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Abstract. The solvability results are established for the boundary value problem
with a damping term x′′ + 2δx′ = −µx+ + λx− + h(t, x, x′), x(0) = 0,

∫ 1

0
x(s) ds = 0,

where x+ = max{x, 0}, x− = max{−x, 0}, h is a bounded nonlinearity, µ, λ real
parameters. The existence results are based of the knowledge of the Fuč́ık type
spectrum for the problem with h ≡ 0.
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1 Introduction

Consider the problem

x′′ = −µx+ + λx−, x(0) = 0, x(1) = 0, (1.1)

where x+ = max{x, 0}, x− = max{−x, 0} and µ ∈ R, λ ∈ R.
The Fuč́ık spectrum of the problem (1.1) is the set of such points (µ, λ)

that the problem has a nontrivial solution. The spectrum for the problem
(1.1) is well known and consists of infinite set of curves (branches) F+

i and F−i
(i = 0, 1, 2, . . .).

The lower index shows how many zeroes the respective solution has in the
interval (0, 1), but the upper index shows the sign of the derivative of the
solution at t = 0. All the branches of the spectrum, except F+

0 and F−0 , are
located in the first quadrant, but F+

0 and F−0 can be continued outside the first
quadrant in the manner given in the work [2].

Consider the problem

x′′ = −µx+ + λx−, x(0) = 0,

∫ 1

0

x(s) ds = 0. (1.2)
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The spectrum of this problem is a union of two symmetric branches stretched
along the bisectrix of the first and the third quadrants.

Both analytical and graphical description of the spectrum of the problem
(1.2) was given in the work [9]. Some of the branches of the spectrum for the
problems (1.1) and (1.2) are shown in Fig. 1, 2.
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Figure 1. The spectrum of the problem
(1.1).
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Figure 2. The spectrum of the problem
(1.2).

The knowledge of the spectra can be used to define regions of solvability
(“good” regions) for the problems

x′′ = −µx+ + λx− + h(t, x, x′), x(0) = 0, x(1) = 0, (1.3)

x′′ = −µx+ + λx− + h(t, x, x′), x(0) = 0,

∫ 1

0

x(s) ds = 0, (1.4)

where h is bounded continuous function. It was obtained in the works [2] and [4]
respectively. We call the regions “good” regions if the following is true: if (µ, λ)
belongs to the ”good“ region then the problem is solvable, if (µ, λ) does not
belong to the ”good“ region then the problem is solvable or not. The ”good“
regions of (µ, λ)-plane for the problems (1.3) and (1.4) are shown in Fig. 3
and 4. If (µ, λ) are in the shared region, but not on the Fuč́ık spectrum, then
the problem (1.3) (or (1.4)) is certainly solvable for any bounded continuous
h(t, x, x′).

Fuč́ık spectra of various differential operators and solvability of correspond-
ing nonlinear problems both in resonance and non-resonance cases have been
studied by many authors, let us mention [1, 5, 8], and the references therein.

In this article we consider the equation

x′′ + 2δx′ = −µx+ + λx− (1.5)

with conditions

x(0) = 0,

∫ 1

0

x(s) ds = 0 (1.6)
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Figure 3. The solvability regions for
the problem (1.3).
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Figure 4. The solvability regions for
the problem (1.4).

as well as essentially nonlinear equation

x′′ + 2δx′ = −µx+ + λx− + h(t, x, x′) (1.7)

with the same conditions (1.6).
The spectrum obtained for the problem (1.5), (1.6) helps to state the exis-

tence results for the problem (1.7), (1.6). It is interesting to mention that
counting the damping term in equation (1.7) for δ > 0 leads to the enlargement
of the region of parameters (µ, λ) for which the problem is solvable.

The equations (1.5) and (1.7) provide a fairly natural generalization of the
classical linear oscillator, the restoring force being here piecewise linear. The
interest for such equations has been motivated in particular by the models
of suspension bridges. The interested reader may consult the works [6, 7] for
additional information and references therein.

