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Abstract. In this paper, we study boundary value problems for g-difference equa-
tions and inclusions with nonlocal and integral boundary conditions. Some new exis-
tence and uniqueness results are obtained by using a variety of fixed point theorems.
Examples are given to illustrate the results.
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1 Introduction

The study of g-difference equations, initiated by Jackson [22,23], Carmichael
[11], Mason [27] and Adams [1] in the first quarter of 20th century, has been
developed over the years, for instance, see [15,17]. The g-difference equations
and operators have extensively been investigated in the context of quantum cal-
culus. In fact, g-calculus (quantum calculus) has a rich history and the details
of its basic notions, results and methods can be found in the text [24]. Apart
from the traditional treatment of quantum calculus, many interesting ques-
tions and problems, especially from theoretical point of view, either remained
open or were partially answered. In recent years, the topic has attracted the
attention of several researchers and a variety of new results can be found in
the papers [2,3,4,5,6,8,13,14, 16, 18,21,26]. However, there are many aspects
of boundary value problems of g-difference equations that need attention. For
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instance, g-difference equations with nonlocal and integral boundary conditions
are yet to be addressed.

In this paper, motivated by some recent theoretical work on the topic, we
study the existence and uniqueness of solutions continuous at 0 for a boundary
value problem of nonlinear g-difference equations with nonlocal and integral
boundary conditions given by

DZx(t) = f(t,x(t)), tel,

z(0) =zp +g(z), =z(1)= a/y z(s)dgs, xo €R, (1.1)

where f € C(I; x R,R) is such that f(t,z(t)) is continuous at ¢t = 0, I, =
{¢" :neN}uU{0,1}, ¢ € (0,1) is a fixed constant and pu,v € I, with p < v,
thatis, p = ¢", v =¢",n1 > ng,n1,ne €N, g: C(Iy,R) - Rand o # V%fz
In (1.1), for the sake of brevity, we write g(z) = g(x(t;)), t; € Iy, for example,
g(z) = >, ciz(t;). We emphasize that the nonlocal conditions of the form
x(0) = zg+g(x) are found to be more useful than the standard initial conditions
to describe some physical phenomena. For more details we refer to the work
by Byszewski [9,10].

In Section 3, we present the existence results for the problem (1.1). The
first result is based on Banach’s contraction principle and the second one on a
fixed point theorem due to O’'Regan. Concrete examples are provided for the
illustration of the established results.

In Section 4, we consider a multi-valued analogue of problem (1.1) given by

3.

Dlx(t) € F(t,x(t), tel,,
z(0) =xzo 4+ g(x), x(1)= a/ z(s)dys,

where F' : I, x R — P(R) is a multivalued map, P(R) is the family of all
nonempty subsets of R. The existence of solutions for the problem (1.2) is
shown by applying the nonlinear alternative for contractive maps.

(1.2)

2 Preliminaries

Let us recall some basic concepts of g-calculus [7,17,24].
Let 0 < ¢ <1, and f a function defined on a ¢-geometric set A, i.e. gt € A
for all ¢t € A. The g-difference operator is defined by

f(t) — f(qt)
D fty=4 (-t 0 reA
nlggof(ng;f()’ t=0,

provided that the limit exists and does not depend on t. The higher order
g-derivatives are given by

Dyf(t)=f(t),  Dyf(t)=DeDy~'f(t), neN.
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The Jackson g-integration [22] is

a 0 b b a
| 10di=at-0 S as@). [ s [ i [ oo,

where a,b € A, provided that the series converge. Here we remark that the
integral f; f(t)d4(t) is understood as a right inverse of the g-derivative.

For 0 € A, f is called g-regular at zero if lim,_,~ f(t¢™) = f(0) for every
t € A, t #0. It is important to note that continuity at zero implies ¢-regularity
at zero but the converse is not true (see an example on page 7 in [7]).

DEFINITION 1. Let f be a function defined on a g-geometric set A. Then f is
g-integrable on A if and only if fot fp)dgp exists for all t € A.

The g-integration by parts rule is

b b
/ w(qt) Dyv(t)dgt = u(B)o(b) — u(a)v(a) + / Dyultyo(t)dt,

provided that u and v are g-regular at zero functions.
Let f be a g-regular at zero function defined on a g-geometric set A con-
taining zero. Then

F(z)z/zf(s)dqs7 z€eA

is g-regular at zero, where c is a fixed point in A. Furthermore, D, F'(2) exists
for every z € A and
D,F(z) = f(z), z¢€A.

