1. Consider the following boundary value problem
D2
qx(t) =

1

4

1

(t+ 2)2
· |x|

1 + |x|
+ 1 + sin2 t, t ∈ Iq,

x(0) = 1 +
1

16
x(ti), x(1) = 4

∫ 1/2

1/3

x(s)ds, ti ∈ Iq.
(3.6)

Here ` = 1/16, α = 4, µ = 1/3, ν = 1/2, and f(t, x) = 1
4

1
(t+2)2 ·

|x|
1+|x| +1+sin2 t.

As |f(t, x)− f(t, y)| ≤ 1
16 |x− y|, therefore (A1) is satisfied with L = 1

16 . Using
the given data together with the assumption (A3): γ < 1, we obtain

2 + q

1 + q
+

19 + 18(4 + q)(1 + q + q2)

6(4 + 9q)(1 + q + q2)
< 16,

which is true for 0 < q < 1. Thus, all the conditions of Theorem 1 are satisfied.
Hence, the conclusion of Theorem 1 applies to the problem (3.6).

Example 2. Let β > 0 and consider the following problem
D2
qx(t) = β sin2 x, t ∈ Iq,

x(0) =
1

4
+ `x(ti), x(1) = 4

∫ 1/2

1/3

x(s)ds, ti ∈ Iq,
(3.7)

where β = 3/25, ` = 1/25, µ = 1/3, ν = 1/2. We shall show that the problem
(3.7) admits at least one solution. Clearly |f(t, x)| ≤ |β sin2 x| ≤ βx2, for any
(t, x) ∈ Iq × R. Setting p(t) = β and ψ(x) = x2, it is easy to find that

p0 =

[
1

1 + q
+

9

4 + 9q

(
19

54(1 + q + q2)
+ 1

)]
β, k0 =

7 + 12q

4 + 9q
,

while the condition (A6) gives
√
k0p0 + k0` < 1, which holds for 0 < q < 1.

Therefore, by Theorem 2, we conclude that problem (3.7) has at least one
solution on Iq.

Math. Model. Anal., 19(5):647–663, 2014.



656 B. Ahmad and S.K. Ntouyas

4 Existence Results – The Multi-Valued Case

First of all, we describe basic notions of multi-valued maps and fix our termi-
nology [12,20].

For a normed space (X, ‖·‖), we define Pb(X)={Y ∈ P(X) : Y is bounded}
and

Pcp,c(X) =
{
Y ∈ P(X) : Y is compact and convex

}
.

A multi-valued map G : X → P(X) is convex (closed) valued if G(x) is convex
(closed) for all x ∈ X. The map G is bounded on bounded sets if G(B) =⋃
x∈B G(x) is bounded in X for all B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈
G(x)}} < ∞). G is called upper semi-continuous (u.s.c.) on X if for each
x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and for each open set
N of X containing G(x0), there exists an open neighborhood N0 of x0 such that
G(N0) ⊆ N. G is said to be completely continuous if G(B) is relatively compact
for every B ∈ Pb(X). If the multi-valued map G is completely continuous with
nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

Let L1(Iq) denote the space of all functions f defined on Iq such that

‖x‖L1 =
∫ 1

0
|x(t)|dt <∞.

Definition 2. A multivalued map F : Iq×R→P(R) is said to be Carathéodory
(in the sense of q-calculus) if x 7−→ F (t, x) is upper semicontinuous on Iq.
Further a Carathéodory function F is called L1−Carathéodory if there exists
ϕα ∈ L1(Iq,R+) such that ‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕα(t) for all
‖x‖ ≤ α on Iq for each α > 0.

Definition 3. A function x ∈ C is a solution of the problem (1.2) if x(0) =
x0 + g(x), x(1) = α

∫ ν
µ
x(s)dqs and there exists a function f ∈ L1(Iq,R) such

that it is continuous at t = 0 and f(t) ∈ F (t, x(t)) on Iq, and

x(t) =

∫ t

0

(t− qs) f(s)dqs+
α(1 + q)t

1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)f(r)dqrdqs

− (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)f(s)dqs

+

[
1 +

(1 + q)(α(ν − µ)− 1)t

1 + q − α(ν2 − µ2)

](
x0 + g(x)

)
.

