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Abstract. In this paper, the existence of solitary waves and periodic waves to a
perturbed generalized KdV equation is established by applying the geometric sin-
gular perturbation theory and the regular perturbation analysis for a Hamiltonian
system. Moreover, upper and lower bounds of the limit wave speed are obtained.
Some previous results are extended.
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1 Introduction

Many nonlinear wave equations have been presented in fields such as physics,
chemistry, biology, mechanics, optics, etc. For a long time, the KdV equation
has attracted much attention due to its significant nature in physical contexts,
stratified internal waves, ion-acoustic waves, plasma physics [1,11]. There exists
a lot of investigation on explicit and exact solitary wave solutions to the KdV
equation, for instance, [2,8,9]. Recently, many researchers have paid attention
to the perturbed and generalized KdV equation, for example, [3, 4, 5, 7, 10, 13,
14,15,16,17,18,19].

In this paper, we consider the perturbed generalized KdV equation

ut + unux + uxxx + ε(uxx + uxxxx) = 0, (1.1)
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where n > 0 is an integer and ε > 0 is a perturbation parameter. Clearly, when
ε = 0, Eq. (1.1) becomes the generalized KdV equation

ut + unux + uxxx = 0. (1.2)

When n = 1, Eq. (1.1) and (1.2) are reduced to the perturbed KdV equation

ut + uux + uxxx + ε(uxx + uxxxx) = 0, (1.3)

and the KdV equation
ut + uux + uxxx = 0, (1.4)

respectively. Ogawa [17] solved two problems for Eq. (1.3). One is the per-
sistence of solitary waves and periodic waves, and the other is the wave speed
selection principle. It is well known that for arbitrary positive wave speed c,
Eq. (1.4) has a solitary wave solution

u(x, t) = 3c sech2

√
c

2
(x− ct).

However, Ogawa [17] showed that for each sufficiently small ε > 0, Eq. (1.3) has
only one solitary wave solution with a uniquely determined speed. These soli-
tary wave solutions converge to the solitary wave solution of the KdV equation
with a uniquely determined limit speed as ε tends to zero.

In this paper, our purpose is to extend Ogawa’s results [17] to Eq. (1.1).
The remaining part is organized as follows. Section 2 is devoted to some pre-
liminary discussion and the main theorem. In Section 3, the geometric singular
perturbation theory and the regular perturbation analysis for a Hamiltonian
system are used to investigate the existence of solitary wave solutions and pe-
riodic wave solutions of Eq. (1.1). In Section 4, the Abelian integral theory is
used to analysis the limit speed, and the implicit function theorem is applied
to prove our main theorem. This paper ends with a brief conclusion.

2 Our Main Result

In this section, we state the main result of this paper.
For given constant c > 0, substituting u = ϕ(ξ) with ξ = x− ct into (1.1),

it follows that

−cϕ′(ξ) + ϕnϕ′(ξ) + ϕ′′′(ξ) + ε
(
ϕ′′(ξ) + ϕ′′′′(ξ)

)
= 0. (2.1)

Integrating this equation and setting the integral constant to be zero, we have

−cϕ(ξ) +
1

n+ 1
ϕn+1(ξ) + ϕ′′(ξ) + ε

(
ϕ′(ξ) + ϕ′′′(ξ)

)
= 0. (2.2)

Moreover if we perform the scale transformations ϕ = n
√
cψ and ξ = τ/

√
c to

(2.2), the final equation is given as

−ψ(τ) +
1

n+ 1
ψn+1(τ) + ψ′′(τ) + ε

(
1√
c
ψ′(τ) +

√
cψ′′′(τ)

)
= 0. (2.3)
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If we obtain a solution ψ(τ) of (2.3) for some ε > 0 and c > 0, then the
corresponding ϕ(ξ) is a solution of (2.1), that is, a traveling wave solution to
the original equation (1.1).

Now the unperturbed equation of (2.3) is

−ψ(τ) +
1

n+ 1
ψn+1(τ) + ψ′′(τ) = 0, (2.4)

whose solutions are traveling wave solutions to the generalized KdV equation
(1.2) under the above scale transformations. (2.4) has an equivalent form

dψ

dτ
= y,

dy

dτ
= ψ − 1

n+ 1
ψn+1,

(2.5)

which is a Hamiltonian system with the Hamiltonian function

H(ψ, y) = −1

2
y2 +

1

2
ψ2 − 1

(n+ 1)(n+ 2)
ψn+2. (2.6)

We consider the phase portrait of system (2.5). Firstly, consider the case
of n is even, it is easy to see that system (2.5) has three singular points (0, 0)
and (± n

√
n+ 1, 0). (0, 0) is a saddle point and (± n

√
n+ 1, 0) are two centers.

Consider a level curve of the form H = h. It corresponds to two periodic
orbits if h satisfies 0 < h < (n n

√
(n+1)2)/(2(n+2)). If h = 0, then it includes two

homoclinic orbits connecting with (0, 0). If h < 0, then it represents a big
periodic orbit surrounding the three singular points. The phase portrait of
system (2.5) is given as Fig. 1(a).

Secondly, consider the case of n is odd. System (2.5) has two singular points
(0, 0) and ( n

√
n+ 1, 0). (0, 0) is a saddle point and ( n

√
n+ 1, 0) is a center.