2 Related Results for the Dirichlet Problem with x′

In order to describe properties of the spectrum for the problem (1.5), (1.6) we
provide some information about the problem below

x′′ + 2δx′ = −µx+ + λx−, x(0) = 0, x(1) = 0. (2.1)

The spectrum of the problem (2.1) was obtained in the work [3]. The
branches of the spectrum for the problem (2.1) can be obtained from the clas-
sical Fuč́ık spectrum by translation parallel to the vector (δ2, δ2). The spectrum
of the problem (2.1) consists of the branches given by the next equations:

F+
0 (δ) =

{
(µ, λ) : µ = δ2 + π2, λ ∈ R

}
,

F+
2i−1(δ) =

{
(µ, λ) :

iπ√
µ− δ2

+
iπ√
λ− δ2

= 1
}
,

Math. Model. Anal., 19(3):417–429, 2014.
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F+
2i (δ) =

{
(µ, λ) :

(i+ 1)π√
µ− δ2

+
iπ√
λ− δ2

= 1
}
, F−i (δ) =

{
(µ, λ) : (λ, µ) ∈ F+

i

}
.

The solvability regions for the problem

x′′ + 2δx′ = −µx+ + λx− + h(t, x, x′), x(0) = 0, x(1) = 0 (2.2)

for continuous and bounded h(t, x, x′) were considered in the work [3] also.
The spectrum of the problem (2.1) and solvability regions for the problem

(2.2) are shown in Fig. 5 and 6. Let us remark that the presence of a damp-
ing term in the problem (1.1) does not essentially change the spectrum and
solvability regions [3, p. 183].
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Figure 5. The spectrum of the problem
(2.1) for δ = 5.
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Figure 6. The solvability regions for
the problem (2.2) for δ = 5.

3 The Spectrum of the Problem Depending of x′ with
Integral Condition

Now consider the problem (1.5), (1.6). This problem is a generalization of
the problem (1.2). For δ = 0 the problem (1.5), (1.6) reduces to the above
mentioned problem (1.2).

The description of the spectrum for the problem (1.5), (1.6) is given in the
following results.

Lemma 1. The branches F±0 of the spectrum of the problem (1.5), (1.6) do not
exist.

Proof. It is clear that the solution of the problem (1.5), (1.6) must have at
least one zero in the interval (0, 1) in order to meet the second condition in
(1.6). That is why the branches F±0 of the spectrum for the problem (1.5),
(1.6) do not exist. ut
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Lemma 2. The branches F±1 of the spectrum of the problem (1.5), (1.6) consist
of three parts. The branch F+

1 is located in the first and fourth quadrants of the
(µ, λ)- plane, but the branch F−1 is located in the first and second quadrants of
the (µ, λ)- plane.

Proof. Now suppose that (µ, λ) ∈ F+
1 and let x(t) be a respective nontrivial

solution of the problem (1.5), (1.6). The solution has only one zero in the
interval (0, 1) and x′(0) = α > 0. Let this zero be denoted by τ . Consider
the problem (1.5), (1.6) in the interval (0, τ). We obtain that it reduces to the
problem

x′′ + 2δx′ + µx = 0, x(0) = 0, x(τ) = 0.

The solution

x(t;α) =
α√
µ− δ2

exp(−δt) sin
(√

µ− δ2t
)

(3.1)

of the Cauchy problem

x′′ + 2δx′ + µx = 0, x(0) = 0, x′(0) = α > 0

has the first zero at the point t = π√
µ−δ2

. So τ = π√
µ−δ2

. In view of τ < 1 we

obtain that µ > π2 + δ2.
We will use τ in the next formulas instead of π√

µ−δ2
to simplify them. The

calculations show that

x′(τ) = −α exp(−δτ) = α−, (3.2)∫ τ

0

x(s) ds =
α

µ

(
1 + exp(−δτ)

)
. (3.3)

Now consider the problem (1.5), (1.6) in the interval (τ, 1). In this interval
we obtain the problem

x′′ + 2δx′ + λx = 0, x(τ) = 0, x′(τ) = α−. (3.4)

The solution of the problem (3.4) must satisfy the next condition∫ 1

τ

x(s) ds = −α
µ

(
1 + exp(−δτ)

)
in order to meet the second condition in (1.6). According to δ2 − λ value we
obtain three different cases.