For each y ∈ C, define the set of selections of F by

SF,y :=
{
v ∈ C : v(t) ∈ F

(
t, y(t)

)
on Iq

}
.

The following lemma will be used in the sequel.

Lemma 3. [25] Let X be a Banach space. Let F : J ×X → Pcp,c(X) be an
L1-Carathéodory multivalued map and let Θ be a linear continuous mapping
from L1(J,X) to C(J,X). Then the operator

Θ ◦ SF : C(J,X)→ Pcp,c
(
C(J,X)

)
, x 7→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C(J,X)× C(J,X).
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To prove our main result in this section we will use the following form of
the nonlinear alternative for contractive maps [29, Corollary 3.8].

Theorem 3. Let X be a Banach space, and D be a bounded neighborhood of
0 ∈ X. Let Z1 : X → Pcp,c(X) and Z2 : D̄ → Pcp,c(X) be two multi-valued
operators satisfying

(a) Z1 is contraction, and

(b) Z2 is u.s.c. and compact.

Then, if G = Z1 + Z2, either

(i) G has a fixed point in D̄ or

(ii) there is a point u ∈ ∂D and λ ∈ (0, 1) with u ∈ λG(u).

Theorem 4. Assume that

(H1) F : Iq × R→ Pcp,c(R) is such that x→ F (t, x) is u.s.c. on Iq;

(H2) there exists a continuous nondecreasing function ψ : [0,∞)→ (0,∞) and
a function p ∈ C(Iq,R+) such that∥∥F (t, x)

∥∥
P := sup

{
|y| : y ∈ F (t, x)

}
≤ p(t)ψ

(
|x|
)

for each (t, x) ∈ Iq ×R;

(H3) g satisfies (A2);

(H4) there exists a number M > 0 such that

(1− `Λ1)M

Λ2ψ(M)‖p‖+ Λ1|x0|
> 1, `Λ1 < 1, (4.1)

where

‖p‖ = sup
t∈Iq

∣∣p(t)∣∣, Λ1 = 1 +
(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

,

Λ2 =
1

1 + q
+

|α|
|1 + q − α(ν2 − µ2)|

ν3 − µ3

(1 + q + q2)
+

1

|1 + q − α(ν2 − µ2)|
.

Then the boundary value problem (1.2) has at least one solution on Iq.

Proof. To transform the problem (1.2) into a fixed point problem, we define
an operator N : C −→ P(C) as

N (x) =



h ∈ C :

h(t) =



∫ t

0

(t− qs) f(s)dqs

+
α(1 + q)t

1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)f(r)dqrdqs

− (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)f(s)dqs

+

[
1 +

(1 + q)(α(ν − µ)− 1)t

1 + q − α(ν2 − µ2)

]
(x0 + g(x))


(4.2)
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for f ∈ SF,x.
Next, we introduce two operators A : C −→ C and B : C −→ P(C) as follow:

Ax(t) =

[
1 +

(1 + q)(α(ν − µ)− 1)t

1 + q − α(ν2 − µ2)

] (
x0 + g(x)

)
, (4.3)

B(x) =



h ∈ C :

h(t) =



∫ t

0

(t− qs) f(s)dqs

+
α(1 + q)t

1+q−α(ν2−µ2)

∫ ν

µ

∫ s

0

(s−rq)f(r)dqrdqs

− (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)f(s)dqs


. (4.4)

Observe that N = A + B. We shall show that the operators A and B satisfy
all the conditions of Theorem 3 on Iq. For the sake of clarity, split the proof
into a number of steps and claims.

Step 1. A is a contraction on C. The proof is similar to the one for the
operator Q2 in Step 2 of Theorem 2.

Step 2. B is compact, convex valued and completely continuous. This will be
established in several claims.