Consider a level curve of the form H = h. It corresponds to a periodic orbit if

h satisfies 0 < h < n(n+1)
2
n/2(n+2). If h = 0, then it includes a homoclinic orbit

and an open orbit connecting with (0, 0). If h < 0, then it represents an open
orbit. The phase portrait of system (2.5) is given as Fig. 1(b). Therefore we can
parameterize all solutions of (2.4) by h. Further, using this parametrization,
we can describe the existence result of solitary wave solutions and periodic
wave solutions of (1.1) as Theorem 1. The proof will be given in Section 3 and
Section 4.

Theorem 1. Consider Eq. (1.1). For given positive integer n, let

hn =
n n
√

(n+ 1)2

2(n+ 2)
. (2.7)

(1) If n is even, then there exists ε∗n > 0 such that for each ε ∈ (0, ε∗n) and
h ∈ [0, hn), Eq. (1.1) has two traveling wave solutions

u± = ± n
√
cψ(ε, h, c, τ), (2.8)

Math. Model. Anal., 19(4):537–555, 2014.
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(a) n is even (b) n is odd

Figure 1. The phase portrait of system (2.5).

where c = c(ε, h), and ψ(ε, h, c, τ) is a solution of Eq. (2.3) satisfying

∂

∂τ
ψ(ε, h, c, 0) = 0,

∂2

∂τ2
ψ(ε, h, c, 0) < 0. (2.9)

(2) If n is odd, then for each ε ∈ (0, ε∗n) and h ∈ [0, hn), Eq. (1.1) has a
traveling wave solution u+ given in (2.8).

(3) When h = 0, u+ and u− are two solitary wave solutions. When h ∈
(0, hn), u+ and u− are two periodic wave solutions.

(4) c(ε, h) is a smooth function of ε and h. When ε→ 0, c(ε, h) converges
to c0(h), where c0(h) is a smooth function for h ∈ [0, hn) and satisfies

1

n
≤ c0(h) ≤ 3n+ 4

2n2 + 3n
, c0(0) =

3n+ 4

2n2 + 3n
, lim

h→hn−0
c0(h) =

1

n
.

(5) When ε → 0, ψ(ε, h, c, τ) converges to ψ(h, c0(h), τ) uniformly in τ ,
where ψ(h, c0(h), τ) is a solution of system (2.5) on the level curve H = h and
satisfies

∂

∂τ
ψ
(
h, c0(h), 0

)
= 0,

∂2

∂τ2
ψ
(
h, c0(h), 0

)
< 0.

3 Perturbation Analysis

In this section, we use the geometric singular perturbation theory and the regu-
lar perturbation analysis for a Hamiltonian system to investigate the existence
of solitary wave solutions and periodic wave solutions of Eq. (1.1). We only
consider the case of n is even, since the case of n is odd is similar.

We first introduce the following result on invariant manifolds which is due to
Fenichel [6]. For convenience, we use a version of this theorem due to Jones [12].

Lemma 1 [Geometric Singular Perturbation Theorem]. Consider the
system {

x′ = f(x, y, ε),

y′ = εg(x, y, ε),
(3.1)
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where x ∈ Rn, y ∈ Rl and ε is a real parameter, f , g are C∞ on the set V × I,
where V ⊂ Rn+l and I is an open interval containing 0. Assume that for ε = 0,
the system has a compact normally hyperbolic manifold M0 which is contained
in the set f(x, y, 0) = 0. The manifold M0 is said to be normally hyperbolic if
the linearization of (3.1) at each point in M0 has exactly l eigenvalues on the
imaginary axis R(λ) = 0. Then for any 0 < r < +∞, if ε > 0 sufficiently
small, there exists a manifold Mε such that the following conclusions hold.

(1) Mε is locally invariant under the flow of (3.1).

(2) Mε is Cr in x, y and ε.

(3) Mε = {(x, y) | x = hε(y)} for some Cr function hε and y in some compact
set K.

(4) There exist locally invariant stable and unstable manifolds W s(Mε), W
u(Mε),

that lie within O(ε) of, and are diffeomorphic to W s(M0) and Wu(M0).

Now let us go back to (2.3). Its equivalent form is
dψ

dτ
= y,

dy

dτ
= z,

ε
√
c

dz

dτ
= ψ − 1

n+ 1
ψn+1 − z − ε√

c
y.

(3.2)

For ε > 0, (3.2) defines a system of ODEs whose solutions evolve in the three-
dimensional (ψ, y, z) phase space. In this phase space, there are critical points

(0, 0, 0) and
(
± n
√
n+ 1, 0, 0

)
.

Note that when ε = 0, (3.2) does not define a dynamical system in R3. This
problem may be overcome by the transformation τ = εσ, under which the
system becomes 

dψ

dσ
= εy,

dy

dσ
= εz,

√
c

dz

dσ
= ψ − 1

n+ 1
ψn+1 − z − ε√

c
y.

(3.3)

Generally, system (3.2) is referred to as the slow system since the time scale τ
is slow. And system (3.3) is referred to as the fast system since the time scale
σ is fast. The two systems are equivalent when ε > 0.