Case 1. Consider δ2− λ > 0 or λ < δ2. We obtain that the solution which
satisfies the last problem is

x(t;α−) =
α−√
δ2 − λ

exp(−δ(t− τ)) sinh(
√
δ2 − λ(t− τ))

or in view of (3.2)

x(t;α) =
−α exp(−δτ)√

δ2 − λ
exp(−δ(t− τ)) sinh(

√
δ2 − λ(t− τ)).

Math. Model. Anal., 19(3):417–429, 2014.
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It follows that∫ 1

τ

x(s) ds =
α

λ

(
−exp(−δτ) + exp(−δ) cosh

(√
δ2 − λ(1− τ)

)
+
δ exp(−δ)√
δ2 − λ

sinh
(√

δ2 − λ(1− τ)
))
. (3.5)

From (3.3) and (3.5) we obtain the following equation

λ
(
1 + exp(−δτ)

)
+ µ

(
−exp(−δτ) + exp(−δ) cosh

(√
δ2 − λ(1− τ)

)
+
δ exp(−δ)√
δ2 − λ

sinh
(√

δ2 − λ(1− τ)
))

= 0. (3.6)

This equation makes it possible to calculate (µ, λ) values which correspond
to the branch F+

1,<. Let us remark that we introduce new notation here, the

additional “<” sign means that λ < δ2.

Case 2. Consider δ2 − λ = 0 or λ = δ2. We obtain such solution of
the problem (3.4) x(t;α−) = α−(t − τ) exp(−δ(t − τ)) or in view of (3.2)
x(t;α) = −α exp(−δτ)(t− τ) exp(−δ(t− τ)). It follows that∫ 1

τ

x(s) ds =
α

δ2
(
−exp(−δτ) + exp(−δ)(1 + δ − δτ)

)
. (3.7)

From (3.3) and (3.7) we obtain the equation

δ2
(
1 + exp(−δτ)

)
+ µ

(
−exp(−δτ) + exp(−δ)(1 + δ − δτ)

)
= 0. (3.8)

The last equation makes it possible to calculate µ value which corresponds to
the point (µ, δ2) in the (µ, λ) plane. Let us introduce the notation F+

1,= for this

point where additional “=” sign means that λ = δ2.

Case 3. Consider δ2−λ < 0 or λ > δ2. We obtain that the solution of the
problem (3.4) is

x(t;α) =
−α exp

(
− δτ)

√
λ− δ2

exp
(
− δ(t− τ)

)
sin(

√
λ− δ2(t− τ)).

It follows that∫ 1

τ

x(s) ds =
α

λ

(
−exp(−δτ) + exp(−δ) cos

(√
λ− δ2(1− τ)

)
+
δ exp(−δ)√
λ− δ2

sin
(√

λ− δ2(1− τ)
))
. (3.9)

From (3.3) and (3.9) we obtain the equation

λ
(
1 + exp(−δτ)

)
+ µ

(
−exp(−δτ) + exp(−δ) cos

(√
λ− δ2(1− τ)

)
+
δ exp(−δ)√
λ− δ2

sin
(√

λ− δ2(1− τ)
))

= 0. (3.10)
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The equation (3.10) makes it possible to calculate (µ, λ) values which corre-
spond to the branch F+

1,> where the additional “>” sign means that λ > δ2.

In view of all the above mentioned we obtain that F+
1 = F+

1,< ∪F
+
1,= ∪F

+
1,>

and F+
1 is located in the first and fourth quadrants of (µ, λ) plane.

The proof for F−1 is similar. ut

Lemma 3. Each branch of the spectrum for the problem (1.5), (1.6) is bounded
with the branches of the spectrum for the problem (2.1).