Claim I. B maps bounded sets into bounded sets in C. For that, let Br =
{x ∈ C : ‖x‖ ≤ r} be a bounded set in C. Then, for each h ∈ B(x), x ∈ Br,
there exists f ∈ SF,x such that

∣∣h(t)
∣∣ ≤ 1

q + 1
+

|α|(1 + q)

|1 + q − α(ν2 − µ2)|

∫ ν

µ

∫ s

0

(s− rq)
∣∣f(r)

∣∣dqrdqs
+

(1 + q)

|1 + q − α(ν2 − µ2)|

∫ 1

0

(1− qs)
∣∣f(s)

∣∣dqs
≤
{

1

1 + q
+

|α|
|1 + q − α(ν2 − µ2)|

(ν3 − µ3)

(1 + q + q2)

+
1

|1 + q − α(ν2 − µ2)|

}
ψ
(
‖x‖
)
‖p‖.

Consequently, for each h ∈ B(Bq), we have

‖h‖ ≤
{

1

1 + q
+

|α|
|1 + q − α(ν2 − µ2)|

(ν3 − µ3)

(1 + q + q2)

+
1

|1 + q − α(ν2 − µ2)|

}
ψ(r)‖p‖.

Claim II. B maps bounded sets into equi-continuous sets. As before, let Br
be a bounded set and let h ∈ B(x) for x ∈ Br. Let t1, t2 ∈ Iq and x ∈ Br. For
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each h ∈ B(x), we obtain

∣∣h(t2)− h(t1)
∣∣ ≤ ∣∣∣∣∫ t2

0

(t2 − qs) f(s)dqs−
∫ t1

0

(t1 − qs) f(s)dqs

∣∣∣∣
+
|α|(1 + q)|t2 − t1|
|1 + q − α(ν2 − µ2)|

∫ ν

µ

∫ s

0

(s− rq)
∣∣f(r)

∣∣dqrdqs
+

(1 + q)|t2 − t1|
|1 + q − α(ν2 − µ2)|

∫ 1

0

(1− qs)
∣∣f(s)

∣∣dqs.
Obviously the right hand side of the above inequality tends to zero indepen-
dently of x ∈ Br as t2 − t1 → 0. Therefore it follows by the Arzelá-Ascoli
theorem that B : C → P(C) is completely continuous.

Claim III. B has a closed graph. Let xn → x∗, hn ∈ B(xn) and hn → h∗. Then
we need to show that h∗ ∈ B(x∗). Associated with hn ∈ B(xn), there exists
fn ∈ SF,xn

such that for each t ∈ Iq,

hn(t) =

∫ t

0

(t− qs) fn(s)dqs

+
α(1 + q)t

1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)fn(r)dqrdqs

− (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)fn(s)dqs.

Then we have to show that there exists f∗ ∈ SF,x∗ such that for each t ∈ Iq,

h∗(t) =

∫ t

0

(t− qs) f∗(s)dqs

+
α(1 + q)t

1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)f∗(r)dqrdqs

− (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)f∗(s)dqs.

Let us consider the continuous linear operator Θ : L1(Iq,R)→ C given by

f 7→ Θ(f)(t) =

∫ t

0

(t− qs) f(s)dqs

+
α(1 + q)t

1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)f(r)dqrdqs

− (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)f(s)dqs.

Observe that∥∥hn(t)− h∗(t)
∥∥ =

∥∥∥∥∫ t

0

(t− qs)
(
fn(s)− f∗(s)

)
dqs
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+
α(1 + q)t

1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)
(
fn(r)− f∗(r)

)
dqrdqs

− (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)
(
fn(s)− f∗(s)

)
dqs

∥∥∥∥→ 0

as n→∞. Thus, it follows by Lemma 3 that Θ◦SF is a closed graph operator.
Further, we have hn(t) ∈ Θ(SF,xn

). Since xn → x∗, therefore, we have

h∗(t) =

∫ t

0

(t− qs) f∗(s)dqs

+
α(1 + q)t

1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)f∗(r)dqrdqs

− (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)f∗(s)dqs

for some f∗ ∈ SF,x∗ . Hence B has a closed graph (and therefore has closed
values). In consequence, the operator B is compact valued.