Consider the slow system (3.2). For ε = 0, the flow is confined to the set

M0 =

{
(ψ, y, z) ∈ R3 : z = ψ − 1

n+ 1
ψn+1

}
,

which is a two-dimensional invariant manifold for system (3.2). If M0 is nor-
mally hyperbolic, then for ε > 0 sufficiently small, Lemma 1 provides us with
a locally invariant manifold Mε for system (3.2). On this manifold consider
system (3.2). The dimensionality is reduced back to two.

Math. Model. Anal., 19(4):537–555, 2014.
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In fact, to check that the invariant manifold M0 is normally hyperbolic, we
need to check that the linearization of the fast system (3.3), restricted to M0,
has precisely dimM0 eigenvalues on the imaginary axis, with the remainder of
the spectrum being hyperbolic. The linearization of (3.3) restricted to M0 is
given by the following matrix

A =

 0 0 0
0 0 0

1√
c
(1− ψn) 0 − 1√

c

 ,

which has eigenvalues 0, 0 and −1/
√
c. Thus, M0 is normally hyperbolic. By

Lemma 1, there exists a locally invariant two-dimensional manifold Mε with
ε > 0 sufficiently small, under the flow of system (3.2), which can be written
in the form

Mε =
{

(ψ, y, z) ∈ R3 : z = ψ − 1

n+ 1
ψn+1 + ζ(ψ, y, ε)

}
,

where ζ(ψ, y, ε) depends smoothly on ε and satisfies ζ(ψ, y, 0) = 0. Since M0 is
smooth, the vector field in (3.3) is smooth and Mε can be characterized as the
graph of a function, we can expand ζ(ψ, y, ε) in ε for ε > 0 sufficiently small,
that is,

z = ψ − 1

n+ 1
ψn+1 + εζ1(ψ, y) +O

(
ε2
)
. (3.4)

Substituting it into the last equation of the slow system (3.2), we get

ε
√
c
(
1− ψn

)
y +O

(
ε2
)

= −εζ1(ψ, y)− ε√
c
y +O

(
ε2
)
. (3.5)

Comparing coefficients of ε yields

ζ1(ψ, y) =
√
c
(
ψny −

(
1 +

1

c

)
y
)
.

Thus, the dynamics on the slow manifold Mε is given as
dψ

dτ
= y,

dy

dτ
= ψ − 1

n+ 1
ψn+1 + ε

√
c
(
ψny −

(
1 +

1

c

)
y
)

+O
(
ε2
)
.

(3.6)

Now we can check if a periodic orbit persist or not as follows. By symmetry,
we only need to check the orbit with ψ > 0. Firstly, remember the dynamics
of the unperturbed system (2.5), which can be understood by the level curve
of H. Fix an initial data (α, 0) with 0 < α < n

√
n+ 1. Now let (ψ(τ), y(τ))

be the solution of (3.6) with (ψ, y)(0) = (α, 0). Then there exist τ1 > 0 and
τ2 < 0 such that

y(τ) > 0 for 0 < τ < τ1, y(τ1) = 0;

and
y(τ) < 0 for τ2 < τ < 0, y(τ2) = 0.
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Let us define a function Φ as follows.

Φ(α, c, ε) =

∫ τ1

τ2

Ḣ(ψ, y) dτ, (3.7)

where · denotes the derivative by τ , H(ψ, y) is defined as (2.6), and the integral
is performed along the orbit of (3.6). Hence

Ḣ(ψ, y) = ε
√
c

(
ψny2 −

(
1 +

1

c

)
y2
)

+O
(
ε2
)
.

Note that Φ(α, c, ε) denotes difference of the level between the two points on
the ψ axis:

Φ(α, c, ε) = H
(
ψ(τ1), y(τ1)

)
−H

(
ψ(τ2), y(τ2)

)
.

Therefore, Φ(α, c, ε) = 0 if and only if ψ(τ) is a periodic solution of (3.6). And
our aim is to solve Φ = 0. Since Φ(α, c, 0) = 0, we have

Φ(α, c, ε) = εΦ̃(α, c, ε).

Now our aim is to solve Φ̃ = 0. Note that when ε→ 0, Φ̃(α, c, ε) has a limit

Φ̃0(α, c) = lim
ε→0

Φ̃(α, c, ε) =
√
c

∫ (
(ψn0 − 1)y20 −

1

c
y20

)
dτ.

Here, (ψ0, y0) is a solution of (2.5) and this integral is performed on a level
curve H = H(α, 0) ∈ (0, hn). In the rest of this paper, for simplicity, we will
omit some upper and lower limits of integral. Since∫

ψn0 y
2
0 dτ =

∫
ψn0ψ

′ 2
0 dτ =

∫
ψn0ψ

′
0 dψ0 = −n

∫
ψn0 y

2
0 dτ −

∫
ψn+1
0 ψ′′0 dτ,

i.e., ∫
ψn0 y

2
0 dτ = − 1

n+ 1

∫
ψn+1
0 ψ′′0 dτ.

Similarly, ∫
y20 dτ = −

∫
ψ0ψ

′′
0 dτ.

The above two equations yields∫ (
ψn0 − 1

)
y20 dτ =

∫ (
ψ0 −

1

n+ 1
ψn+1
0

)
ψ′′0 dτ =

∫
ψ′′ 20 dτ.

Therefore

Φ̃0(α, c) =
√
c

∫ (
ψ′′ 20 −

1

c
ψ′ 20

)
dτ =

1√
c

(
c

∫
ψ′′ 20 dτ −

∫
ψ′ 20 dτ

)
.