Proof. Consider the solution of the problem (1.5), (1.6) with two zeroes in
the interval (0, 1). Let us denote them τ1 and τ2. We must consider the
corresponding problems in the intervals (0, τ1), (τ1, τ2) and (τ2, 1). Similarly as
in Lemma 2 we obtain that τ1 = π√

µ−δ2
, τ2 = π√

µ−δ2
+ π√

λ−δ2 .

The solution of the corresponding Cauchy problem in the interval (τ2, 1)
has the first zero 2π√

µ−δ2
+ π√

λ−δ2 outside the interval (0, 1). It follows that

π√
µ− δ2

+
π√
λ− δ2

< 1 ≤ 2π√
µ− δ2

+
π√
λ− δ2

for solutions of the problem (1.5), (1.6) with two zeroes in the interval (0, 1).
In view of it the branch F+

2 of the spectrum for the problem (1.5), (1.6) is
bounded with the branches F+

1 and F+
2 of the spectrum for the problem (2.1).

ut

The explicit formulas of the branches of the spectrum for the problem (1.5),
(1.6) are given in the next theorem.

Theorem 1. The spectrum of the problem for different δ values consists of the
branches given by

F+
1 = F+

1,> ∪ F
+
1,= ∪ F

+
1,<;

F+
1,> =

{
(µ, λ) : λ

(
1 + exp

( −δπ√
µ− δ2

))
+ µ

(
−exp

( −δπ√
µ− δ2

)
+ exp(−δ) cos

(√
λ− δ2

(
1− π√

µ− δ2
))

+
δ exp(−δ)√
λ− δ2

× sin
(√

λ− δ2
(

1− π√
µ− δ2

)))
= 0, µ > π2 + δ2,

π√
µ− δ2

+
π√
λ− δ2

≥ 1
}

;

F+
1,= =

{
(µ, λ) : λ

(
1 + exp

( −δπ√
µ− δ2

))
+ µ

(
−exp

( −δπ√
µ− δ2

)
+ exp(−δ)

(
1 + δ − δπ√

µ− δ2
))

= 0, µ > π2 + δ2, λ = δ2
}

;

Math. Model. Anal., 19(3):417–429, 2014.
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F+
1,< =

{
(µ, λ) : λ

(
1 + exp

( −δπ√
µ− δ2

))
+ µ

(
−exp

( −δπ√
µ− δ2

)
+ exp(−δ) cosh

(√
δ2 − λ

(
1− π√

µ− δ2
))

+
δ exp(−δ)√
δ2 − λ

× sinh
(√

δ2 − λ
(

1− π√
µ− δ2

)))
= 0, µ > π2 + δ2, λ < δ2

}
;

F+
2i =

{
(µ, λ) : λ

((
1 + exp

( πδ√
µ− δ2

)) i∑
j=1

exp
( −δjπ√

µ− δ2
+
−δ(j − 1)π√

λ− δ2
)

+ exp
( −δiπ√

µ− δ2
+
−δiπ√
λ− δ2

)
− exp(−δ) cos

(√
µ− δ2

(
1− iπ√

λ− δ2
)

+ iπ
)
− δe−δ√

µ− δ2
sin
(√

µ− δ2
(

1− iπ√
λ− δ2

)
+ iπ

))
− µ

(
1 + exp

( πδ√
λ− δ2

)) i∑
j=1

exp
( −δjπ√

µ− δ2
+
−δjπ√
λ− δ2

)
= 0,

iπ√
µ− δ2

+
iπ√
λ− δ2

< 1,
(i+ 1)π√
µ− δ2

+
iπ√
λ− δ2

≥ 1
}

;

F+
2i+1 =

{
(µ, λ) : λ

(
1 + exp

( πδ√
µ− δ2

)) i+1∑
j=1

exp
( −δjπ√

µ− δ2
+
−δ(j − 1)π√

λ− δ2
)

