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Abstract. In this study, we propose a trust-region-based procedure to solve uncon-
strained optimization problems that take advantage of the nonmonotone technique to
introduce an efficient adaptive radius strategy. In our approach, the adaptive tech-
nique leads to decreasing the total number of iterations, while utilizing the structure
of nonmonotone formula helps us to handle large-scale problems. The new algorithm
preserves the global convergence and has quadratic convergence under suitable con-
ditions. Preliminary numerical experiments on standard test problems indicate the
efficiency and robustness of the proposed approach for solving unconstrained opti-
mization problems.
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1 Introduction

Consider the following unconstrained optimization problem

minimize f(x), subject to x ∈ Rn, (1.1)

where f : Rn → R is a continuous function. Many problems arising in science,
engineering, management, economy and operations research can be reformu-
lated into (1.1). A lot of approaches such as Newton, quasi-Newton, vari-
able metric, gradient and conjugate gradient methods have been introduced
to solve (1.1). These methods need to exploit one of the general globalization
techniques, say line search or trust-region techniques, in order to guarantee the
global convergence results (see [18]).
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For a given iterate xk, a line search technique refers to a procedure that
computes a step length αk along with a specific direction dk and generates the
new iterate

xk+1 = xk + αkdk.

Many line search strategies have been proposed to determine αk; for instance,
exact line search, Armijo rule, Wolfe and Goldstein inexact line search condi-
tions (see [18]). On the other hand, a quadratic-based framework of trust-region
technique computes a trial step dk by solving the quadratic subproblem

minimize mk(xk + d) = fk + gTk d+
1

2
dTBkd

subject to d ∈ Rn and ‖d‖ ≤ ∆k,
(1.2)

where ‖ · ‖ denotes the Euclidean norm, fk = f(xk), gk = ∇f(xk), Bk is the
exact Hessian Gk = ∇2f(xk) or its symmetric approximation and ∆k is the
trust-region radius. Let dk be the solution of (1.2). In the traditional monotone
trust-region methods, the ratio

rk =
f(xk)− f(xk + dk)

mk(xk)−mk(xk + dk)
(1.3)

between the actual reduction and the predicted reduction of f(x) plays a key
role in the algorithm to deciding whether the trial step dk is acceptable and
to adjust the new trust-region radius. Consider the step acceptance constants
0 < µ1 ≤ µ2 ≤ µ3 < 1. It may be that rk ≥ µ3 (very successful iterate),
rk ∈ [µ2, µ3) (not very successful iterate), rk ∈ [µ1, µ2) (successful iterate),
or rk < µ1 (unsuccessful iterate). In the first three cases, the trial step dk is
accepted, the next iterate xk+1 is chosen by xk+1 = xk+dk and the trust-region
radius is updated appropriately based on the amount of the ratio rk. Finally, if
iterate is unsuccessful, the trial step is rejected and the quadratic subproblem
(1.2) would be solved again with the reduced trust-region radius.

It is known that the traditional trust-region methods are very sensitive to
the initial radius ∆0 and its updating scheme. This fact leads the researchers
to work on finding appropriate procedures for initial radius as well as its up-
dating rules. Sartenaer [20] gave a method which can automatically determine
an initial trust-region radius. The drawback of this approach is the possible
dependence of the parameters on the problem information. Recently, Gould
et al. [12] extensively examined the sensitivity of the traditional trust-region
methods to the parameters and trust-region radius updates. Despite their com-
prehensive tests on a large number of test problems, they could not claim to
have found the best parameters to update scheme. In 2002, motivated by a
problem in the neural network field, Zhang et al. [26] proposed the first adap-
tive trust-region radius in which the information of the current iterate was used
more effectively to introduce the adaptive scheme. Precisely, they introduced
the following adaptive trust-region radius

∆k = cpk‖gk‖
∥∥B̃−1k ∥∥,
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where c ∈ (0, 1) is a constant, pk ∈ N∗ = N ∪ {0} and B̃k = Bk + Ek is a
safely positive definite matrix based on Schnabel and Eskow scheme for mod-
ified Cholesky factorization, see [21]. According to numerical results, their
method works very well on small-scale unconstrained optimization problems,
but the situation dramatically changes for the large-scale and even medium-
scale problems due to calculation of B̃−1k . Subsequently, Shi and Guo [23]
proposed another interesting adaptive radius by

∆k = −cpk gTk qk

qTk B̂kqk
‖qk‖. (1.4)

Here, B̂k = Bk+iI, i is the smallest nonnegative integer such that qTk B̂kqk > 0,
I is identity matrix and qk satisfies the well-known angle condition

−gTk qk/(‖gk‖ ‖qk‖) ≥ τ,

in which τ ∈ (0, 1] is a constant. An important advantage of (1.4) is its ability
for selecting appropriate qk in order to make a more robust method. They
proposed the choices −gk and −B−1k gk for qk. Preliminary numerical results
along with theoretical analysis showed that their method was well promising
to solve medium-scale unconstrained optimization problems without any need
to search for appropriate initial trust-region radius.

Although the proposed adaptive trust-region radius by Shi and Guo enjoys
some advantages such as decreasing the total computational cost by declining
the number of subproblems to be solved and determining a good initial radius,
it suffers from some drawbacks as well. We list some of these as follows:

• When −gTk qk is close to zero, we may obtain a tiny trust-region radius
which results in increasing the total number of iterations.

