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Abstract. In this study, we propose a trust-region-based procedure to solve uncon-
strained optimization problems that take advantage of the nonmonotone technique to
introduce an efficient adaptive radius strategy. In our approach, the adaptive tech-
nique leads to decreasing the total number of iterations, while utilizing the structure
of nonmonotone formula helps us to handle large-scale problems. The new algorithm
preserves the global convergence and has quadratic convergence under suitable con-
ditions. Preliminary numerical experiments on standard test problems indicate the
efficiency and robustness of the proposed approach for solving unconstrained opti-
mization problems.
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1 Introduction
Consider the following unconstrained optimization problem
minimize f(z), subject toxz € R", (1.1)

where f : R™ — R is a continuous function. Many problems arising in science,
engineering, management, economy and operations research can be reformu-
lated into (1.1). A lot of approaches such as Newton, quasi-Newton, vari-
able metric, gradient and conjugate gradient methods have been introduced
to solve (1.1). These methods need to exploit one of the general globalization
techniques, say line search or trust-region techniques, in order to guarantee the
global convergence results (see [18]).
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For a given iterate xj, a line search technique refers to a procedure that
computes a step length oy along with a specific direction dj and generates the
new iterate

Tpt1 = Tk + apdy.

Many line search strategies have been proposed to determine «y; for instance,
exact line search, Armijo rule, Wolfe and Goldstein inexact line search condi-
tions (see [18]). On the other hand, a quadratic-based framework of trust-region
technique computes a trial step di by solving the quadratic subproblem

1
minimize my(zy + d) = fp + gi d + §dTBkd (12)

subject to d € R" and ||d|| < Ay,

where || - || denotes the Euclidean norm, fi = f(x), gv = Vf(zk), By is the
exact Hessian G}, = V2f(x;) or its symmetric approximation and Ay is the
trust-region radius. Let dj be the solution of (1.2). In the traditional monotone
trust-region methods, the ratio

fxr) — fog +di)

my(zr) — me(xr + di)

T = (13)

between the actual reduction and the predicted reduction of f(z) plays a key
role in the algorithm to deciding whether the trial step dj is acceptable and
to adjust the new trust-region radius. Consider the step acceptance constants
0 < p1 < pe < pg < 1. It may be that rp > ps (very successful iterate),
T € [p2,pu3) (not very successful iterate), ri € [u1,u2) (successful iterate),
or 7 < p1 (unsuccessful iterate). In the first three cases, the trial step dj is
accepted, the next iterate xy1 is chosen by 41 = xx+dj, and the trust-region
radius is updated appropriately based on the amount of the ratio r. Finally, if
iterate is unsuccessful, the trial step is rejected and the quadratic subproblem
(1.2) would be solved again with the reduced trust-region radius.

It is known that the traditional trust-region methods are very sensitive to
the initial radius Ay and its updating scheme. This fact leads the researchers
to work on finding appropriate procedures for initial radius as well as its up-
dating rules. Sartenaer [20] gave a method which can automatically determine
an initial trust-region radius. The drawback of this approach is the possible
dependence of the parameters on the problem information. Recently, Gould
et al. [12] extensively examined the sensitivity of the traditional trust-region
methods to the parameters and trust-region radius updates. Despite their com-
prehensive tests on a large number of test problems, they could not claim to
have found the best parameters to update scheme. In 2002, motivated by a
problem in the neural network field, Zhang et al. [26] proposed the first adap-
tive trust-region radius in which the information of the current iterate was used
more effectively to introduce the adaptive scheme. Precisely, they introduced
the following adaptive trust-region radius

A = P gelll| B
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where ¢ € (0,1) is a constant, p, € N* = NU {0} and B, = By, + E, is a
safely positive definite matrix based on Schnabel and Eskow scheme for mod-
ified Cholesky factorization, see [21]. According to numerical results, their
method works very well on small-scale unconstrained optimization problems,
but the situation dramatically changes for the large-scale and even medium-
scale problems due to calculation of Bk_l. Subsequently, Shi and Guo [23]
proposed another interesting adaptive radius by

T
k
Ay = —c”’“%”qkﬂ. (1.4)

Here, By, = By, +11, i is the smallest nonnegative integer such that ququ > 0,
I is identity matrix and ¢, satisfies the well-known angle condition

—gtar/Ulgrll llaxl) > T,

in which 7 € (0,1] is a constant. An important advantage of (1.4) is its ability
for selecting appropriate g in order to make a more robust method. They
proposed the choices —g, and —B,~ Yo for qi. Preliminary numerical results
along with theoretical analysis showed that their method was well promising
to solve medium-scale unconstrained optimization problems without any need
to search for appropriate initial trust-region radius.