Thus, the operators A and B satisfy hypotheses of Theorem 3 and therefore,
by its application, it follows either condition (i) or condition (ii) holds. We show
that the conclusion (ii) is not possible. If x ∈ λA(x) + λB(x) for λ ∈ (0, 1),
then there exists f ∈ SF,x such that

x(t) = λ

∫ t

0

(t− qs) f(s)dqs

+ λ
α(1 + q)t

1 + q − α(ν2 − µ2)

∫ ν

µ

∫ s

0

(s− rq)f(r)dqrdqs

− λ (1 + q)t

1 + q − α(ν2 − µ2)

∫ 1

0

(1− qs)f(s)dqs

+ λ

[
1 +

(1 + q)(α(ν − µ)− 1)t

1 + q − α(ν2 − µ2)

] (
x0 + g(x)

)
.

Consequently, we have∣∣x(t)
∣∣ ≤ 1

q + 1
+

|α|(1 + q)

|1 + q − α(ν2 − µ2)|

∫ ν

µ

∫ s

0

(s− rq)
∣∣f(r)

∣∣dqrdqs
+

(1 + q)

|1 + q − α(ν2 − µ2)|

∫ 1

0

(1− qs)
∣∣f(s)

∣∣dqs
+

[
1 +

(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

] [
|x0|+ `‖x‖

]
≤

{
1

1 + q
+

|α|
|1 + q − α(ν2 − µ2)|

(ν3 − µ3)

(1 + q + q2)

+
1

|1 + q − α(ν2 − µ2)|

}
ψ
(
‖x‖
)
‖p‖

+

[
1 +

(1 + q)|α(ν − µ)− 1|
|1 + q − α(ν2 − µ2)|

] [
|x0|+ `‖x‖

]
.



BVP for Nonlocal q-Difference Equations & Inclusions 661

If condition (ii) of Theorem 1 holds, then there exists λ ∈ (0, 1) and x ∈ ∂Br
with x = λN (x). Then, x is a solution of (4.2) with ‖x‖ = M. Now, by the last
inequality, we have

(1− `Λ1)M

Λ2ψ(M)‖p‖+ Λ1|x0|
≤ 1,

which contradicts (4.1). Hence, N has a fixed point in Iq by Theorem 3, and
consequently the problem (1.2) has a solution. This completes the proof. ut

Remark 1. Notice that the condition L0 < 1 can be neglected if we use the well-
known Bielecki’s renorming method [19]. In this case, the assumption (H3) can
be fixed accordingly.

Remark 2. If ψ satisfies a sublinear condition or more generally

lim
ξ→∞

ξ

Λ2ψ(ξ)‖p‖+ Λ1|x0|
> 1− `Λ1,

then the existence of M in (H4) is guaranteed.

Example 3. Consider the following inclusion problem
D2
qx(t) ∈ F

(
t, x(t)

)
, t ∈ Iq,

x(0) =
1

3
+

1

3
x(ti), x(1) = 4

∫ 1/2

1/3

x(s)dqs, ti ∈ Iq.
(4.5)

Here, x0 = 1/3, ` = 1/3, α = 4, µ = 1/3, ν = 1/2, and F : Iq × R → P(R)
is a multivalued map given by

x→ F (t, x) =

[
1

9

|x|3

|x|3 + 3
,

1

20

|x|
|x|+ 1

]
.

For f ∈ F, we have

|f | ≤ max

(
1

9

|x|3

|x|3 + 3
,

1

20

|x|
|x|+ 1

)
≤ 1

9
, x ∈ R.

Thus, ∥∥F (t, x)
∥∥
P := sup

{
|y| : y ∈ F (t, x)

}
≤ 1

9
= p(t)ψ

(
‖x‖
)
, x ∈ R

with p(t) = 1, ψ(‖x‖) =
1

9
. Using the given data together with the condition

(H4), it is found that

M >
19(1 + q) + (1 + q + q2)(34 + 75q + 2q2)

15(1 + q)(1 + 3q)(1 + q + q2)
.

Clearly, all the conditions of Theorem 4 are satisfied. So there exists at least
one solution of the problem (4.5) on Iq.
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