• Due to the necessity of storing the matrix Bk for computing qTk B̂kqk,
this technique may be unsuitable for large-scale problems.

• The selection qk = −gk does not generate an adequate radius (see [23]).

• Computation of qk = −B−1k gk requires B−1k or solving a linear system
of equations, so their method is not appropriate for large-scale problems.

The primary goal of the present paper is to propose an effective trust-region
procedure for handling large-scale unconstrained optimization problems. So,
we introduce a modified adaptive radius strategy based on a nonmonotone
technique and employ it in a trust-region framework. The new method gen-
erates a suitable trust-region radius to decrease the total number of iterations
for some of the test problems. We also investigate the global convergence to
first-order stationary points and establish the quadratic convergence properties
of the proposed algorithm. To illustrate the efficiency and robustness of our
method, we report some numerical experiments.

The rest of this paper is organized as follows. In Section 2, we describe
the motivation behind the proposed algorithm and its structure. Section 3 is
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devoted to investigating global and quadratic convergence properties of the al-
gorithm. Numerical results are provided in Section 4 to show the well promising
behavior of the proposed approach encountering with unconstrained optimiza-
tion problems. Finally, some conclusions are outlined in Section 5.

2 New Algorithm: Motivation and Structure

A trust-region-based algorithm for solving unconstrained optimization will be
presented in this section. After proposing an adaptive trust-region radius based
on the nonmonotone technique, we add this strategy into trust-region frame-
work to construct a more effective procedure for solving unconstrained opti-
mization problems in the sequel.

Many researchers have investigated the disadvantages of traditional trust-
region methods, especially those encountering with the rejected trial step,
see [1, 12, 20, 23, 26]. If the elements of the trial step are close to the rejected
one, the possibility of accepting the new trial step will be reduced significantly.
Inspired by this fact, many researchers have worked on determining an appro-
priate trust-region radius and its updating rules, see [1,12,20]. However, there
is no general rule to update the trust-region radius when iterate is successful
or very successful. In these cases, it is necessary that the trust-region radius be
appropriately large. However, if the trust-region is very large, the number of
subproblems to be solved will be increased. Consequently, the computational
cost of solving a problem may be increased, too. On the other hand, it is be-
lieved that a very small radius causes algorithm to increase the total number of
iterates and decrease the efficiency of the procedure. Based on these ideas, to
control the size of trust-region radius, we introduce a new adaptive trust-region
which inherits some advantages of the nonmonotone technique.

To guarantee the global convergence of the traditional optimization ap-
proaches, it is well-known that we generally need to use a globalization tech-
nique, like line search or trust-region. These globalization techniques mostly
enforce a monotonicity of the sequence of objective function values which usu-
ally result in producing short steps. Due to this fact, a slow numerical con-
vergence is created with highly nonlinear problems, see [2, 3, 4, 11, 13, 14, 25].
In order to avoid this drawback of the Armijo-type line search globalization
techniques, Grippo et al. [11] introduced a nonmonotone line search technique
for Newton method. They relaxed Armijo rule such that stepsize αk satisfied
the following condition:

f(xk + αkdk) ≤ fl(k) + δαkg
T
k dk, (2.1)

where δ ∈ (0, 1) and

fl(k) = max
0≤j≤m(k)

{fk−j}, k ∈ N∗, (2.2)

in which m(0) = 0 and 0 ≤ m(k) ≤ min{m(k − 1) + 1, N}, with N ≥ 0. The
theoretical and numerical results show that (2.1) has remarkable positive ef-
fects on Armijo-type line searches to get faster global convergence especially



An Improved Adaptive Trust-Region Method 473

for highly nonlinear problems. These excellent results are attracting many re-
searchers to investigate more about the effects of these strategies on a wide
variety of optimization procedures and propose new nonmonotone techniques,
see [2, 3, 4, 11, 25]. As a prominent example, the first exploitation of nonmono-
tone strategies in a trust-region framework was proposed in [8] by changing the
ratio (1.3) to assess an agreement between the quadratic model and the objec-
tive function over the trust-region area. More recently, the idea has been used
by Ahookhosh and Amini [2] and Ahookhosh et al. [3] to introduce an algo-
rithm for unconstrained optimization. These techniques employ the following
nonmonotone term

Rk = ηkfl(k) + (1− ηk)fk, (2.3)

where ηk ∈ [ηmin, ηmax], ηmin ∈ [0, 1) and ηmax ∈ [ηmin, 1]. Clearly, the non-
monotonicity of (2.3) can be adjusted by selecting an adaptive process for ηk
which makes it more relaxed for practical usage. As it was argued in [3, 7, 10]
for an Armijo-type line search, it is generally believed that the best results
can be obtained when a stronger nonmonotone term is used far away from the
optimum while a weaker one is used close to the optimum. This also means
that if the current iterate is far away from the optimum, a larger steplength
will be used while being close to it, a smaller one can be employed. We believe
the same idea is true for trust-region radius. Hence, we take the advantage of
the nonmonotone technique to introduce a new adaptive radius by

∆k+1 =


γ1∆k, if rk < µ1;

max{γ2R̂k, ∆k}, if rk ∈ [µ1, µ2);

R̂k, if rk ∈ [µ2, µ3);

max{γ3R̂k, ∆k}, if rk ≥ µ3,

(2.4)

where γ1, γ2 and γ3 are constants of trust-region scaling parameter,

R̂k = ηkgl(k) + (1− ηk)‖gk‖ (2.5)

and
gl(k) = max

0≤j≤m(k)

{
‖gk−j‖

}
, k ∈ N∗.