Although the proposed adaptive trust-region radius by Shi and Guo enjoys
some advantages such as decreasing the total computational cost by declining
the number of subproblems to be solved and determining a good initial radius,
it suffers from some drawbacks as well. We list some of these as follows:

e When —g] g is close to zero, we may obtain a tiny trust-region radius
which results in increasing the total number of iterations.

e Due to the necessity of storing the matrix By for computing q,{quk,
this technique may be unsuitable for large-scale problems.

e The selection g = —gi does not generate an adequate radius (see [23]).

e Computation of g, = =B, L9k requires B, ! or solving a linear system
of equations, so their method is not appropriate for large-scale problems.

The primary goal of the present paper is to propose an effective trust-region
procedure for handling large-scale unconstrained optimization problems. So,
we introduce a modified adaptive radius strategy based on a nonmonotone
technique and employ it in a trust-region framework. The new method gen-
erates a suitable trust-region radius to decrease the total number of iterations
for some of the test problems. We also investigate the global convergence to
first-order stationary points and establish the quadratic convergence properties
of the proposed algorithm. To illustrate the efficiency and robustness of our
method, we report some numerical experiments.

The rest of this paper is organized as follows. In Section 2, we describe
the motivation behind the proposed algorithm and its structure. Section 3 is
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devoted to investigating global and quadratic convergence properties of the al-
gorithm. Numerical results are provided in Section 4 to show the well promising
behavior of the proposed approach encountering with unconstrained optimiza-
tion problems. Finally, some conclusions are outlined in Section 5.

2 New Algorithm: Motivation and Structure

A trust-region-based algorithm for solving unconstrained optimization will be
presented in this section. After proposing an adaptive trust-region radius based
on the nonmonotone technique, we add this strategy into trust-region frame-
work to construct a more effective procedure for solving unconstrained opti-
mization problems in the sequel.

Many researchers have investigated the disadvantages of traditional trust-
region methods, especially those encountering with the rejected trial step,
see [1,12,20,23,26]. If the elements of the trial step are close to the rejected
one, the possibility of accepting the new trial step will be reduced significantly.
Inspired by this fact, many researchers have worked on determining an appro-
priate trust-region radius and its updating rules, see [1,12,20]. However, there
is no general rule to update the trust-region radius when iterate is successful
or very successful. In these cases, it is necessary that the trust-region radius be
appropriately large. However, if the trust-region is very large, the number of
subproblems to be solved will be increased. Consequently, the computational
cost of solving a problem may be increased, too. On the other hand, it is be-
lieved that a very small radius causes algorithm to increase the total number of
iterates and decrease the efficiency of the procedure. Based on these ideas, to
control the size of trust-region radius, we introduce a new adaptive trust-region
which inherits some advantages of the nonmonotone technique.

To guarantee the global convergence of the traditional optimization ap-
proaches, it is well-known that we generally need to use a globalization tech-
nique, like line search or trust-region. These globalization techniques mostly
enforce a monotonicity of the sequence of objective function values which usu-
ally result in producing short steps. Due to this fact, a slow numerical con-
vergence is created with highly nonlinear problems, see [2,3,4,11, 13,14, 25].
In order to avoid this drawback of the Armijo-type line search globalization
techniques, Grippo et al. [11] introduced a nonmonotone line search technique
for Newton method. They relaxed Armijo rule such that stepsize ay satisfied
the following condition:

[k + owdy) < fug) + Songl di, (2.1)

where § € (0,1) and
= iy N* 2.2
Jik) og%%i{(k){fk it ke ) (2.2)

in which m(0) = 0 and 0 < m(k) < min{m(k — 1) + 1, N}, with N > 0. The
theoretical and numerical results show that (2.1) has remarkable positive ef-
fects on Armijo-type line searches to get faster global convergence especially
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for highly nonlinear problems. These excellent results are attracting many re-
searchers to investigate more about the effects of these strategies on a wide
variety of optimization procedures and propose new nonmonotone techniques,
see [2,3,4,11,25]. As a prominent example, the first exploitation of nonmono-
tone strategies in a trust-region framework was proposed in [8] by changing the
ratio (1.3) to assess an agreement between the quadratic model and the objec-
tive function over the trust-region area. More recently, the idea has been used
by Ahookhosh and Amini [2] and Ahookhosh et al. [3] to introduce an algo-
rithm for unconstrained optimization. These techniques employ the following
nonmonotone term