And the limit speed c0 is determined by

c0

∫
ψ′′ 20 dτ −

∫
ψ′ 20 dτ = 0. (3.8)

Math. Model. Anal., 19(4):537–555, 2014.
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We can define the similar function for a homoclinic orbit as

Ψ(c, ε) =

∫ 0

−∞
Ḣ(ψ, y) dτ +

∫ ∞
0

Ḣ(ψ, y) dτ.

Here the former part is integrated along a solution (ψ(τ), y(τ)) on the one
dimensional unstable manifold of the origin with y(τ) > 0 for −∞ < τ < 0 and
y(0) = 0. The latter is similar. Ψ̃(c, ε) and Ψ̃0(c) are also defined similarly,

Ψ̃(c, ε) =
1

ε
Ψ(c, ε), Ψ̃0(c) = lim

ε→0
Ψ̃(c, ε).

Consequently, we get

Ψ̃0(c) =
1√
c

(
c

∫
ψ′′ 20 dτ −

∫
ψ′ 20 dτ

)
,

where ψ0 is a solution of (2.5) and the integration is performed on the curve
H = 0, more precisely, on the homoclinic orbit of (2.5). Therefore the condition
for the limit speed is the same as (3.8).

Remark 1. When n is odd, by the same method, we can obtain the condition
for the limit speed is the same as (3.8).

4 Analysis by the Abelian Integral Theory

In this section we concentrate ourselves on studying the property of the limit
speed c0 with h and prove our main theorem. We assume ψ is a solution
of (2.4).

Firstly, let Q and R be

Q =
1

2

∫
ψ′′ 2 dτ, R =

1

2

∫
ψ′ 2 dτ.

And when 0 ≤ k < kn = 2hn, let the two non-negative real roots of

ψ2 − 2

(n+ 1)(n+ 2)
ψn+2 = k

be α(k) and β(k) such that 0 ≤ α(k) < β(k). As mentioned above, the orbit
(ψ(τ), y(τ)) is on the level curve H = h = k/2, where y = dψ/dτ . Therefore
we have

Q =

∫ β

α

(ψ − 1
n+1ψ

n+1)2

E(ψ)
dψ, R =

∫ β

α

E(ψ) dψ,

by system (2.5). Here,

E(ψ) =

√
ψ2 − 2

(n+ 1)(n+ 2)
ψn+2 − k.

Now Q and R are the functions of only k. We will prove the following
proposition in Lemma 2–11. And this will assert the property of the limit
speed c0 with k.
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Proposition 1. Let X(k) = Q
R . Then we have

2n2 + 3n

3n+ 4
< X(k) < n for 0 < k < kn.

Moreover

X(0) =
2n2 + 3n

3n+ 4
and lim

k→kn−0
X(k) = n.

It is convenient to represent Q and R by the following integrals:

Jm(k) =

∫ β

α

ψmE(ψ) dψ, m = 0, 1, 2, . . . .

Note that ∫ β

α

ψm

E(ψ)
dψ = −2J ′m(k).

Therefore Q and R are represented as follows:

Q = −2J ′2 +
4

n+ 1
J ′n+2 −

2

(n+ 1)2
J ′2n+2, R = J0. (4.1)

We have the following two lemmas.

Lemma 2. Let B(p, q) =
∫ 1

0
xp−1(1 − x)q−1 dx, p > 0, q > 0 be the Beta

function. Then we have

J0(0) =
1

n

(
(n+ 1)(n+ 2)

2

) 2
n

B

(
3

2
,

2

n

)
,

Jn(0) =
1

n

(
(n+ 1)(n+ 2)

2

)n+2
n

B

(
3

2
,
n+ 2

n

)
,

and
Jn(0)

J0(0)
=

2(n+ 1)(n+ 2)

3n+ 4
.

Proof. Since α(0) = 0, β(0) = n

√
(n+1)(n+2)

2 , we get

J0(0) =

∫ n
√

(n+1)(n+2)
2

0

ψ

√
1− 2

(n+ 1)(n+ 2)
ψn dψ,

and

Jn(0) =

∫ n
√

(n+1)(n+2)
2

0

ψn+1

√
1− 2

(n+ 1)(n+ 2)
ψn dψ.

Let 1− 2
(n+1)(n+2)ψ

n = t. Then we obtain

J0(0) =
1

n

(
(n+ 1)(n+ 2)

2

) 2
n
∫ 1

0

t
1
2 (1− t) 2

n−1 dt

=
1

n

(
(n+ 1)(n+ 2)

2

) 2
n

B

(
3

2
,

2

n

)
,

Math. Model. Anal., 19(4):537–555, 2014.
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and

Jn(0) =
1

n

(
(n+ 1)(n+ 2)

2

)n+2
n
∫ 1

0

t
1
2 (1− t) 2

n dt

=
1

n

(
(n+ 1)(n+ 2)

2

)n+2
n

B

(
3

2
,
n+ 2

n

)
.