We note that if ‖gk+1‖ > gl(k), the sequence {gl(k)} can not be descending, so
that the descend condition ‖gk+1‖ ≤ ‖gk‖ may not be satisfied. As a result,
this event causes the iterate to remain far away from optimum, due to the use of
inappropriate information stored in gl(k) for generating the trust-region radius.
To overcome this disadvantage, we design a removing procedure to eliminate
the inappropriate members of the sequence {gl(k)}. Our removing procedure
works as follows: If ‖gk+1‖ is greater than gl(k), remove all elements of gl(k)
and set gl(k+1) = {‖gk+1‖}. The modified sequence {gl(k)} has many benefits.
We list some of them in the following:

• Removing unsuitable information of the sequence {gl(k)}, we can generate
a descending subsequence to produce an appropriate radius that leads to
smaller steplength near optimum and greater steplength far away from
it.

Math. Model. Anal., 19(4):469–490, 2014.
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• The modified sequence {gl(k)} has descending subsequences that slowly
shrink the trust-region radius and prevent the production of very small
trust-region radius.

Now, we define the subsequence {gl(k)}k∈I of {gl(k)} constructed ofN -tuples
gl(k) such that i ∈ I results in

‖gi+1‖ ≤ gl(i), for all i ∈ I,

and terminate it when ‖gi+1‖ > gl(i). Hence, the modified sequence gl(k)
consists of a data structure whose mission is to store pertinent information and
remove unsuitable information generated in the algorithm for determining the
new adaptive radius. The proposed adaptive radius has many benefits. First
of all, since R̂k ≥ ‖gk‖ and the sequence {R̂k} is not always decreasing, our
new updating rule prevents the production of the very small trust-region radius
as possible, so it decreases the total number of iterations for some of the test
problems. Secondly, due to decreasing the subsequences of R̂k, ∆k will not
stay too large, so the total number of subproblems to be solved will not be
increased, either.

Now, we can outline our new adaptive trust-region-based algorithm as fol-
lows:

Algorithm 1: Adaptive Trust-Region Algorithm (ATRN)

Input: An initial point x0 ∈ Rn, a symmetric positive definite matrix B0 ∈
Rn×n, kmax, 0 < η0 < 1,
0 < µ1 ≤ µ2 ≤ µ3 < 1, 0 < γ1 ≤ γ2 < 1, γ3 ≥ 1, N > 0 and ε > 0.
Begin

R̂0 ← ‖g0‖; gl(0) ← ‖g0‖; k ← 0;
While (‖gk‖ ≥ ε and k ≤ kmax) {Start of outer loop}

rk ← 0;
While (rk < µ1) {Start of inner loop}

Step 1: {Step calculation}
Specify the trial point dk by solving the subproblem (1.2);
Step 2: {Trial point acceptance}
Determine the trust-region ratio rk using (1.3);
If rk < µ1

Update the trust-region radius by ∆k = γ1∆k;
End If

End While {End of inner loop}
xk+1 ← xk + dk;
fk+1 ← f(xk+1);
gk+1 ← g(xk+1);
Step 3: {Trust-region radius update}
If ‖gk+1‖ > gl(k)
m(k + 1)← 1;
gl(k+1) ← ‖gk+1‖

Else
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m(k + 1)← min{m(k) + 1, N};
Calculate gl(k+1) using (2.2);

End
Calculate R̂k+1 using (2.5);
Generate ηk+1 by an adaptive formula;
Update ∆k+1 using (2.4);
Step 4: {Parameters update}
Update Bk+1 by a quasi-Newton formula;
k ← k + 1;

End While {End of outer loop}
End

3 Theoretical Results Analysis

This section is devoted to analyzing the convergence properties of Algorithm 1.
We first give some properties of the algorithm and then investigate its global
convergence to first-order critical points. The quadratic convergence rates of
the proposed algorithm are also considered in this section.

Throughout the paper, we consider the following assumptions in order to
analyze the convergence of the new algorithm:

(H1) The objective function f(x) is continuously differentiable and the level
set L(x0) = {x ∈ Rn | f(x) ≤ f(x0)} is bounded for any x0 ∈ Rn.

(H2) The objective function g(x) is continuously differentiable and the set
F(x0) = {x ∈ Rn | ‖g(x)‖ ≤ ‖g(x0)‖} is bounded for any x0 ∈ Rn.

(H3) The approximation Hessian matrix Bk is uniformly bounded, i.e., there
exists a constant M > 1 such that ‖Bk‖ ≤M , for all k ∈ N∗.

Remark 1. If the objective function f(x) is twice continuously differentiable
and the level set L(x0) is bounded, (H1) implies that ‖∇2f(x)‖ is uniformly
continuous and bounded above on an open bounded convex set Ω, containing
L(x0). As a result, there exists a constant L > 0 such that ‖∇2f(x)‖ ≤ L, for
all x ∈ Ω. Therefore, using mean value theorem, one can conclude that∥∥g(x)− g(y)

∥∥ ≤ L‖x− y‖, ∀x, y ∈ Ω,

which means that g(x) is Lipschitz continuous in the Ω.