Ry = i fuwy + (1 — i) fr, (2.3)

where 75 € [Mmin, Tmax), Tmin € [0,1) and Nmax € [min, 1]. Clearly, the non-
monotonicity of (2.3) can be adjusted by selecting an adaptive process for 7
which makes it more relaxed for practical usage. As it was argued in [3,7,10]
for an Armijo-type line search, it is generally believed that the best results
can be obtained when a stronger nonmonotone term is used far away from the
optimum while a weaker one is used close to the optimum. This also means
that if the current iterate is far away from the optimum, a larger steplength
will be used while being close to it, a smaller one can be employed. We believe
the same idea is true for trust-region radius. Hence, we take the advantage of
the nonmonotone technique to introduce a new adaptive radius by

Nk if 7y, < pa;
Ry, A if ;
Apsr = max{y2 i, A}, if 7). € [MI’M)f (2.4)
Rka . if ry € [MQ,MS)v
max{y3 Rk, A}, if v > pas,
where 71, 72 and ~y3 are constants of trust-region scaling parameter,
R = negiry + (1 — ne)[| g |l (2.5)

and

quk) = {||gk i}, keN™

0<j <
We note that if ||grs1]| > gi(x), the sequence {g;x)} can not be descending, so
that the descend condition ||gx+1] < ||gk|| may not be satisfied. As a result,
this event causes the iterate to remain far away from optimum, due to the use of
inappropriate information stored in g;(x) for generating the trust-region radius.
To overcome this disadvantage, we design a removing procedure to eliminate
the inappropriate members of the sequence {g;x)}. Our removing procedure
works as follows: If ||gxi1| is greater than gz, remove all elements of gy,
and set g;(x+1) = {/|gk+1l[}. The modified sequence {g;x)} has many benefits.
We list some of them in the following:

¢ Removing unsuitable information of the sequence {g;x)}, we can generate
a descending subsequence to produce an appropriate radius that leads to
smaller steplength near optimum and greater steplength far away from
it.

Math. Model. Anal., 19(4):469-490, 2014.
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e The modified sequence {g;x)} has descending subsequences that slowly
shrink the trust-region radius and prevent the production of very small
trust-region radius.

Now, we define the subsequence {g;x) rer of {gi(r)} constructed of N-tuples
9k such that i € I results in

lgis1ll < qis), foralliel,

and terminate it when ||g;11][ > g;;. Hence, the modified sequence g
consists of a data structure whose mission is to store pertinent information and
remove unsuitable information generated in the algorithm for determining the
new adaptive radius. The proposed adaptive radius has many benefits. First
of all, since Ry, > ||gx|| and the sequence {Ry} is not always decreasing, our
new updating rule prevents the production of the very small trust-region radius
as possible, so it decreases the total number of iterations for some of the test
problems. Secondly, due to decreasing the subsequences of Rk, Ay, will not
stay too large, so the total number of subproblems to be solved will not be
increased, either.

Now, we can outline our new adaptive trust-region-based algorithm as fol-
lows:

Algorithm 1: Adaptive Trust-Region Algorithm (ATRN)

Input: An initial point 2y € R™, a symmetric positive definite matrix By €
Rnxnv kmaz» 0< Mo < 11
O<pr Spe<pu3<1,0<y <y <l,v3>1, N>0ande>0.
Begin
Ro  |l90lls g10) < llgoll; k « 0
While (||lgx|| > € and k < kjq.) {Start of outer loop}
7 < 05
While (r;, < p1) {Start of inner loop}
Step 1: {Step calculation}
Specify the trial point dj by solving the subproblem (1.2);
Step 2: {Trial point acceptance}
Determine the trust-region ratio rj using (1.3);
If r, < 1
Update the trust-region radius by Ay = 71 Ag;
End If
End While {End of inner loop}
Tpt1 < T + di;
Jr1 < f(@r41);
Ght1 < 9(Tr41);
Step 3: {Trust-region radius update}
If \lgks1ll > i)
m(k+1) « 1,
Gi(e+1) < lgrs
Else
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m(k+1) « min{m(k) + 1, N};
Calculate g;(1) using (2.2);

End

Calculate Ry1 using (2.5);

Generate ni+1 by an adaptive formula,

Update Ag41 using (2.4);

Step 4: {Parameters update}

Update Bjy1 by a quasi-Newton formula;

k+—k+1;

End While {End of outer loop}
End

3 Theoretical Results Analysis

This section is devoted to analyzing the convergence properties of Algorithm 1.
We first give some properties of the algorithm and then investigate its global
convergence to first-order critical points. The quadratic convergence rates of
the proposed algorithm are also considered in this section.