Since

B(p, q) =
Γ (p)Γ (q)

Γ (p+ q)
, Γ (s+ 1) = sΓ (s),

where Γ (s) =
∫ +∞
0

xs−1e−x dx, s > 0 is the Gamma function, we have

Jn(0)

J0(0)
=

(n+ 1)(n+ 2)

2

B
(
3
2 ,

n+2
n

)
B
(
3
2 ,

2
n

) =
(n+ 1)(n+ 2)

2

Γ( 3
2 )Γ(n+2

n )
Γ( 3

2+
n+2
n )

Γ( 3
2 )Γ( 2

n )
Γ( 3

2+
2
n )

=
(n+ 1)(n+ 2)

2

2
n

3
2 + 2

n

=
2(n+ 1)(n+ 2)

3n+ 4
.

The proof is completed. ut

Lemma 3. limk→kn−0
Jn(k)
J0(k)

= n+ 1.

Proof.

lim
k→kn−0

Jn(k)

J0(k)
= lim
k→kn−0

∫ β
α
ψnE(ψ) dψ∫ β
α
E(ψ) dψ

= lim
ψ→± n

√
n+1

ψn = n+ 1. ut

We will represent Q by Jm, m = 0, 1, . . . , n in Lemma 4–9. At first, consider
the case of n is even and n is odd respectively.

4.1 The case of n is even

Let us study the basic properties of J2l, l = 0, 1, . . . , n/2 by the following two
lemmas.

Lemma 4. Let

J = (J0, J2, . . . , Jn)
T
, J ′ = (J ′0, J

′
2, . . . , J

′
n)

T
,

F =
2n(n+ 1)(n+ 2)k

(n+ 4)(3n+ 4)
, G = −4n(n+ 1)(n+ 2)

(n+ 4)(3n+ 4)
,

M = 2(n+ 2)k, N = −2n.



Traveling Waves to KdV Equation 547

Then we have J = Λ(k)J ′, where

Λ(k) =



M
n+4

N
n+4

... M
n+8

N
n+8

...
... M

n+12
N

n+12
...

...
. . .

. . .
...

... M
3n

N
3n

F G · · · · · · · · · M
3n+4


n+2
2 ×

n+2
2

.

Proof. From the relation

E2 = ψ2 − 2

(n+ 1)(n+ 2)
ψn+2 − k,

we get

2E
dE

dψ
= 2ψ − 2

n+ 1
ψn+1.

J0 can be calculated as follows.

J0 =

∫
E dψ =

∫
E2 dψ

E
=

∫ (
ψ2 − 2

(n+ 1)(n+ 2)
ψn+2 − k

)
dψ

E

=

∫ (
ψ

(
ψ − 2

n+ 2

(
ψ − E dE

dψ

))
− k
)

dψ

E

=
n

n+ 2

∫
ψ2

E
dψ +

2

n+ 2

∫
ψ dE − k

∫
dψ

E

= 2kJ ′0 −
2n

n+ 2
J ′2 −

2

n+ 2
J0,

i.e.,

J0 =
M

n+ 4
J ′0 +

N

n+ 4
J ′2. (4.2)

Similarly,

J2 =

∫
ψ2E dψ =

∫
ψ2

(
ψ

(
n

n+ 2
ψ +

2

n+ 2
E

dE

dψ

)
− k
)

dψ

E

= 2kJ ′2 −
2n

n+ 2
J ′4 −

6

n+ 2
J2,

i.e.,

J2 =
M

n+ 8
J ′2 +

N

n+ 8
J ′4. (4.3)

In the same manner, J4, J6, . . . , Jn−2 can be calculated. And we get

J4 =
M

n+ 12
J ′4 +

N

n+ 12
J ′6, . . . , Jn−2 =

M

3n
J ′n−2 +

N

3n
J ′n.
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Now let us calculate Jn.

Jn =

∫
ψnE dψ =

∫
ψn
(
ψ

(
n

n+ 2
ψ +

2

n+ 2
E

dE

dψ

)
− k
)

dψ

E

= 2kJ ′n −
2(n+ 1)

n+ 2

∫
ψnE dψ +

n

n+ 2

∫
(n+ 1)ψ

(
ψ − E dE

dψ

)
dψ

E

= 2kJ ′n −
2(n+ 1)

n+ 2
Jn −

2n(n+ 1)

n+ 2
J ′2 +

n(n+ 1)

n+ 2
J0.

This together with (4.2) implies

Jn = FJ ′0 +GJ ′2 +
M

3n+ 4
J ′n.

The proof is completed. ut

Lemma 5. For simplicity, we write Λ(k) as Λ. Let

V = M
n+2
2 + (−1)

n+2
2 (n+ 1)MN

n
2 , W =

n+2
2∏
j=1

(n+ 4j).

Then we have

|Λ| = V

W
, Λ−1 =

Ω

V
, Ω = (ωij)n+2

2 ×
n+2
2
. (4.4)

In (4.4), the (ωij) are given as follows:

ω11 = (n+ 4)M
n
2 + (−1)

n+2
2 2(n+ 1)(n+ 2)N

n
2 ,

ω1j = (−1)1+j(n+ 4j)M
n+2(1−j)

2 N j−1, 2 ≤ j ≤ (n+ 2)/2,

ωij = (−1)i+j(n+ 4j)M
n+2(i−j)

2 N j−i, 2 ≤ i ≤ j ≤ (n+ 2)/2,

ωi1 = (−1)
n+2i

2 n(n+ 1)M i−1N
n+2(1−i)

2 , 2 ≤ i ≤ (n+ 2)/2,

ωij = (−1)
n+2i+2j

2 (n+ 4j)(n+ 1)M i−jN
n+2(j−i)

2 , 2 ≤ j < i ≤ (n+ 2)/2.