Remark 2. To establish the global convergence property, we assume that the
decrease on the model mk is at least as much as a fraction of the one obtained
by Cauchy point, i.e. there exists a constant β ∈ (0, 1) such that

mk(xk)−mk(xk + dk) ≥ β‖gk‖min

{
∆k,

‖gk‖
‖Bk‖

}
∀k. (3.1)

The relation (3.1) is called the sufficient reduction condition. It implies that
dk 6= 0 whenever gk 6= 0.

Math. Model. Anal., 19(4):469–490, 2014.
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Lemma 1. Suppose that (H3) holds and the sequence {xk} is generated by
Algorithm 1. Then, we have∣∣f(xk)− f(xk + dk)−

(
mk(xk)−mk(xk + dk)

)∣∣ ≤ O(‖dk‖2).
Proof. Taylor expansion along with (H3) implies that∣∣fk − f(xk + dk)−

(
mk(xk)−mk(xk + dk)

)∣∣
≤
∣∣−dTkGkdk + dTkBkdk

∣∣+O
(
‖dk‖2

)
=
∣∣dTk (Bk −Gk)dk

∣∣+O
(
‖dk‖2

)
≤ (L+M)‖dk‖2 +O

(
‖dk‖2

)
= O

(
‖dk‖2

)
.

This completes the proof. ut

In the following lemma, we show that the subsequence {gl(k)}k∈I is decreas-
ing. This leads to producing a small or large trust-region radius being close to
or far away from the optimum, respectively.

Lemma 2. Suppose that the sequence {xk} is generated by Algorithm 1. Then,
for all k ∈ N∗ ∩ I, we have xk ∈ F(x0) and {gl(k)}k∈I is a decreasing subse-
quence of {gl(k)}.

Proof. Using the definition of R̂k and gl(k), we have

‖gk‖ ≤ R̂k ≤ gl(k). (3.2)

To prove that {gl(k)}k∈I is decreasing, we consider two following cases.
i) k ≥ N . In this case, we have m(k + 1) ≤ m(k) + 1, for all k ∈ I. So, the

definition of gl(k+1) and removing procedure result in

gl(k+1) = max
0≤j≤m(k+1)

{
‖gk+1−j‖

}
≤ max

{
max

0≤j≤m(k)

{
‖gk−j‖

}
, ‖gk+1‖

}
= max

{
gl(k), ‖gk+1‖

}
= gl(k).

ii) k < N . In this case, m(k) = k, for all k ∈ I, and using ‖gk‖ ≤ ‖g0‖, we
can see that

gl(k) = ‖g0‖ ∀k ∈ N∗ ∩ I.

Now we prove that xk ∈ F(x0), for all k ∈ N∗∩I. Obviously, the definition
of R̂k indicates that R̂0 = ‖g0‖. By induction, assume that xi ∈ F(x0), for all
i = 1, . . . , k. Using (3.2) and part one of the proof, we obtain

‖gk+1‖ ≤ R̂k+1 ≤ gl(k+1) ≤ gl(k) ≤ ‖g0‖,

that completes the proof. ut

The following lemma will establish that the sequence {gl(k)} is convergent.
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Lemma 3. Suppose that (H1)–(H3) and Remark 1 hold and there exists a con-
stant κ > 0 such that κ‖gk‖ > ‖dk‖. Assume, furthermore, that the sequence
{xk} is generated by Algorithm 1. Then, we have

lim
k→∞

gl(k) = lim
k→∞

∥∥g(xk)
∥∥.

Proof. It is followed from the definition of xk+1 and fl(k) that

fl(k) − f(xk + dk) ≥ fk − f(xk + dk) ≥ µ1

[
mk(xk)−mk(xk + dk)

]
.

By substituting the index k with l(k)− 1, we get

fl(l(k)−1) − fl(k) ≥ µ1

[
mk(xl(k)−1)−mk(xl(k))

]
,

so
lim
k→∞

[
mk(xl(k)−1)−mk(xl(k))

]
= 0. (3.3)

On the other hand, according to (H3) and (3.1), we have

mk(xl(k)−1)−mk(xl(k)) ≥ β‖gl(k)−1‖min

{
∆l(k)−1,

‖gl(k)−1‖
Bl(k)−1

}
≥ β‖gl(k)−1‖min

{
‖dl(k)−1‖,

‖dl(k)−1‖
κM

}
≥ β

κ
min

{
1,

1

κM

}
‖dl(k)−1‖2 = ζ‖dl(k)−1‖2 ≥ 0,

where ζ = β
κ min

{
1, 1

κM

}
. The above inequality and (3.3) imply that

lim
k→∞

‖dl(k)−1‖ = 0. (3.4)

Lipschitz continuity of g(x) along with (3.4) results in

lim
k→∞

∥∥g(xl(k))
∥∥ = lim

k→∞

∥∥g(xl(k)−1)
∥∥. (3.5)

Similar to [11], we define l̂(k) = l(k + N + 2). By induction, for all j ≥ 1, we
show

lim
k→∞

‖dl̂(k)−j‖ = 0. (3.6)

For j = 1, (3.6) follows from (3.4) because {l̂(k)} ⊂ {l(k)}. Assuming that (3.6)
holds for a given j, we show that it holds for j + 1, too. Let k be sufficiently
large such that l̂(k) − (j + 1) > 0. Using Lemma 7 of [2] and substituting k

with l̂(k)− j − 1, we have

f(xl̂(k)−j−1)− f(xl̂(k)−j) ≥ µ1

[
mk(xl̂(k)−j−1)−mk(xl̂(k)−j)

]
.