Conversely, if a and b are two points in A, then

b
[ Dus(e)dys = 5(6) - 1(@.

In the sequel, we denote by C = C(I,;,R) the space of all functions from
I, — R which are continuous at 0.

l/2

Lemma 1. Let o # 1:32 and let y € C(I4,R). Then boundary value problem
DZx(t) =y(t), tely,

v

2(0) =zo + g(x), z(1)= a/ xz(s)dqs, p<v, pvel, (2.1)
“w

1s equivalent to a g-integral equation

B t Oé(]."‘q)t
2(t) _/ (t —gs) y(s)dgs + 1+q—a@?—p2)

0
>< / [ raoidrdys - - C /Olu—qs)y(s)dqs

14+¢q—a(w? —pu?
1+ g)(av—p) = 1)t
14+q¢—aw?—u?)

+ [1 + (zo + g(x)). (2.2)
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Proof. As argued in [7], a solution continuous at zero of the equation D}z(t) =
y(t) can be written as

t
z(t) = / (t—gqs)y(s)dgs +cot +c1, tely, (2.3)

0
where cg, ¢ are constants (for functions not necessarily continuous at zero, the

constants cg,c; are g-periodic functions [7]). Using the boundary conditions
given in (2.1), we find that ¢; = z¢ + g(x) and

1
k] // (s —rq)y(r)dgrdys
1+q—a(?—p?)

_ /0 (1 —gs)y(s)dys + (a(u — ) — 1) (xo + g(m)) .

Co =

Substituting cp, ¢; in (2.3), we obtain (2.2). The converse follows by applying
the operator Dy on (2.2) and using the g-integration by parts formula. O

3 Existence Results — The Single-Valued Case

In view of Lemma 1, we introduce an operator Q : C — C as
t
(Qo)(6) = [ (= 45) £ (s 2(5))dys
0
1 t vorse
+ a(l+q) / / (s—rq)f(r, x(r))dqrdqs
w JO

14+q—aw?—u?)
(I+qg)t /1
— 1- d
1+q—a(?—p2) J, (1= gs)f(s,2(s))dgs
1 — ) — 1)t
4y Atolev=p -1
1+q—a@®—p?)
Observe that the operator Q defined by (3.1) is well defined in view of the
definition of the function f and (1.1) has a solution if the operator equation

Qx = x has a fixed point.
Define two operators from C — C as

J @0+ gta) (3.1)

(@a)(0) = [ (t=03) flsv(s)) s
a(l+q)t
+1+q—0¢u2—u //sfrq ro:())drds

B (I+q)t
14 q— a(v?

_Mz)/o (1—qs)f(s,z(s))dgs, tel, (32)

and

(1+qg)(alv —p) = 1)t
1+q—a?—pu?)

(Qx)(t) = 1+ ] (o +g(x)), tel,. (3.3)



BVP for Nonlocal q-Difference Equations & Inclusions 651

Clearly
(Qz)(t) = (Quz)(t) + (Qax)(t), €I, (3.4)

In the forthcoming results, the functions f and g are taken to be the same
as defined in the problem (1.1).

Theorem 1. Assume that
(Al) |f(ta ‘T) - f(tay” S L|£L’ - y|) vt € Iq; L> 0; z, Yy S ]R;
(A2) g : C = R is such that |g(u) — g(v)| < L||u —v|| Yu,v € C with

(1+q)a(v —p) - 1@1.
T+q—a@?—p2)]]

g<[1+
1 || (v® — 1) 1 }

As) v =L T +
(4s) {1+q N+g—a@®—p?)|(Q+q+¢*) |1+qg—a@?—pu?)

(1+ ol — ) — 1]
I1+q—a(v2—u2)|] <t

+£{1+

Then the boundary value problem (1.1) has a unique solution.