Throughout the paper, we consider the following assumptions in order to
analyze the convergence of the new algorithm:

(H1) The objective function f(x) is continuously differentiable and the level
set L(xzg) = {z € R" | f(z) < f(x0)} is bounded for any zo € R™.

(H2) The objective function g(z) is continuously differentiable and the set
F(zo) ={z € R" | ||lg(z)|| < |lg(z0)]|} is bounded for any zy € R™.

(H3) The approximation Hessian matrix By is uniformly bounded, i.e., there
exists a constant M > 1 such that ||Bg| < M, for all k € N*.

Remark 1. If the objective function f(z) is twice continuously differentiable
and the level set L(zg) is bounded, (H1) implies that | V2 f(z)| is uniformly
continuous and bounded above on an open bounded convex set {2, containing
L(zo). As a result, there exists a constant L > 0 such that |[V2f(x)| < L, for
all x € (2. Therefore, using mean value theorem, one can conclude that

l9(@) —gW)|| < Lz —yl, Va,y€ 2,
which means that g(z) is Lipschitz continuous in the (2.

Remark 2. To establish the global convergence property, we assume that the
decrease on the model my, is at least as much as a fraction of the one obtained
by Cauchy point, i.e. there exists a constant 8 € (0, 1) such that

mi () — ma(zs + dy) > Bllgs | min {Ak, IIgiI } VE. (3.1)

The relation (3.1) is called the sufficient reduction condition. It implies that
d # 0 whenever gy, # 0.

Math. Model. Anal., 19(4):469-490, 2014.
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Lemma 1. Suppose that (H3) holds and the sequence {xy} is generated by
Algorithm 1. Then, we have

|f(zr) = f(zr + di) — (me(z) — me(ze + di))| < O(||di]|?)-
Proof. Taylor expansion along with (H3) implies that

| = f(@r + di) = (me(xe) — my(zr + di))|
< |=di Grdy + di Bedg | + O([|di||*) = |df} (Bx — Gr)di| + O(||dk|1?)
< (L+ M)|ldy|* + O(lldel*) = O([1dill?)-

This completes the proof. 0O

In the following lemma, we show that the subsequence {g;) }rer is decreas-
ing. This leads to producing a small or large trust-region radius being close to
or far away from the optimum, respectively.

Lemma 2. Suppose that the sequence {xy} is generated by Algorithm 1. Then,
for all k € N* N I, we have xy € F(xo) and {gyx) trer s a decreasing subse-
quence of {gi(k) }-

Proof. Using the definition of Ry, and Ji(k), We have
gl < Ri < 9i(k)- (3.2)
To prove that {g;)}rer is decreasing, we consider two following cases.

i) k > N. In this case, we have m(k + 1) < m(k) + 1, for all k € I. So, the
definition of g;(;41) and removing procedure result in

Gki1) = Ogjgnﬁéﬂ){llgkﬂfjll}

IA

max{ max {96511}, lows | |

= max{gix), l9x+11l} = i)-

ii) k < N. In this case, m(k) =k, for all k € I, and using ||gx| < ||goll, we
can see that
ey = llgoll Yk e N*N 1.

Now we prove that z; € F (o), for all k € N*N 1. Obviously, the definition
of Ry, indicates that Ry = ||go||. By induction, assume that x; € F(zo), for all
i=1,...,k. Using (3.2) and part one of the proof, we obtain

lgrt1ll < Rit1 < Gy < iy < llgolls

that completes the proof. O

The following lemma will establish that the sequence {g;)} is convergent.
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Lemma 3. Suppose that (H1)-(H3) and Remark 1 hold and there exists a con-
stant K > 0 such that kllgx|| > ||dil|. Assume, furthermore, that the sequence
{z1} is generated by Algorithm 1. Then, we have

Jm gy = kli_)fglong(fﬂk) [-

Proof. 1t is followed from the definition of xx1; and fi) that
Jigy = f@r +di) > fro — foe + di) > pa [mp(ax) — me(zk + di)].
By substituting the index k with I(k) — 1, we get
fiary-1) = fiey = [mk(xl(k)fl) - mk(xl(k))]a

SO
Jim [ (zary 1) — ma(@r))] =0 (3.3)