Following the same argument to derive (3.4), we deduce

lim
k→∞

∥∥dl̂(k)−j−1∥∥ = 0.

Math. Model. Anal., 19(4):469–490, 2014.
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This means that the induction is completed and (3.6) holds for any j ≥ 1.
Similar to (3.5), for any given j ≥ 1, we have that

lim
k→∞

∥∥g(xl̂(k)−j)
∥∥ = lim

k→∞

∥∥g(xl(k))
∥∥.

On the other hand, for any k, one can write

xk+1 = xl̂(k) −
l̂(k)−k−1∑
j=1

dl̂(k)−j ,

which along with (3.6) and the fact l̂(k)− j − 1 ≤ N + 1 implies that

lim
k→∞

‖xk+1 − xl̂(k)‖ = 0.

Therefore, from the Lipschitz continuity of g(x), we get

lim
k→∞

gl(k) = lim
k→∞

∥∥g(xl(k))
∥∥ = lim

k→∞

∥∥g(xl̂(k))
∥∥ = lim

k→∞

∥∥g(xk)
∥∥,

that completes the proof. ut

Corollary 1. Suppose that sequence {xk} is generated by Algorithm 1. Then,

lim
k→∞

R̂k = lim
k→∞

∥∥g(xk)
∥∥.

Lemma 4. Suppose that (H2)–(H3) hold, the sequence {xk} is generated by
Algorithm 1, and dk is a solution of the subproblem (1.2). Then, there exists a
constant L′ such that

mk(xk)−mk(xk + dk) ≥ L′‖gk‖2. (3.7)

Proof. Using (H3), (3.1) and (2.4), we have

mk(xk)−mk(xk + dk) ≥ β‖gk‖min

{
∆k,

‖gk‖
‖Bk‖

}
≥ β‖gk‖min

{
γ3R̂k−1,

‖gk‖
M

}
≥ β‖gk‖min

{
γ3R̂k,

‖gk‖
M

}
≥ β‖gk‖min

{
R̂k,
‖gk‖
M

}
≥ β‖gk‖min

{
‖gk‖,

‖gk‖
M

}
= L′‖gk‖2,

where L′ = βmin
{

1, 1
M

}
. ut

The earliest proofs of first-order convergence are those of Powell for uncon-
strained optimization [19], the person who proved that limk→∞ inf ‖gk‖ = 0.
This result was extended by Thomas [24] through proving that under addi-
tional conditions, limk→∞ ‖gk‖ = 0. Though, Thomas’s proof intensely relies
on Powell’s result. The Powell’s theorem has been called a remarkable one,
not just because of the fact that it demands weak assumptions on f , but also
for his proof presents a general framework in order to prove the convergence of
trust region algorithms. An algorithm must contain two following properties
to be fit within the framework:
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(P1) If ‖gk‖ is bounded away from zero and {xk} converges, then ∆k 9 0.

(P2) If f(xk) is bounded below and ‖gk‖ is bounded away from zero, then
∆k → 0 and {xk} converges.

It follows immediately that for any algorithm satisfying (P1) and (P2), either
f(xk) is unbounded below or limk→∞ inf ‖gk‖ = 0.

The two following lemmas show that our algorithm satisfy to P1 and P2.

Lemma 5. If ‖gk‖ ≥ ε for all k, then ∆k does not converge to 0.

Proof. By contradiction, for all sufficiently large k, assume that ∆k → 0.
Suppose that there is a subsequence {‖gk‖}k∈J such that ‖gk‖ ≤ ∆kM for all
k ∈ J . Then, we obtain

∆k ≥
‖gk‖
M
≥ ε

M
.

Consequently, ∆k does not converge to zero. Hence, Suppose that there is a
positive index k0 such that

‖gk‖ ≥ ∆kM (3.8)

for all k ≥ k0. Using Lemma 4 and (3.8), for all k ≥ k0, we have

mk(xk)−mk(xk + dk) ≥ L′‖gk‖2 ≥ L′M2∆2
k,

so

|rk − 1| =
∣∣∣∣f(xk + dk)−mk(xk + dk)

mk(xk)−mk(xk + dk)

∣∣∣∣
≤ O(‖dk‖2)

L′M2∆2
k

≤ O(∆2
k)

L′M2∆2
k

.

Therefore, for all sufficiently large k, |rk − 1| < 1− µ3, or rk ≥ µ3. Hence, we
can conclude that

∆k+1 = max{γ3R̂k, ∆k} ≥ γ3R̂k ≥ γ3‖gk‖ ≥ ε̄,

where γ3ε = ε̄. This contradicts our working assumption that ∆k → 0. ut

Lemma 6. If {f(xk)} is bounded below and ‖gk‖ > ε for all k, then ∆k → 0
and the sequence {xk} converges.