Proof. In view of the definition of Q and assumptions (A;) and (Asz), for
z,y € C and for each t € I, we obtain

|(Qx)(t) — (Qy)(1)]
t la|(1 4+ q)
< /0 (t— qs)|f(5,93(5)) — f(57y(5))|dqs+ 1+q—a(?— 12

xA"(As<s—qm>\f(m7x<m>) () g s

1+q
+|1—|—q |/ |fsx ) f(sy())‘ds

1+ glo-m-1],
|1+q—a<u2—u2>]| (=) = 90)

+ [1+
SLIIw—yII{/Ot(t—qs)qu
’ |1+q|a—|(014(41:2q)—u 2)] /V (/S(S_qm)d m>dq5

+
| |

(1+g)|a(v —p) — 1] B
* {” |1+q—a(v2—u2)]€”x ol

3 3
SL{ 1 . || (v’ —p?)
I+q [1+g—a@?—p)|(1+q+q?)
1 (1+q)|a(v —p) —1]
+ =yl + |1+
|1+q—a(v2—u2)l} vl { I1+q—a(v? —pu?)

ng_y”7
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and hence taking the norm on I, yields
1Qx — Qyll < ~llz -yl

As v < 1 by (Aj), therefore Q is a contraction map from the space C into
itself. Thus, the conclusion of the theorem follows by the contraction mapping
principle (Banach fixed point theorem). 0O

Next, we introduce a fixed point theorem due to O’Regan [28] which will
be used to prove the next result.

Lemma 2. Denote by U an open set in a closed, convexr set C' of a Banach
space E. Assume 0 € U. Also assume that F(U 7) is bounded and that F : U — C
is given by F' = Fy + Fs, in which Fy : U — FE is continuous and completely
continuous and Fy : U — E is a nonlinear contraction (i.e., there exists a
nonnegative nondecreasing function ¢ : [0,00) — [0, 00) satisfying ¢(z) < z for
z > 0, such that ||Fy(z) — Fa(y)|| < ¢(||x — yl|) for all z,y € U). Then, either

(C1) F has a fized point uw € U; or

(C2) there exist a point u € OU and X € (0,1) with u = AF(u), where U and
U, respectively, represent the closure and boundary of U.

Let 2, = {x € C: ||z|| < r} and denote the maximum number by
M, = max{|f(t,z)| : (t,z) € I x [-r,7]}.
Theorem 2. Suppose that (A1) and (As) hold. In addition we assume that
(A1) 9(0) = 0;

(A5) there exists a nonnegative function p € C and a nondecreasing function
¥ :[0,00) — [0,00) such that

‘f(t,u)‘ < p(t)¢(|u|) for any (t,u) € I, X R;

1
(Ap) SUP,.¢(0,00) k0|xo|lpow(7,) > Tt where

Po = /0 (1 —gs)p(s)dqs + (1 +2Q)_ 112)] /V /OS(S —r@)p(r)dgrdys

14+ q—alv
(1+q) /
T g a@ =) s
and
1 —p)—1
w1y (@l —p) — 1]

1+q—a@?—p?)|

Then the boundary value problem (1.1) has at least one solution on I,.
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Proof. Consider the operator Q : C — C defined by (3.4), that is,
(Qx)(t) = (Quz)(t) + (x)(t), tey,

where the operators Q; and Qs are respectively defined by (3.2) and (3.3).
From (Ag) there exists a number ¢ > 0 such that

To > 1
kolzo| + potp(ro) = 1 — kol

We shall prove that the operators Q; and Qs satisfy all the conditions of
Lemma 2. Our proof consists of a series of steps.

(3.5)

Step 1. The operator Qi is continuous and completely continuous. We first
show that Q((2,,) is bounded. For any = € §2,,, we have

H%MéAa—wwww®WM
|a‘ —qgm m.,x\m m S
+|1+q7a1/2—,u )|, (/ 574 >‘f( 2 ( >)‘dq )dq

1+q
d
e f, 0 el
1 |af (v* =)

< M, T
- °{1+q 14+q—a?—p?)| (1+q+q?)