Proof. The proof can be completed by direct calculations. ut

4.2 The case of n is odd

Let us study the basic properties of Jm, m = 0, 1, . . . , n by the following two
lemmas.

Lemma 6. Let

J̃ = (J0, J1, . . . , Jn)
T
, J̃ ′ = (J ′0, J

′
1, . . . , J

′
n)

T
.
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Then we have J̃ = Λ̃(k)J̃ ′, where

Λ̃(k) =



M
n+4 0 N

n+4
... M

n+6 0 N
n+6

...
... M

n+8 0 N
n+8

...
...

. . .
. . .

. . .
...

... M
3n 0 N

3n
... (n+1)N

3n+2 · · · · · · · · · M
3n+2 0

F 0 G · · · · · · · · · M
3n+4


(n+1)×(n+1)

.

Proof. Similar to the proof of Lemma 4, we have

J1 =
M

n+ 6
J ′1 +

N

n+ 6
J ′3, J3 =

M

n+ 10
J ′3 +

N

n+ 10
J ′5,

. . . , Jn−3 =
M

3n− 2
J ′n−3 +

N

3n− 2
J ′n−1.

Therefore, we only need to prove

Jn−1 =
M

3n+ 2
J ′n−1 +

(n+ 1)N

3n+ 2
J ′1.

Now let us calculate Jn−1.

Jn−1 =

∫
ψn−1E dψ =

∫
ψn−1

(
ψ

(
n

n+ 2
ψ +

2

n+ 2
E

dE

dψ

)
− k
)

dψ

E

= 2kJ ′n−1 −
2n

n+ 2

∫
ψn−1E dψ +

n

n+ 2

∫
(n+ 1)

(
ψ − E dE

dψ

)
dψ

E

= 2kJ ′n−1 −
2n

n+ 2
Jn−1 −

2n(n+ 1)

n+ 2
J ′1.

The proof is completed. ut

Lemma 7. Let

Ṽ = Mn+1 + (n+ 1)2MNn, W̃ =

n+2∏
j=2

(n+ 2j).

Then we have

|Λ̃| = Ṽ

W̃
, Λ̃−1 =

Ω̃

Ṽ
, Ω̃ = (ω̃ij)(n+1)×(n+1). (4.5)
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In (4.5), the (ω̃ij) are given as follows:

ω̃11 = (n+ 4)Mn + 2(n+ 1)2(n+ 2)Nn,

ω̃2l,1 = (−1)
n−1
2 −ln(n+ 1)M

n−1
2 +lN

n+1
2 −l, 1 ≤ l ≤ (n+ 1)/2,

ω̃2l+1,1 = (−1)ln(n+ 1)2M lNn−l, 1 ≤ l ≤ (n− 1)/2,

ω̃1,2m+1 = (−1)m(n+ 4m+ 4)Mn−mNm, 1 ≤ m ≤ (n− 1)/2,

ω̃2l+1,2m+1 = (−1)m+l(n+ 4m+ 4)Mn+l−mNm−l, 1 ≤ l ≤ m ≤ (n− 1)/2,

ω̃2l,2m = (−1)m+l(n+ 4m+ 2)Mn+l−mNm−l, 1 ≤ l ≤ m ≤ (n+ 1)/2,

ω̃2l+1,2m+1 = (−1)m+l−1(n+ 4m+ 4)(n+ 1)2M l−mNn+m−l,

2 ≤ l ≤ (n− 1)/2, 1 ≤ m ≤ l − 1,

ω̃2l,2m = (−1)m+l−1(n+ 4m+ 2)(n+ 1)2M l−mNn+m−l,

2 ≤ l ≤ (n+ 1)2, 1 ≤ m ≤ l − 1,

ω̃2l,2m+1 = (−1)
n+1
2 −m−l(n+ 4m+ 4)(n+ 1)M

n−1
2 −m+lN

n+1
2 +m−l,

1 ≤ l ≤ (n+ 1)/2, 1 ≤ m ≤ (n− 1)/2,

ω̃2l+1,2m = (−1)
n−1
2 −m−l(n+ 4m+ 2)(n+ 1)M

n+1
2 −m+lN

n−1
2 +m−l,

0 ≤ l ≤ (n− 1)/2, 1 ≤ m ≤ (n+ 1)/2.

Proof. The proof can be completed by direct calculations. ut

4.3 The representation of Q

Noting the expression of Q in (4.1), so at first, we have to represent Jn+2 and
J2n+2 by Jm, m = 0, 1, . . . , n. In fact, it is not difficult to obtain the following
result.

Lemma 8. Let

O = − (n+ 1)(n+ 2)k

3n+ 8
, P =

4(n+ 1)(n+ 2)

3n+ 8
, U = − (n+ 1)2(n+ 2)k

5n+ 8
.