− µ
((

1 + exp
( πδ√

λ− δ2
)) i∑

j=1

exp
( −δjπ√

µ− δ2
+
−δjπ√
λ− δ2

)
+ exp

(−δ(i+ 1)π√
µ− δ2

+
−δiπ√
λ− δ2

)
− exp(−δ) cos

(√
λ− δ2

(
1− (i+ 1)π√

µ− δ2
)

+ iπ
)

− δ exp(−δ)√
λ− δ2

sin
(√

λ− δ2
(

1− (i+ 1)π√
µ− δ2

)
+ iπ

))
= 0,

(i+ 1)π√
µ− δ2

+
iπ√
λ− δ2

< 1,
(i+ 1)π√
µ− δ2

+
(i+ 1)π√
λ− δ2

≥ 1
}

;

F−i =
{

(µ, λ) : (λ, µ) ∈ F+
i

}
, i = 1, 2, . . .

Proof. The proof of this theorem for branches F±1 follows from Lemma 2.
Now we will prove the theorem for the case of F+

2i . Let x(t) be a respective
nonlinear solution of the problem (1.5), (1.6). It has 2i zeroes in the interval
(0, 1) and x′(0) > 0. Let these zeroes be denoted by τ1, τ2 and so on.

Consider the problem (1.5), (1.6) in the intervals (0, τ1), (τ1, τ2), . . . , (τ2i, 1).
We obtain the equations

x′′ + 2δx′ + µx = 0 and x′′ + 2δx′ + λx = 0 (3.11)

in the the odd and even intervals respectively.
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The direct calculations show that τ1 = π√
µ−δ2

, τ2 = π√
µ−δ2

+ π√
λ−δ2 , . . .,

τ2i−1 = iπ√
µ−δ2

+ (i−1)π√
λ−δ2 and τ2i = iπ√

µ−δ2
+ iπ√

λ−δ2 . It is easy to show that the

derivatives x′(τj) (j = 0, . . . , 2i) of the nontrivial solution x(t) are:

x′(0) = α > 0, x′(τ1) = −α exp

(
−δπ√
µ− δ2

)
,

x′(τ2) = α exp

(
−δπ√
µ− δ2

+
−δπ√
λ− δ2

)
,

x′(τ3) = −α exp

(
−2δπ√
µ− δ2

+
−δπ√
λ− δ2

)
, . . .

x′(τ2i) = α exp

(
−iδπ√
µ− δ2

+
−iδπ√
λ− δ2

)
.

Consider the solutions of the respective Cauchy problems with respect to
(3.11). In view of the last derivatives we obtain:∫ τ1

0

x(s) ds =
α

µ

(
1 + exp

( −δπ√
µ− δ2

))
; (3.12)∫ τ2

τ1

x(s) ds = −α
λ

(
1 + exp

( δπ√
λ− δ2

))
exp
( −δπ√

µ− δ2
+
−δπ√
λ− δ2

)
;∫ τ3

τ2

x(s) ds =
α

µ

(
1 + exp

( δπ√
µ− δ2

))
exp
( −2δπ√

µ− δ2
+
−δπ√
λ− δ2

)
;

· · · · · · · · ·∫ 1

τ2i

x(s) ds =
α

µ

(
exp

( −δiπ√
µ− δ2

+
−δiπ√
λ− δ2

)
− exp(−δ) cos

(√
µ− δ2 − iπ

√
µ− δ2√
λ− δ2

+ iπ
)

− δe−δ√
µ− δ2

sin
(√

µ− δ2 − iπ
√
µ− δ2√
λ− δ2

+ iπ
))
.

In view of the equations (3.12) we obtain the expression for F+
2i .

The ideas of the proof for all other branches are similar. We consider the
problem (1.5), (1.6) in the intervals (0, τ1), (τ1, τ2), . . . , (τ2i+1, 1) and in the
same manner as before we obtain the expression for F+

2i+1. ut

The graphical description of the spectrum for some values of δ is given in
Fig. 7 and 8.