1
+ .
|1+q—a(v2—u2)|}

This shows that Q;({2,,) is uniformly bounded.
In addition, for any t;,ts € I, we have

[(Qu)(t2) — (Qu)(t)]
/Qm—ww( mwsf/Wm—Mf@MM%s
0

|o<|(1+q |t2—t1 / /
+1+q—al/2—,u s rq|f7‘3; )|d7‘ds

(1+q)|t2 — 14
%A(“”Wﬂ&ﬂmwﬁ

1+g—a(?—pu
12
/ (ta — gs)dys
ty

ty
/ (tg —tl)dqs
0

ol q)lts—tal [T
M, )/u/w 9)dgrd,

°|1+q—a(v2—u

e

<

S M’r’o + MT‘O

which is independent of x, and tends to zero as t; —t; — 0. Thus, Q; is
equicontinuous. Hence, Arzela-Ascoli theorem applies and thereby we conclude

Math. Model. Anal., 19(5):647-663, 2014.
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that Q1 ((2,,) is compact and hence completely continuous. Now, let z,, C £2;.,
with ||z, — z|| = 0. Then the limit |z, (¢) — 2(t)| — 0 is uniformly valid on I,.
From the uniform continuity of f(¢,z) on the compact set I, x [—rg,ro], it
follows that || f(¢,zn(t)) — f(¢,2(¢))|| — O uniformly on I,. Hence ||Qix, —
Q1z|| = 0 as n — oo which proves the continuity of Q;. Hence Step 1 is
complete.

Step 2. The operator Qs : 2., — C is contractive. This is a consequence of
(Asz). Indeed, we have

(@aa)(0) - (@an(0)] = |[1+ LD I fg(0) - g0
(1 -+l —p) — 1]
S e e e

Taking the supremum over ¢ € I, we get
(1+g)a(v —p) = 1]
1+q—a@?—p?)
Step 3. The set Q(£2,,) is bounded. By (A) and (Ay4), we get
(1+gla(v—mp) =1
14
Jata] < (1 DI (oo 440

for any 2 € (2,,. This, with the boundedness of the set Qi(f2,,) implies that
the set Q(£2,,) is bounded.

Step 4. The case (C2) in Lemma 2 does not hold. To this end, we suppose
that (C2) holds. Then, we have that there exist A € (0,1) and = € 942, such
that x = AQx. So, we have ||z|| = r¢ and

mwAAthgﬂ&ﬂ@Mﬁ
+ A all+a)t // s —r1q)f(r,z(r))dgrdys

1+q—a?—pu?)

(1+Q) —qs S,x(Ss S
1+q7a(’/2*l12)/0(1 Q)f(7 ())dq

1 a(v—p) —1)t
ErE e )
With hypotheses (A4)—(4s), we have

ro < 1/1(7”0){/01(1 — s)p(s)dys

+ o1 +9) // s—r d,rd,s
I14+q— a(v? — p?)| 0 Dp(r)dqrd,
(1+4q) /
+ S
1+q—a? —p?)| q}

(4 Qlaw - — 1]
" [1+ |1+qa(y2u2)|} (|950| -l-&“o)7

||Q2x—Q2yH SL()HLL'_?/H7 Ly := |:1—‘r :|€< 1.

- A

+A[1+
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which implies that
ro < kolro + kolzo| 4 pot)(ro).

In consequence,
To 1
< )
kolxo| +potp(ro) — 1 — kol
which contradicts (3.5). Thus, the operators Q; and Qs satisfy all the condi-

tions of Lemma 2. Hence, the operator Q has at least one fixed point = € £2,,,
which is the solution of the problem (1.1). O

Now we give concrete examples for the illustration of our results.

Ezxample 1. Consider the following boundary value problem

1 1 |z]
D2x(t) = — 1 t, tel
qx<) 4(t+2) 1+‘x|+ + sin® € g,
z(0) =1+ —z(t;), =z(1)= 4/ xz(s)ds, t; € 1.

Here £ = 1/16,a = 4,5 =1/3,v = 1/2, and f(t,7) = } ;7 1oy +1+sm t.
As |f(t,z) = f(t,y)| < 15| —y|, therefore (A}) is satisfied with L = 1. Using

the given data together with the assumption (As): v < 1, we obtain

24q 194184 +q)(1+q+¢?)
1+¢q 6(4+9¢)(1+ g+ ¢?)

< 16,

which is true for 0 < ¢ < 1. Thus, all the conditions of Theorem 1 are satisfied.
Hence, the conclusion of Theorem 1 applies to the problem (3.6).