S = − (n+ 1)2(n+ 2)2(n+ 4)k

(3n+ 8)(5n+ 8)
, T =

4(n+ 1)2(n+ 2)2(n+ 4)

(3n+ 8)(5n+ 8)
,

Then we have

Jn+2 = OJ0 + PJ2 and J2n+2 = SJ0 + TJ2 + UJn. (4.6)

Proof. Jn+2 and J2n+2 can be calculated similarly to the proof of Lemma 4.
Note that

Jn+2 =

∫
ψn+2E dψ =

∫
(n+ 1)ψ

(
ψ − E dE

dψ

)
E dψ
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= (n+1)J2−(n+1)

∫
ψ

(
ψ2 − 2

(n+ 1)(n+ 2)
ψn+2 − k

)
dE

= (n+1)J2−(n+1)kJ0+(n+1)

∫ (
3ψ2 − 2(n+ 3)

(n+ 1)(n+ 2)
ψn+2

)
E dψ

= −(n+ 1)kJ0 + 4(n+ 1)J2 −
2(n+ 3)

(n+ 2)
Jn+2.

This implies that the first identity of (4.6) is true. On the other hand, we have

J2n+2 =

∫
ψ2n+2E dψ =

∫
(n+ 1)ψn+1

(
ψ − E dE

dψ

)
E dψ

= (n+ 1)Jn+2 − (n+ 1)

∫
ψn+1

(
ψ2 − 2

(n+ 1)(n+ 2)
ψn+2 − k

)
dE

= (n+ 1)Jn+2 + (n+ 1)

×
∫ (

(n+ 3)ψn+2 − 2(2n+ 3)

(n+ 1)(n+ 2)
ψ2n+2 − (n+ 1)kψn

)
E dψ

= −(n+ 1)2kJn + (n+ 1)(n+ 4)Jn+2 −
2(2n+ 3)

(n+ 2)
J2n+2,

which implies that the second identity of(4.6) is true. The proof is completed.
ut

Lemma 9. Let us represent Q by Jm, m = 0, 1, . . . , n. Then we have

Q = Jn − J0.

Proof. Applying (4.1) and Lemma 8, we obtain

Q = −2J ′2 +
4

n+ 1
J ′n+2 −

2

(n+ 1)2
J ′2n+2

= −2J ′2 +
4

n+ 1

(
O

k
J0 +OJ ′0 + PJ ′2

)
− 2

(n+ 1)2

(
S

k
J0 +

U

k
Jn + SJ ′0 + TJ ′2 + UJ ′n

)
=

(
4

(n+ 1)k
O − 2

(n+ 1)2k
S

)
J0 −

2

(n+ 1)2k
UJn −

2

(n+ 1)2
UJ ′n

+

(
4

n+ 1
O − 2

(n+ 1)2
S

)
J ′0 +

(
−2 +

4

n+ 1
P − 2

(n+ 1)2
T

)
J ′2. (4.7)

(1) If n is even, by Lemma 5, we have

J ′0 =
1

V

(
ω11J0 + ω12J2 + · · ·+ ω1,n+2

2
Jn
)
,

J ′2 =
1

V

(
ω21J0 + ω22J2 + · · ·+ ω2,n+2

2
Jn
)
,

J ′n =
1

V

(
ωn+2

2 ,1J0 + ωn+2
2 ,2J2 + · · ·+ ωn+2

2 ,n+2
2
Jn
)
.
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Substituting these equations into (4.7), we get Q = C0J0 +C2J2 + · · ·+CnJn.
Now, let us calculate the coefficients C0, C2, . . . , Cn. By substituting ωij into
C0, C2, . . . , Cn, we obtain

C0 =
4

(n+ 1)k
O − 2

(n+ 1)2k
S +

(
4

n+ 1
O − 2

(n+ 1)2
S

)
ω11

V

+

(
−2 +

4

n+ 1
P − 2

(n+ 1)2
T

)
ω21

V
− 2

(n+ 1)2
U
ωn+2

2 ,1

V
= −1,

C2l =

(
4

n+ 1
O − 2

(n+ 1)2
S

)
ω1,l+1

V

+

(
−2 +

4

n+ 1
P − 2

(n+ 1)2
T

)
ω2,l+1

V
− 2

(n+ 1)2
U
ωn+2

2 ,l+1

V

= 0, for l = 1, 2, . . . ,
n− 2

2
,

Cn = − 2

(n+ 1)2k
U +

(
4

n+ 1
O − 2

(n+ 1)2
S

) ω1,n+2
2

V

+

(
−2 +

4

n+ 1
P − 2

(n+ 1)2
T

) ω2,n+2
2

V
− 2

(n+ 1)2
U
ωn+2

2 ,n+2
2

V
= 1.

(2) If n is odd, by Lemma 7, we have

J ′0 =
1

Ṽ
(ω̃11J0 + ω̃12J1 + · · ·+ ω̃1,n+1Jn) ,

J ′2 =
1

Ṽ
(ω̃21J0 + ω̃22J1 + · · ·+ ω̃2,n+1Jn) ,

J ′n =
1

Ṽ
(ω̃n+1,1J0 + ω̃n+1,2J1 + · · ·+ ω̃n+1,n+1Jn) .