On the other hand, according to (H3) and (3.1), we have

. llgacey—1ll
(i) —1) — Mi(Tir)) = Bllgir) -1l mln{Al(k)—h B(i)l
I(k)—1

. ldiry—1 |
> Bllgiry—1l mln{|dl(k)—1”7 7;]\)4

B . 1 2 2
> mind 1 dier_1l12 = Clldym_1|1? >0,

where ( = %min {1, ﬁ} The above inequality and (3.3) imply that
Jm ldi(xy-1ll = 0. (3.4)
Lipschitz continuity of g(x) along with (3.4) results in
li = li . .
Jim [lg(zi))[| = Jim [lg(@i-1) (3.5)

Similar to [11], we define I(k) = I(k + N + 2). By induction, for all j > 1, we
show
klgfolo ||d[(k)7jH =0. (3.6)

For j = 1, (3.6) follows from (3.4) because {I{(k)} C {I(k)}. Assuming that (3.6)
holds for a given j, we show that it holds for j + 1, too. Let k be sufficiently
large such that [(k) — (j + 1) > 0. Using Lemma 7 of [2] and substituting k
with [(k) — j — 1, we have

@iy 1) = F@iy—;) = m [mk(xf(k)—j—l) - mk(xf(k)—j)]'
Following the same argument to derive (3.4), we deduce

lim Hdi

k—o0

(k)fjflu =0.

Math. Model. Anal., 19(4):469-490, 2014.
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This means that the induction is completed and (3.6) holds for any j > 1.
Similar to (3.5), for any given j > 1, we have that

Jim [lg (i)l = lim [|g(im)]]
On the other hand, for any k, one can write

i(k)—k—1
Thtl = Tjg) — Z iy

which along with (3.6) and the fact I(k) —j — 1 < N + 1 implies that
klggo k41 — x[(k)H =0.
Therefore, from the Lipschitz continuity of g(z), we get

Jim gy = lim [lg(zign)[| = lim [lg(eig)] = lim [lg(zi)]

that completes the proof. 0O

Corollary 1. Suppose that sequence {xy} is generated by Algorithm 1. Then,

kl;rr;ORk = hm Hg Ty ||

Lemma 4. Suppose that (H2)-(H3) hold, the sequence {xi} is generated by
Algorithm 1, and dy, is a solution of the subproblem (1.2). Then, there exists a
constant L' such that

my(xk) — me(zr + di) > L' gel*. (3.7)

Proof. Using (H3), (3.1) and (2.4), we have

mk(wk) - mk(gck + dk) > ﬁHng min{Ak, ||||glj€||| }

> Blgelmind ot %0 > gl mind o, 120}

> dlgulmin o, 120} > g min o) 190 = g2

where L' = Bmin{l, ﬁ}

The earliest proofs of first-order convergence are those of Powell for uncon-
strained optimization [19], the person who proved that limy_, inf ||gx| = 0.
This result was extended by Thomas [24] through proving that under addi-
tional conditions, limg_,« ||gk|| = 0. Though, Thomas’s proof intensely relies
on Powell’s result. The Powell’s theorem has been called a remarkable one,
not just because of the fact that it demands weak assumptions on f, but also
for his proof presents a general framework in order to prove the convergence of
trust region algorithms. An algorithm must contain two following properties
to be fit within the framework:
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(P1) If || gkl is bounded away from zero and {x} converges, then Ay — 0.

(P2) If f(xy) is bounded below and ||gg|| is bounded away from zero, then
Ay — 0 and {xy} converges.

It follows immediately that for any algorithm satisfying (P1) and (P2), either
f(zx) is unbounded below or limy_, inf ||gx|| = 0.
The two following lemmas show that our algorithm satisfy to P1 and P2.

Lemma 5. If ||gi|| > € for all k, then Ay does not converge to 0.

Proof. By contradiction, for all sufficiently large k, assume that Ap — 0.
Suppose that there is a subsequence {||gx||}res such that ||gx|| < ApM for all
k € J. Then, we obtain

o lgell o
A =
FZM M
Consequently, Ay does not converge to zero. Hence, Suppose that there is a
positive index kg such that

lgrll > AxM (3.8)
for all k > ko. Using Lemma 4 and (3.8), for all k£ > ko, we have

my(vx) — mp(og +di) > L'\gr|? > L'M?AZ,
0

f(xk + dk) — mk(xk + dk)
mk(xk) — m}g(xk + dk)

O(lldx*) _ O(47)

- L’MZAi - L'MQAz'

|Tk71‘:

Therefore, for all sufficiently large k, |ry — 1| < 1 — pg, or 7, > pz. Hence, we
can conclude that

Apyr = max{y3Re, A} > v3Re > slgrll > &,
where 3¢ = €. This contradicts our working assumption that Ay — 0. O

Lemma 6. If {f(xr)} is bounded below and | gx|| > € for all k, then Ay, — 0
and the sequence {xy} converges.