Ezample 2. Let 8 > 0 and consider the following problem

Dgx(t) = fBsin’z, te 1,

1 1/2 (3.7)
z(0) = — +Lx(t;), z(1)= 4/ x(s)ds, t; €I,
4 1/3
where 8 = 3/25, £ =1/25, p = 1/3, v = 1/2. We shall show that the problem
(3.7) admits at least one solution. Clearly |f(t,z)| < |3sin®z| < fz?, for any
(t,x) € I, x R. Setting p(t) = B and ¢(x) = 22, it is easy to find that

1 9 19 7+ 12
= + —"—]_ s k = s
Po [1+q 4+9Q(54(1+q+q2) )]ﬁ *T 4+9q

while the condition (Ag) gives vkopo + kol < 1, which holds for 0 < ¢ < 1.
Therefore, by Theorem 2, we conclude that problem (3.7) has at least one
solution on I,.

Math. Model. Anal., 19(5):647-663, 2014.
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4 Existence Results — The Multi-Valued Case

First of all, we describe basic notions of multi-valued maps and fix our termi-
nology [12,20].
For a normed space (X, ||-||), we define Pp(X)={Y € P(X) : Y is bounded}
and
Pep,e(X) ={Y € P(X) : Y is compact and convex}.

A multi-valued map G : X — P(X) is convex (closed) valued if G(x) is convex
(closed) for all z € X. The map G is bounded on bounded sets if G(B) =
U,er G(x) is bounded in X for all B € Pp(X) (ie. sup,cg{sup{ly| : y €

()}} < o0). G is called upper semi-continuous (u.s.c.) on X if for each
xo € X, the set G(z) is a nonempty closed subset of X, and for each open set
N of X containing G(zg), there exists an open neighborhood Ny of 2 such that
G(N) € N. G is said to be completely continuous if G(B) is relatively compact
for every B € P,(X). If the multi-valued map G is completely continuous with
nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
ie., Tn = Tu, Yn = Ys, Un € G(zy) imply y. € G(x4).

Let Ll( ,) denote the space of all functions f defined on I, such that

Izl s = [y l(®)]dt < oc.
DEFINITION 2. A multivalued map F : I, xR—P(R) is said to be Carathéodory
(in the sense of g-calculus) if # —— F(t,x) is upper semicontinuous on I.
Further a Carathéodory function F is called L!'—Carathéodory if there exists
0o € LY(1,,RT) such that ||F(t,z)| = sup{|v| : v € F(t,x)} < ¢q4(t) for all
|lz|]| < @ on I, for each o > 0.

DEFINITION 3 A function x € C is a solution of the problem (1.2) if z(0) =
zo + g(x) = af s)dys and there exists a function f € L'(I,,R) such
that it is Contlnuous at t =0 and f(t) € F(t,z(t)) on I, and

x(t)z/o(t—QS)f(S)dqs+1+q 1+I/q2—/J, //s—rq r)dgrdgs

(1+q)t 1
e Jy (4

I+ g)(a(v —p) —1)t
+ [1+ T+ q—al? — ) }(xo + g(z)).

For each y € C, define the set of selections of F' by
yi={veC:v(t) € F(ty(t)) on I }.

The following lemma will be used in the sequel.

Lemma 3. [25] Let X be a Banach space. Let F': J X X — Pep (X) be an
L'-Carathéodory multivalued map and let © be a linear continuous mapping
from LY(J, X) to C(J, X). Then the operator

O o Sp:C(J,X) = Pep(C(J, X)), z— (00Sp)(x)=0(Sks)
is a closed graph operator in C(J, X) x C(J, X).
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To prove our main result in this section we will use the following form of
the nonlinear alternative for contractive maps [29, Corollary 3.8].

Theorem 3. Let X be a Banach space, and D be a bounded neighborhood of

0€ X. Let Zy : X — Pepe(X) and Zo : D — Pep o(X) be two multi-valued
operators satisfying

(a) Z1 is contraction, and

(b) Z3 is u.s.c. and compact.
Then, if G = Z1 + Zs, either

(i) G has a fived point in D or

(ii) there is a point uw € 0D and X € (0,1) with u € AG(u).
Theorem 4. Assume that
(H1) F : I, x R — Pep o(R) is such that x — F(t,x) is u.s.c. on Iy;

(Hs) there exists a continuous nondecreasing function ¢ : [0,00) — (0,00) and
a function p € C(I,,RT) such that

||F(t,x)||P =sup{ly| 1y € F(t,x)} <p(t)y(|z]) for each (t,x) € I; x R;
(Hy) g satisfies (Ao);
(Hy) there exists a number M > 0 such that

(1—A)M
Aop(M)|Ipl| + Axzo]

>1, 1A <1, (4.1)
where
(1+g)la(v —p) — 1
[1+q—a?—p?)|’
1 o v — B 1
Ay = + | |2 2 g T 2 DY
l+q [M+q—a@—p?)|(1+q+¢) [N+q—a@®—p?)