Proof. Take K1 = {k | rk ≥ µ2} and K2 = {k ∈ K1 | ∆k ≥ ‖gk‖
M }. By

Lemma 4, for k ∈ K2,

fk − fk+1 ≥ µ2(mk(xk)−mk(xk + dk)) ≥ L′µ2‖gk‖2 > σ1ε
2,

where σ1 = L′µ2. Since {fk} is convergent, we have∑
k∈K2

σ1ε
2 ≤

∑
k∈K2

(fk − fk+1) ≤
∑
k

(fk − fk+1) <∞.
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Therefore, K2 must be finite. As a result, there exists a k0 ∈ N such that

∆k ≤ ‖gk‖M for all k ≥ k0 and k ∈ K1. By setting K3 = {k ≥ k0 | ∆k ≤ ‖gk‖M ,
k ∈ K1}, we have

fk − fk+1 ≥ µ2

(
mk(xk)−mk(xk + dk)

)
≥ L′µ2‖gk‖2 ≥ σ1M2∆2

k = σ2∆
2
k

for k ∈ K3. Since {fk} is convergent, with σ2 = σ1M
2, we obtain∑

k∈K3

∆k ≤
1

σ2

∑
k∈K3

(fk − fk+1) ≤ 1

σ2

∑
k

(fk − fk+1) <∞.

Hence, K3 must be finite. For k 6∈ K1, according to Algorithm 1 and (H3), we
have

∆k+1 ≤ max{γ2R̂k, ∆k} ≤ max

{
γ2R̂k,

‖gk‖
M

}
≤ max

{
γ2R̂k,

R̂k
M

}
= R̂k max

{
γ2,

1

M

}
= πR̂k,

where π = max{γ2, 1
M } belongs to (0, 1). Based on this information, we rewrite

the set K3 as follows K3 = {k1, k2, . . . , kj , . . .}, where k1 < k2 < · · · < kj <
· · · . Therefore, if kj ∈ K3 −K1, we have

∑
kj<k<kj+1

∆k ≤
kj+1−kj∑
i=0

πiR̂kj ≤
1

1− π
R̂kj .

Therefore,∑
k≥k0

‖xk+1 − xk‖∞ ≤
∑
k≥k0

∆k =
∑
k∈K3

∆k +
∑
k 6∈K3

∆k

=
∑
k∈K3

∆k +

∞∑
j=1

∑
kj<k<kj+1

∆k ≤
∑
kj∈K3

∆kj +
1

1− π

∞∑
j=1

R̂kj

=
∑
kj∈K3

∆kj +
1

1− π
∑
kj∈K3

R̂kj <∞,

which implies that {xk} is a Cauchy sequence and ∆k → 0. ut

Assumptions (H1)–(H3) and the combination of the two previous lemmas
imply the following result.

Corollary 2. Suppose that (H1)–(H3) hold. Then, Algorithm 1 either stops at
a stationary point of f(x) or generates an infinite sequence {xk} such that

lim inf
k→∞

‖gk‖ = 0.

In the following theorem, we prove that Algorithm 1 is globally convergent
to the first-order critical points under the mentioned assumptions.
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Theorem 1. Suppose that (H1)–(H3) hold. Then, Algorithm 1 either stops at
a stationary point of f(x) or generates an infinite sequence {xk} such that

lim
k→∞

‖gk‖ = 0.

Proof. Assuming that {xk} is not finitely terminating, we show that the equal-
ity limk→∞ ‖gk‖=0 is valid. By contradiction, for all sufficiently large k, sup-
pose that there exists a constant ε > 0 and an infinite subset K ⊆ N∗ such
that

‖gk‖ > ε for all k ∈ K. (3.9)

Using (3.7), (3.9) and rk > µ1, we can write

fk − f(xk + dk) ≥ µ1

[
mk(xk)−mk(xk + dk)

]
≥ µ1L

′ ‖gk‖2 ≥ µ1ε
2L′ > 0.

This fact along with Lemma 6 imply that fk−f(xk+dk)→ 0 for all sufficiently
large k. Now, by taking a limit we get µ1ε

2L′ ≤ 0 which is a contradiction.
Hence, this completes the proof. ut

To establish that Algorithm 1 is quadratically convergent some additional
assumptions are further required. These conditions can be stated as follows:

(H4) There exist some constants c0 > 0 and ρ1 ∈ (0, 1) such that∥∥g(x)− g(y) +G(y)(x− y)
∥∥ ≤ c0‖x− y‖2 for all x, y ∈ N(x∗, ρ1),

where x∗ is a solution of (1.1) and N(x∗, ρ1) = {x | ‖x− x∗‖ ≤ ρ1}.

(H5) There exist some constants c1 ≥ 1
γ2

and ρ2 ∈ (0, 1) such that

c1‖x− x∗‖ ≤
∥∥g(x)

∥∥ =
∥∥g(x)− g(x∗)

∥∥ for all x ∈ N(x∗, ρ2),

where x∗ is a solution of (1.1) and N(x∗, ρ2) = {x | ‖x− x∗‖ ≤ ρ2}.

In the sequel, we simply choose ρ = min{ρ1, ρ2}. The condition (H4) holds
if g(x) and G(x) are continuously differentiable and Lipschitz continuous, re-
spectively .

Theorem 2. Suppose that (H1)–(H5) hold and let the sequence {xk}, generated
by Algorithm 1, converge to x∗. Then, for sufficiently large k, we have

xk+1 = xk + dk,

where dk is a solution of (1.2). Furthermore, the sequence {xk} converges
quadratically to x∗.