Proof. Take Ky = {k |7t > pu2} and Ko = {k € Ky | Ax > H%}H}. By
Lemma 4, for k € Ka,

Sr = frerr > pa(my(xr) — mup(zr + di)) > L' pa|grl]® > o162,

where o1 = L' uig. Since {fi} is convergent, we have

2016 < Z (fr = frt1) <ka_fk+1

keKz keKa

Math. Model. Anal., 19(4):469-490, 2014.
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Therefore, Ko must be finite. As a result, there exists a kg € N such that
A < 18l for all k> ko and k € Kq. By setting Kg = {k > ko | 4 < 121
k € K1}, we have

fr = T = po(me (k) — mi(z + di)) > L'psllgi||? > o1 MPAR = 02 A3
for k € Kg. Since {fi} is convergent, with oy = o1 M?, we obtain
> A = Z (fe = frt1) < *Z(fk = fr+1) <
keKs kEKs k

Hence, K3 must be finite. For k ¢ K4, according to Algorithm 1 and (H3), we
have

Apyq < max{fngk7Ak} < max{*ygf% ”i;” }

. R . 1 .
< max{'ngk, JRC;} = Ry max{'yg, M} = TRy,

where 7 = max {72, 77 } belongs to (0,1). Based on this information, we rewrite
the set Kg as follows Kg = {k1,ko,...,kj,...}, where k1 < ko < -+ < k; <
. Therefore, if k; € K3 — Kj, we have

kjt1—k; 1
Z Ay < Z ' Ry, < 1_7TRkJ
kj<k<kjii i=0
Therefore,
D lown —wulloo < 3 Ak= 3 Aut 3 A
k>ko k>ko keKs k¢Ks
T ary 5 oas T asSh
k€EKs =1 kj<k<kji1 kjeKg
=2 Akﬁm > By <o,
kj€K3 k_jGKa

which implies that {z)} is a Cauchy sequence and A, — 0. O

Assumptions (H1)-(H3) and the combination of the two previous lemmas
imply the following result.

Corollary 2. Suppose that (H1)-(H3) hold. Then, Algorithm 1 either stops at
a stationary point of f(x) or generates an infinite sequence {xy} such that

lim inf ||gx|| = 0.
k—o00

In the following theorem, we prove that Algorithm 1 is globally convergent
to the first-order critical points under the mentioned assumptions.
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Theorem 1. Suppose that (H1)-(H3) hold. Then, Algorithm 1 either stops at
a stationary point of f(x) or generates an infinite sequence {xy} such that

lim ||gxll = 0.
k— o0

Proof.  Assuming that {z}} is not finitely terminating, we show that the equal-
ity limg o0 ||gk||=0 is valid. By contradiction, for all sufficiently large k, sup-
pose that there exists a constant € > 0 and an infinite subset K C IN* such
that

lgell > ¢ forall k € K. (3.9)

Using (3.7), (3.9) and 7 > p1, we can write
fo — flak +di) > pa [mg(ze) — mu(zr + di)] > L’ ||gul]* > pae’L’ > 0.

This fact along with Lemma 6 imply that fx — f(xg+dg) — 0 for all sufficiently
large k. Now, by taking a limit we get €L’ < 0 which is a contradiction.
Hence, this completes the proof. O

To establish that Algorithm 1 is quadratically convergent some additional
assumptions are further required. These conditions can be stated as follows:

(H4) There exist some constants ¢y > 0 and p; € (0, 1) such that

lg(x) = g(y) + G) (@ = y)|| < collz —ylI* for all w,y € N(x., p1),
where z, is a solution of (1.1) and N (z.,p1) = {z | ||z — z.|| < p1}-

(H5) There exist some constants ¢; > %2 and p2 € (0,1) such that

alle — ] < [lg@]| = [l9(e) - gla-)]| for all & € Nz, ),
where x, is a solution of (1.1) and N (., p2) = {z | ||z — z«] < p2}-

In the sequel, we simply choose p = min{py, p2}. The condition (H4) holds
if g(x) and G(x) are continuously differentiable and Lipschitz continuous, re-
spectively .

Theorem 2. Suppose that (H1)-(H5) hold and let the sequence {xy}, generated
by Algorithm 1, converge to x,. Then, for sufficiently large k, we have

Tpt1 = Tk + dg,

where dy, is a solution of (1.2). Furthermore, the sequence {xj} converges
quadratically to x,.