Ipll = sup|p(t)],  Ar=1+
tel,

Then the boundary value problem (1.2) has at least one solution on I,.

Proof. To transform the problem (1.2) into a fixed point problem, we define
an operator N : C — P(C) as

hecC:
/0 (t —gs) f(s)dgs
all ot [ —rq)f(r)dsrd,s
N($) = h(t) _ + 14+qg— Oé(V2 _ ,UQ) /M /O (8 Q)f( )dq dq
(1+q)t 1
144 I a(v? —p?) Jo (11 qs)f(s)dys
" {1 + 1++q;(f (;(yzu_) Mz))t} (w0 + g())

(4.2)

Math. Model. Anal., 19(5):647-663, 2014.
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for f € Spq.
Next, we introduce two operators A : C — C and B : C — P(C) as follow:
(L4 q)(a(v —p) — 1)t
= 1 4.
Az(t) [ T g —al? 2 (z0 + g(x)), (4.3)
heClC:

| = as) 51
B(z) = h(t) = e all +9)t //s rq) f(r)dgrdgs (- (4.4)

1+q—a(v?—

(1+4q)
1+q—04(y2_u2)/0 (1 —gs)f(s)dgs

Observe that N' = A + B. We shall show that the operators A and B satisfy
all the conditions of Theorem 3 on I,. For the sake of clarity, split the proof
into a number of steps and claims.

Step 1. A is a contraction on C. The proof is similar to the one for the
operator Qs in Step 2 of Theorem 2.

Step 2. B is compact, convexr valued and completely continuous. This will be
established in several claims.

CrLAM 1. B maps bounded sets into bounded sets in C. For that, let B, =
{x € C:|z|| < r} be a bounded set in C. Then, for each h € B(z),r € B,,
there exists f € Sg, such that

1 lal(1+q) // B
|h(t)|§q+1+\l+q—au2—/¢\ s rq’f |drds

(1+9q)
|1+q_a1/2_/14 |/ q8)|f($)‘dq3

<{ + ‘Oél (V3 /1,3)
A e [ e
1
+ rre—amr = e Uil

Consequently, for each h € B(B,), we have

1 lo% 3 — s
i< { o + o i)
I+qg [MT+g—a@ —p?)|(1+q+q?)

1
e e AL

CrAw I1. B maps bounded sets into equi-continuous sets. As before, let B,
be a bounded set and let h € B(z) for x € B,. Let t1,ts € I, and = € B,. For
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each h € B(x), we obtain

[h(tz) — h(t:)| ’/hb—ﬂ@fUdS—/h@rw@fU%s
|O‘(Hq|t2t1|// (s — 1) £(r)|dyrdys

1+q—a(?—2)

+ (1—gs ds
|1+q—o¢u2—u ) Jo q |f |

Obviously the right hand side of the above inequality tends to zero indepen-
dently of x € B, as to —t; — 0. Therefore it follows by the Arzeld-Ascoli
theorem that B : C — P(C) is completely continuous.

Cra II1. B has a closed graph. Let x,, — x, hy, € B(x,,) and h,, — h.. Then
we need to show that h, € B(x.). Associated with h,, € B(x,), there exists
fn € Sk, such that for each t € I,

ho(t) = /O (t —qs) fu(s)dys

a(l+q)t
— n(r)dgrd,
+1+‘J*0"/2*H // s —1q) fn(r)d,rdys

1+ a)t A(Lwﬁth

S ltg—a(®—p?)

Then we have to show that there exists f. € Sp,, such that for each ¢ € I,
t
ha(t)= [ (0= a5) £.(5)dys
0
1 + t v S
s [ [ e s
uw JO

14+q—a@?—pu?