Proof. If dk is a solution of (1.2), then we first show that xk+1 = xk + dk, for
sufficiently large k. From the fact that dk is a feasible point for the subproblem
(1.2), Corollary 1 and Theorem 1, we simply have

‖dk‖ ≤ ∆k ≤ γ3R̂kj → 0, as k →∞, (3.10)

Math. Model. Anal., 19(4):469–490, 2014.
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where 0 ≤ kj ≤ k. Note that ‖gk‖ ≥ ε because Algorithm 1 is not stopped.
This fact together with Lemma 1, Lemma 4 and (3.10) suggests that∣∣∣∣ fk − f(xk + dk)

mk(xk)−mk(xk + dk)
− 1

∣∣∣∣ =

∣∣∣∣mk(xk + dk)− f(xk + dk)

mk(xk)−mk(xk + dk)

∣∣∣∣
≤ O(‖dk‖2)

L′‖Fk‖2
≤ O((∆k)2)

L′ε2
→ 0, as k →∞.

So, for sufficiently large k, we have rk ≥ µ1 meaning that the trial point dk is
accepted by Algorithm 1.

At this point, the quadratic convergence of the sequence {xk} generated by
Algorithm 1 is investigated. Regarding (H1), it is obvious that the level set
L(x0) is bounded and g(x) is continuously differentiable on the compact convex
set Ω containing L(x0). Therefore, there exists a constant M0 > 0 such that

‖Gk‖ ≤M0 for all x ∈ Ω. (3.11)

Hence, from (3.11) and the mean value theorem, one can easily get

‖gk‖ =
∥∥gk − g(x∗)

∥∥ ≤ ∥∥G(ξ)
∥∥‖xk − x∗‖ ≤M0‖xk − x∗‖

for all xk ∈ N(x∗, ρ) and ξ ∈ [xk, x∗]. As a result, we can write

R̂k ≈ ‖gk‖ ≤M0‖xk − x∗‖

for all sufficiently large k and

‖dk‖ ≤ ∆k ≤ max{γ3R̂k, ∆k}
≤ γ3R̂kj ≤ γ3M0‖xk − x∗‖,

(3.12)

where 0 ≤ kj ≤ k. To show that the point xk − x∗ is a feasible point for (1.2),
we consider the three following cases.

(a) If rk ∈ [µ1, µ2), (H5) result in

‖xk − x∗‖ ≤
1

c1
‖gk‖ ≤

1

c1
R̂k ≤ γ2R̂k ≤ max{γ2R̂k, ∆k} = ∆k.

(b) If rk ∈ [µ2, µ3), from (H5), we have

‖xk − x∗‖ ≤
1

c1
‖gk‖ ≤

1

c1
R̂k ≤ R̂k = ∆k.

(c) If rk ≥ µ3, then (H5) implies that

‖xk − x∗‖ ≤
1

c1
‖gk‖ ≤

1

c1
R̂k ≤ R̂k ≤ max{γ3R̂k, ∆k} = ∆k.

Here, from (H4), (H5) and (3.12), we can conclude that

c1‖xk+1 − x∗‖ ≤
∥∥g(xk + dk)

∥∥ ≤ ‖gk +Gkdk‖+O
(
‖dk‖2

)
= ‖gk − g∗ +Gkdk‖+O

(
‖dk‖2

)
≤ O

(
‖xk − x∗‖2

)
+O

(
‖xk − x∗‖2

)
= O

(
‖xk − x∗‖2

)
.
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Thus, there exists a positive constant κ such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖2

= lim
k→∞

O(‖xk − x∗‖2)

‖xk − x∗‖2
≤ κ.

Therefore, the sequence {xk}, generated by Algorithm 1, is quadratically con-
vergent. ut

4 Preliminary Numerical Experiments

We now report the numerical results obtained by running Algorithms (ATRN-1
and ATRN-2) in comparison with the traditional trust-region algorithm (TTR)
and the adaptive trust-region algorithm of Shi and Guo [23] with qk = −Hkgk
(ATRS) on 93 standard unconstrained test problems. In Table 1, problems
are taken from Lukšan and Vlček [16,17]. For all of the above algorithms, the
trust-region subproblems are coded due to Steihaug–Toint procedure, see [7].
The Steihaug-Toint algorithm terminates at xk + d when∥∥∇m(xk + d)

∥∥ ≤ min
{

0.01,
∥∥∇mk(xk)

∥∥ 1
2
}∥∥∇mk(xk)

∥∥ or ‖d‖ = ∆k,

holds. All codes are written in MATLAB 9 programming environment with
double precision format in the same subroutine. In our numerical experiments,
the algorithms are stopped when ‖gk‖ ≤ 10−6

√
n or the total number of it-

erates exceeds 20000. The latter case is denoted as “Failed” in the presented
table. During the code implementation, we verified whether the different codes
converged to the same point. We only provided data for problems in which all
algorithms converged to the identical point. In all algorithms, the matrix Bk
is updated by the following compact limited memory BFGS formula

Bk = B
(0)
k −

[
Yk B

(0)
k Sk

] [−Dk LTk

Lk STk B
(0)
k Sk

]−1 [
Y Tk

STk B
(0)
k

]
,

where B
(0)
k = λI, for some positive scalar λ, and the matrices Sk, Yk, Dk and

Lk are defined as follows:

Sk = [sk−m, . . . , sk−1], Yk = [yk−m, . . . , yk−1],

Dk = diag
[
sTk−myk−m, . . . , s

T
k−1yk−1

]
,

(Lk)i,j =

{
sTk−m+i−1yk−m+j−1, if i > j
0 otherwise,

in which sk = xk+1 − xk, yk = gk+1 − gk and m = min{k,m1}. In our
implementation, we take

λ =
‖ykm‖2

ykm
T
skm

,

as suggested by Shanno and Phua [22]. However, we do not updateBk whenever
the curvature condition, i.e. sTkiyki > 0 for i = 1, . . . ,m, does not hold, see

Math. Model. Anal., 19(4):469–490, 2014.
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[6, 15]. The code of the compact limited memory BFGS updating formula
is rewritten based on ASTRAL code from J. V. Burke in [5]. The common
parameters of the algorithms TTR, ATRN-1 and ATRN-2 are set to µ1 = 10−5,
µ2 = 0.2, µ3 = 0.8, γ1 = 0.25, γ2 = 0.5, γ3 = 2, and m1 = 5, similar to [5]. In
the ATRN-1 and ATRN-2 algorithm, the parameter ηk is updated by

ηk =

{
η0/2, if k = 1;
(ηk−1 + ηk−2)/2, if k ≥ 2,

while the trust-region radius is updated by

∆k+1 =


γ1‖dk‖, if rk < µ1;

max{γ2R̂k, ∆k}, if rk ∈ [µ1, µ2);

R̂k, if rk ∈ [µ2, µ3);

max{γ3R̂k, ∆k}, if rk ≥ µ3,

where η0 = 0.95 and η0 = 0.85 are chosen for ATRN-1 and ATRN-2 algorithms,
respectively. Furthermore, we use N = 10 in these algorithms.

The TTR algorithm employs ∆0 = 10 and updates the trust-region radius
by

∆k+1 =


γ1‖dk‖, if rk < µ1;

max{γ2‖dk‖, ∆k}, if rk ∈ [µ1, µ2);

∆k, if rk ∈ [µ2, µ3);

max{γ3‖dk‖, ∆k}, if rk ≥ µ3.

Due to [23], ATRS algorithm employs c = 0.75, µ = 0.1 and calculates the
qk = −Hkgk using the algorithm QN in [15].

Notice that in all algorithms, the total number of iterates, Ni, is identical
to that of gradient evaluations, Ng. Due to this fact, in Table 1, we have just
reported the number of iterates and the number of function evaluations, Nf , as
a performance measure for the algorithms. It can be seen from Table 1 that in
most cases ATRN-1 and ATRN-2 are remarkably better than other considered
algorithms in both the number of iterates and function evaluations. Although
the ATRN-1 and ATRN-2 are not the best in some problems, it usually has
better computational performance compared with other algorithms. We also
take advantages of the performance profile of Dolan and Moré [9] to have a
better comparison among considered algorithms. Therefore, we have illustrated
the results of Table 1 in Figures 1 according to the total number of iterates
and the total number of function evaluations, respectively. In these figures, P
designates to the percentage of problems which are solved within a factor τ of
the best solver.

From Figure 1 (a) , firstly, it can be easily seen that ATRN-1 and ATRN-
2 have most wins among all other considered algorithms. More precisely, it
solves about 49% of the test problems more efficiently and is faster than oth-
ers. Secondly, the performance of ATRN-1 and ATRN-2 are better than TTR
and ATRS in the sense of the total number of iterates. Thirdly, considering the
ability of completing the run successfully, we observe that both of ATRN-1 and
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Figure 1. Results for the presented algorithm: a) iteration performance profiles, b)
function evaluations performance profiles .

ATRN-2 are the best among other considered algorithms. Finally, the perfor-
mance index of ATRN-1 and ATRN-2 grows up faster than other. This means
that whenever ATRN-1 and ATRN-2 are not the best, theirs performance in-
dex are close to that of the best algorithm. On the other hand, Figure 1 (b)
shows that ATRN-1, ATRN-2 and TTR are so competitive regarding the to-
tal number of function evaluations; however, they perform better than ATRS.
Moreover, the results of ATRN-1 and ATRN-2 have most wins in about 40%
of test problems. In a final word, our preliminary computational experiments
show that the ATRN-1 and ATRN-2 algorithms with both amounts of men-
tioned η0 are remarkably well-promising for solving large-scale unconstrained
optimization problems.
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5 Concluding Remarks

In this paper, we presented a trust-region method for solving unconstrained
optimization problems in which an adaptive radius is proposed based on non-
monotone technique. The new adaptive procedure increases the trust-region
radius to find the optimum in a larger region. Consequently, it decreases the
total number of iterations and therefore it will decrease the total number of
subproblems to be solved. From the theoretical analysis point of view, the
proposed algorithm inherits the global convergence of traditional trust-region
algorithms to first-order critical points under classical assumptions. Under
some suitable conditions, the quadratic convergence rate is established. Fi-
nally, our preliminary numerical experiments on a large set of standard test
problems point out that the proposed algorithm is remarkably efficient and
robust for solving large-scale unconstrained optimization problems.
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