Proof. 1If dj, is a solution of (1.2), then we first show that xx1 = x + di, for
sufficiently large k. From the fact that dy, is a feasible point for the subproblem
(1.2), Corollary 1 and Theorem 1, we simply have

ldi|| < Ak < v3Re, =0, as k — oo, (3.10)
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where 0 < k; < k. Note that ||gx|| > € because Algorithm 1 is not stopped.
This fact together with Lemma 1, Lemma 4 and (3.10) suggests that

Je — f(@k + di) 1‘ mi(k + di) — f(@k + di)

mk(xk) — mk(xk + dk) mk(xk) — mk(xk + dk)
_ Oldul?) _ O(A0?)
T LE®P T Le

— 0, as k— oo.

So, for sufficiently large k, we have rp > u; meaning that the trial point dj, is
accepted by Algorithm 1.

At this point, the quadratic convergence of the sequence {zy} generated by
Algorithm 1 is investigated. Regarding (H1), it is obvious that the level set
L(z) is bounded and g(z) is continuously differentiable on the compact convex
set {2 containing L(xg). Therefore, there exists a constant My > 0 such that

IGi|l < My for all z € £2. (3.11)
Hence, from (3.11) and the mean value theorem, one can easily get
lgrll = |lgk = g(z)|| < [|G©][llzr — 24l < Mollag — a4
for all xy, € N(z4,p) and € € [z, x.]. As a result, we can write
Ry = |lgell < Mollary — .|
for all sufficiently large k& and

lldi|l < AkAS max{ys Ry, Ax} (3.12)
< 3Ry, < y3Mollzy — x|l

where 0 < k; < k. To show that the point z} — . is a feasible point for (1.2),
we consider the three following cases.
(a) If ri, € [p1, p2), (H5) result in
1 1. . .
Jow =]l < —loull € —Ri < vl < max{ref, A} = Ar,
(b) If v, € [ua, u3), from (H5), we have
1 1 . .
ok — 2l < —llgrll < — Ry < Bi = Ag.
C1 C1
(c) If ri > p3, then (H5) implies that
1 1. . .
e = 2ol < Tllgell < - Ri < By < max{ys Ry, A} = Ay
Here, from (H4), (H5) and (3.12), we can conclude that

cillern =zl < ||g(ar + di)|| < llgr + Grdil| + O(|1dill?)
= llgr — g« + Grdi |l + O(lldi|I?)
<Ol — zl?) + O(llan, — .l?) = O([law — 2.[|?).
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Thus, there exists a positive constant x such that

i WEErr =@l Oz — 2.?)
k— o0 ||[L'k — x*||2 k—o0 ||{Ek — (E*HQ

Therefore, the sequence {z}}, generated by Algorithm 1, is quadratically con-
vergent. 0O

4 Preliminary Numerical Experiments

We now report the numerical results obtained by running Algorithms (ATRN-1
and ATRN-2) in comparison with the traditional trust-region algorithm (TTR)
and the adaptive trust-region algorithm of Shi and Guo [23] with g, = —Hpgx
(ATRS) on 93 standard unconstrained test problems. In Table 1, problems
are taken from Luksan and Vléek [16,17]. For all of the above algorithms, the
trust-region subproblems are coded due to Steihaug-Toint procedure, see [7].
The Steihaug-Toint algorithm terminates at xy + d when

[Vim(ay + d)|| < min{0.01, ||V (zx)||? H[Vma(ze)|| or [d] = A,

holds. All codes are written in MATLAB 9 programming environment with
double precision format in the same subroutine. In our numerical experiments,
the algorithms are stopped when |[|gx|| < 1076\/n or the total number of it-
erates exceeds 20000. The latter case is denoted as “Failed” in the presented
table. During the code implementation, we verified whether the different codes
converged to the same point. We only provided data for problems in which all
algorithms converged to the identical point. In all algorithms, the matrix By,
is updated by the following compact limited memory BFGS formula

-p, If 17

L, STB"s,

&

0
By =B - [vi BS] 4T 5O
k =k

)

where B,(CO) = M1, for some positive scalar A, and the matrices Sy, Yi, Dy and
L. are defined as follows:

Sk = [Sk—ms---»8k—-1), Y& = [Yk—ms -, Y1,
Dk = dlag I:Szfmykfmv sy 31{71?#@—1]7
(Li)i; = $£7m+i71yk—m+j—17 ifi>j
©J 0 otherwise,
in which sy = zp41 — Tk, Yk = gk+1 — g and m = min{k,m1}. In our
implementation, we take
N
= ——
yk’Vn sk’"l
as suggested by Shanno and Phua [22]. However, we do not update By whenever
the curvature condition, i.e. sgb_yki > (0 for ¢ = 1,...,m, does not hold, see
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[6,15]. The code of the compact limited memory BFGS updating formula
is rewritten based on ASTRAL code from J. V. Burke in [5]. The common
parameters of the algorithms TTR, ATRN-1 and ATRN-2 are set to u; = 1072,
p2 = 0.2) ug = 0.8, v1 = 0.25, v2 = 0.5, y3 = 2, and m; = 5, similar to [5]. In
the ATRN-1 and ATRN-2 algorithm, the parameter 7 is updated by

_Jm/2, if k=1;
= ey + M) /2, iF k> 2,

while the trust-region radius is updated by

vl dk |, if rp < pa;

max{y2Rg, Ap}, if 7 € [p1, p2);
Apr1 =19 = .

Rk7 if TE € [:u27,u3);

max{’ngk,Ak}, if 1 > s,

where 9 = 0.95 and 79 = 0.85 are chosen for ATRN-1 and ATRN-2 algorithms,
respectively. Furthermore, we use N = 10 in these algorithms.

The TTR algorithm employs Ag = 10 and updates the trust-region radius
by

71|l k]|, if rp < s
A = max{vya||di||, Ax}, if rr € [p1, p2);
! A, if i € [p2, p3);

max{ys|\dil, Ax}, if & > ps.

Due to [23], ATRS algorithm employs ¢ = 0.75, u = 0.1 and calculates the
qr = —Hy gy, using the algorithm QN in [15].

Notice that in all algorithms, the total number of iterates, IV;, is identical
to that of gradient evaluations, IN,. Due to this fact, in Table 1, we have just
reported the number of iterates and the number of function evaluations, Ny, as
a performance measure for the algorithms. It can be seen from Table 1 that in
most cases ATRN-1 and ATRN-2 are remarkably better than other considered
algorithms in both the number of iterates and function evaluations. Although
the ATRN-1 and ATRN-2 are not the best in some problems, it usually has
better computational performance compared with other algorithms. We also
take advantages of the performance profile of Dolan and Moré [9] to have a
better comparison among considered algorithms. Therefore, we have illustrated
the results of Table 1 in Figures 1 according to the total number of iterates
and the total number of function evaluations, respectively. In these figures, P
designates to the percentage of problems which are solved within a factor 7 of
the best solver.

From Figure 1 (a) , firstly, it can be easily seen that ATRN-1 and ATRN-
2 have most wins among all other considered algorithms. More precisely, it
solves about 49% of the test problems more efficiently and is faster than oth-
ers. Secondly, the performance of ATRN-1 and ATRN-2 are better than TTR
and ATRS in the sense of the total number of iterates. Thirdly, considering the
ability of completing the run successfully, we observe that both of ATRN-1 and
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Figure 1. Results for the presented algorithm: a) iteration performance profiles, b)
function evaluations performance profiles .

ATRN-2 are the best among other considered algorithms. Finally, the perfor-
mance index of ATRN-1 and ATRN-2 grows up faster than other. This means
that whenever ATRN-1 and ATRN-2 are not the best, theirs performance in-
dex are close to that of the best algorithm. On the other hand, Figure 1 (b)
shows that ATRN-1, ATRN-2 and TTR are so competitive regarding the to-
tal number of function evaluations; however, they perform better than ATRS.
Moreover, the results of ATRN-1 and ATRN-2 have most wins in about 40%
of test problems. In a final word, our preliminary computational experiments
show that the ATRN-1 and ATRN-2 algorithms with both amounts of men-
tioned 7 are remarkably well-promising for solving large-scale unconstrained
optimization problems.
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5 Concluding Remarks

In this paper, we presented a trust-region method for solving unconstrained
optimization problems in which an adaptive radius is proposed based on non-
monotone technique. The new adaptive procedure increases the trust-region
radius to find the optimum in a larger region. Consequently, it decreases the
total number of iterations and therefore it will decrease the total number of
subproblems to be solved. From the theoretical analysis point of view, the
proposed algorithm inherits the global convergence of traditional trust-region
algorithms to first-order critical points under classical assumptions. Under
some suitable conditions, the quadratic convergence rate is established. Fi-
nally, our preliminary numerical experiments on a large set of standard test
problems point out that the proposed algorithm is remarkably efficient and
robust for solving large-scale unconstrained optimization problems.
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