_ (1+q)t ! I
1+q_a(yz_uz)/0 (1 —gs)fe(s)dy

Let us consider the continuous linear operator © : L!(I,,R) — C given by

fH@ﬂ@zAUfwﬁ®%5
all +q)t T —rq)f(r)d,rd,s
1+q0‘(V2#2)/u /0(5 q)f(r)dgrdg

— (1+a)t 1 —qs)f(s)dys
1+q—o¢(1/2—u2)/0(1 qs)f(s)dgs.

Observe that

e = a0 = | [ 6= 09 () = £:9) s

Math. Model. Anal., 19(5):647-663, 2014.
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e, [, o) - £ s
U [0 a9) (o) ~ ()
0

It g—a(® —p?)

as n — 00. Thus, it follows by Lemma 3 that @ o Sg is a closed graph operator.
Further, we have h,(t) € ©(SFy, ). Since x, — x,, therefore, we have

() = [ (= a5) £

a(l+q)t
— «(r)dgrd,
+1—|—q—a1/2—y //S rq) f«(r)dgrd,s

(1+49)
_1+q_a(1/2_u2)/0( qs)f+(s)dqs

for some f. € Sp,,. Hence B has a closed graph (and therefore has closed
values). In consequence, the operator B is compact valued.

Thus, the operators A and B satisfy hypotheses of Theorem 3 and therefore,
by its application, it follows either condition (i) or condition (ii) holds. We show
that the conclusion (ii) is not possible. If z € AA(z) + AB(z) for A € (0,1),
then there exists f € Sg, such that

t):/\/o (t — gs) F(5)dys
a(1+q)t ’ ) — T T rad,S
et [ ) e,
B (1+q)t "1 oo foVd.s
A [ a-area,

1+q—a?—p?

A {1 N (1+g)(a(v —p) - 1)1 (20 + ().

1+q—a(?—p?)

Consequently, we have

1 laf (1 + q) Yol
|m(t>| = qg+1 + 1+q—a@?—p?) /u /0 (S_TQ)’f(T)‘dqrdqs

(1
+ +4) / ‘ds
u+q—aﬂ—u|

(I +g)la(v —p) -1
M {1+ 1+ q— a(r? _MZ)J [|m0| Jr6”5””]

{ 1 o (% — i)

<

+
I+qg [t+g-a(@?—p?)[(1+q+¢%)

1
N I1+q—a@?—pu?) }7/1(||£U|)||p||

(1+g)la(v —p) -1
+ {14_ I1+q—a(? N2)|} [|$0|+g||$”]
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If condition (ii) of Theorem 1 holds, then there exists A € (0,1) and = € 9B,
with 2 = AN/ (z). Then, z is a solution of (4.2) with |z|| = M. Now, by the last

inequality, we have
(1—2A)M

Aop(M)||pll + Ar|xo| —

which contradicts (4.1). Hence, A has a fixed point in I, by Theorem 3, and
consequently the problem (1.2) has a solution. This completes the proof. O

Remark 1. Notice that the condition Ly < 1 can be neglected if we use the well-
known Bielecki’s renorming method [19]. In this case, the assumption (H3) can
be fixed accordingly.

Remark 2. If ¢ satisfies a sublinear condition or more generally

lim ¢

>1—/4Aq,
é=00 At (€)[p]l + Ax o] !

then the existence of M in (H,) is guaranteed.
Ezxample 3. Consider the following inclusion problem
Dlx(t) € F(t,x(t), tel,,
1 1 1/2 (4.5)
#(0) = 5 + galt), #(1) = 4/ w(s)dys, t; €1,

1/3

Here, 20 =1/3, ¢ =1/3,a =4, pu=1/3, v =1/2,and F : [, x R — P(R)
is a multivalued map given by

a:—>F(t,x):[1 M }

9 x> +3720x[+1

For f € F, we have

7 < max( L 201l
- 9|z +3"20|z|+1

IN

1
§, IGR

Thus,

|F(t.2)||, :=sup{ly| 1y € F(t,2)} < < =p(t)(|z])), z€R

Nl

1
with p(t) = 1, ¥(||z|]) = 9 Using the given data together with the condition
(Hy), it is found that

19(1+¢q) + (1 4+ g+ ¢*) (34 + 75q + 2¢°)

M= 15(1 +q)(1 4 3¢)(1 4+ ¢ + ¢?)

Clearly, all the conditions of Theorem 4 are satisfied. So there exists at least
one solution of the problem (4.5) on I,.

Math. Model. Anal., 19(5):647-663, 2014.
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