4 The Solvability Regions

The knowledge of the spectrum of the problem (1.5), (1.6) can be used to define
regions of solvability for the problem (1.7), (1.6).

Math. Model. Anal., 19(3):417–429, 2014.
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Figure 7. The spectrum of the problem (1.5), (1.6) for some positive δ values.
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Figure 8. The spectrum of the problem (1.5), (1.6) for some negative δ values.

So, consider the problem (1.7), (1.6).
We suppose that h : [0, 1]×R×R→ R is continuous and bounded Lipschitz

(with respect to x and x′) function.
Consider the Cauchy problem

x′′ + 2δx′ = −µx+ + λx− + h(t, x, x′), x(0) = 0, x′(0) = α. (4.1)

Let x(t;α) be a solution of (4.1).
Consider the Cauchy problems

z′′ + 2δz′ = −µz+ + λz−, z(0) = 0, z′(0) = 1 (4.2)

and
z′′ + 2δz′ = −µz+ + λz−, z(0) = 0, z′(0) = −1. (4.3)

Let the functions z+(t) and z−(t) be solutions of the Cauchy problems (4.2)
and (4.3) respectively.

Lemma 4. The functions u(t;α) = 1
|α|x(t;α) tend uniformly in t ∈ [0, 1] to

the functions z+(t) as α→ +∞ and to z−(t) as α→ −∞.
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Proof. The functions u(t;α) satisfy the following problem

u′′ + 2δu′ = −µu+ + λu− +
1

|α|
h(t, x(t), x′(t)), u(0) = 0, u′(0) = 1.

The last term ( 1
|α|h) in the above equation tends to zero as |α| → +∞ since

h is bounded.
The equation in the beginning of the proof of Lemma 4 is such that all

solutions extend on [0, 1]. Besides, due to properties of h(t, x, x′), the Cauchy
problems are uniquely solvable and solutions u(t;α) tend uniformly in t ∈ [0, 1]
to z+(t) as α→ +∞ and to z−(t) as α→ −∞. ut

The following result is valid.

Theorem 2. If ∫ 1

0

z−(s) ds

∫ 1

0

z+(s) ds < 0, (4.4)

where meaning of z+(t) and z−(t) and restrictions on h(t, x, x′) are as above,
then there exists α0 ∈ R such that x(t;α0) solves the problem (1.7), (1.6).

Proof. We consider the Cauchy problem (4.1). Since the functions u(t;α) =
1
|α|x(t;α) tend to the functions z± as α → ±∞ and the condition (4.4) holds,

one has that ∫ 1

0

x(s;α) ds

∫ 1

0

x(s;−α) ds < 0.

By continuous dependence of x(t;α) on α one concludes that there exists α0

such that the condition (1.6) holds. ut

We obtain that the problem (1.7), (1.6) is solvable if (µ, λ) does not belong
to the spectrum of the problem (1.5), (1.6) but it is such that (4.4) holds
(“good” regions for solvability).

The regions of (µ, λ)-plane where the problem (1.7), (1.6) is certainly sol-
vable have been depicted in Fig. 9 for some values of δ.

Remark 1. The regions of (µ, λ)-plane where the problem (1.7), (1.6) is certainly
solvable are located between

∑
− =

⋃+∞
i=1 F

−
i and

∑
+ =

⋃+∞
i=1 F

+
i .

5 Conclusions

1. The analytical description of the spectrum for the problem (1.5), (1.6)
was obtained. The presence of a damping term in the problem (1.2)
changes the spectrum essentially (Figs. 7, 8).

2. The visualization of the spectrum for the problem (1.5), (1.6) was ob-
tained for some values of δ.
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Figure 9. Solvability regions for the the problem (1.7), (1.6).

3. The problem (1.7), (1.6) was considered and the existence of solutions
was established by making use of previously studied spectra for the Fuč́ık
equation.

4. The presence of a damping term in the problem (1.4) changes the solvabil-
ity regions essentially. These regions for the problem (1.7), (1.6) enlarge
together with δ > 0 (Fig. 9).
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