Substituting these equations into (4.7), we get Q = C̃0J0 + C̃1J1 + · · ·+ C̃nJn.
Now, let us calculate the coefficients C̃0, C̃1, . . . , C̃n. By substituting ω̃ij into

C̃0, C̃1, . . . , C̃n, we obtain

C̃0 =
4

(n+ 1)k
O − 2

(n+ 1)2k
S +

(
4

n+ 1
O − 2

(n+ 1)2
S

)
ω̃11

Ṽ

+

(
−2 +

4

n+ 1
P − 2

(n+ 1)2
T

)
ω̃21

Ṽ
− 2

(n+ 1)2
U
ω̃n+1,1

Ṽ
= −1,

C̃m =

(
4

n+ 1
O − 2

(n+ 1)2
S

)
ω̃1,m+1

Ṽ

+

(
−2 +

4

n+ 1
P − 2

(n+ 1)2
T

)
ω̃2,m+1

Ṽ
− 2

(n+ 1)2
U
ω̃n+1,m+1

Ṽ

= 0, for m = 1, 2, . . . , n− 1,

C̃n = − 2

(n+ 1)2k
U +

(
4

n+ 1
O − 2

(n+ 1)2
S

)
ω̃1,n+1

Ṽ

+

(
−2 +

4

n+ 1
P − 2

(n+ 1)2
T

)
ω̃2,n+1

Ṽ
− 2

(n+ 1)2
U
ω̃n+1,n+1

Ṽ
= 1.

The proof is completed. ut
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4.4 The proof of Proposition 1 and Theorem 1

Now, for arbitrary integer n > 0, we investigate the property of

X =
Q

R
=
Jn
J0
− 1. (4.8)

Let X̃ = Jn
J0

and Z =
J′n
J′0

. Then we have the following three lemmas.

Lemma 10. If X̃ ′(k∗) = 0 for some 0 < k∗ < kn, then

2(n+ 1)(n+ 2)

3n+ 4
< X̃(k∗) < n+ 1.

Proof. By Lemma 4 or 6, we have

J0 =
2(n+ 2)k

n+ 4
J ′0 −

2n

n+ 4
J ′2,

Jn =
2n(n+ 1)(n+ 2)k

(n+ 4)(3n+ 4)
J ′0 −

4n(n+ 1)(n+ 2)

(n+ 4)(3n+ 4)
J ′2 +

2(n+ 2)k

3n+ 4
J ′n.

Eliminating J ′2 yields

2(n+ 1)(n+ 2)

3n+ 4
J0 − Jn =

2(n+ 1)(n+ 2)k

3n+ 4
J ′0 −

2(n+ 2)k

3n+ 4
J ′n,

i.e.,
Jn
J0
− 2(n+ 1)(n+ 2)

3n+ 4
=

2(n+ 2)k

(3n+ 4)J0
J ′0

(
J ′n
J ′0
− (n+ 1)

)
.

If X̃ ′(k∗) = 0, then

X̃(k∗) = Z(k∗) =
J ′n(k∗)

J ′0(k∗)
,

and

X̃(k∗)− 2(n+ 1)(n+ 2)

3n+ 4
=

2(n+ 2)k∗

3n+ 4

J ′0(k∗)

J0(k∗)

(
X̃(k∗)− (n+ 1)

)
.

Since J ′0(k∗)/J0(k∗) < 0, we have

(
X̃(k∗)− (n+ 1)

)(
X̃(k∗)− 2(n+ 1)(n+ 2)

3n+ 4

)
< 0,

and the proof is completed. ut

Combining Lemma 2, 3 and 10, we get the following lemma.

Lemma 11. For 0 ≤ k < kn, we have

2(n+ 1)(n+ 2)

3n+ 4
≤ X̃(k) ≤ n+ 1.
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By noting the relation (4.8), this proves Proposition 1.
Let c0 be c0 = X(k)−1. Then from Proposition 1, we have

Lemma 12. For 0 ≤ k < kn, the pairs (ψ0, c0) satisfies the limit speed condi-
tion (3.8) for periodic wave and solitary wave solutions with α = α(k). More-
over,

1

n
≤ c0(k) ≤ 3n+ 4

2n2 + 3n
, c0(0) =

3n+ 4

2n2 + 3n
, lim

k→kn−0
c0(k) =

1

n
.

Since

∂Φ̃

∂c
(α(k), c0, 0) =

1

2
√
c0

∫
ψ′′ 20 dτ +

1

2c0
√
c0

∫
ψ′ 20 dτ > 0

and similarly ∂Ψ̃/∂c > 0, we can solve the equation Φ̃ = 0 and Ψ̃ = 0 by
the implicit function theorem. More precisely, there exists a unique smooth
function ck(ε) = c(ε, k) for each k ∈ [0, kn) and ε ∈ (0, ε∗n) such that

Φ̃(α(k), c(ε, k), ε) = 0 for 0 < k < kn, 0 < ε < ε∗n,

Ψ̃(c(ε, k), ε) = 0 for 0 < ε < ε∗n.

Note that k = 2h and kn = 2hn. Therefore, we get Theorem 1.

5 Conclusions

In this work we have considered a perturbed generalized KdV equation. Using
the geometric singular perturbation theory and the regular perturbation anal-
ysis for a Hamitonian system, we have proved that solitary wave solutions and
periodic wave solutions persist for sufficiently small perturbation parameter.
Moreover, the upper and lower bounds of the limit wave speed are obtained.

For n = 1, Ogawa [17] proved that c0(k) is a smooth decreasing function,
but for arbitrary integer n > 0, this problem is still under consideration.
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