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Abstract. The effect of couple-stress fluid field on chaotic convection in a fluid layer
heated from below was studied in this paper based on the theory of dynamical sys-
tems. A low-dimensional, Lorenz-like model was obtained using Galerkin truncated
approximations. The fourth-order Runge–Kutta method was employed to solve the
nonlinear system. The results show that inhibition of chaotic convection depends
strongly on the couple-stress parameter.
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1 Introduction

Chaotic convection has attracted interest due to its wide applications in many
natural systems, such as the time evolution of the magnetic field of celestial
bodies, molecular vibrations, the dynamics of satellite in the solar system, the
weather, ecology and neurons.

The transition from steady convection to chaos for low Prandtl number
was studied by Vadasz and Olek [19] is sudden and occurs by a subcritical
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Hopf bifurcation producing a solitary limit cycle which may be associated
with a homoclinic explosion. This finding can be recovered from a truncated
Galerkin expansion [18] that yields a system identical to the familiar Lorenz
equations [6, 12]. The work of Vadasz [15] suggests an explanation for the
appearance of this solitary limit cycle via local analytical results. For the cor-
responding convection problem in a pure fluid, a similar approach was used by
Vadasz [16, 17] to demonstrate similar results. Vadasz and Olek [20] showed
that the route to chaos occurs by a period doubling sequence of bifurcations
when the Prandtl number is moderate. Sheu [11] studied thermal convection
in a fluid-saturated porous medium using a thermal non-equilibrium model to
take account of the interphase heat transfer between the fluid and the solid. He
found that the route to chaos was altered by interphase heat transfer and the
non-equilibrium effect tends to stabilize steady convection. He also predicted
an abrupt transition to chaos when interphase heat transfer is moderate and
the porosity-modified conductivity ratio is small or moderate, while a period-
doubling route to chaos was predicted with weak interphase heat transfer and a
small-porosity-modified conductivity ratio. Jawdat and Hashim [4] studied the
chaotic convection in a porous medium for low Prandtl number with influence
of internal heat generation. They showed that the onset of chaotic convection
can be enhanced by a uniform internal heat generation. Whereas, the inhibi-
tion of chaotic convection for pure fluid using nanofluids was investigated by
Jawdat et al. [5]. Idris and Hashim [3] observed that the magnetic field could
delay the convective motion in a saturated porous medium fluid layer for low
Prandtl number case. Meanwhile, Mahmud and Hashim [7] showed that a con-
stant, vertical magnetic field could suppress or enhance the chaotic convection
in a fluid layer heated from below.

Couple-stress fluids introduced by [13], is a special case of a non-Newtonian
fluid and have distinct features, such as the presence of couple stresses, body
couples and non-symmetric stress tensor. The main feature of couple stresses
is to introduce a size dependent effect. The study of couple-stress fluids has
applications in a number of processes that occur in industry such as the ex-
trusion of polymer fluids, solidification of liquid crystals, cooling of metallic
plate in a bath. The stability of a layer of fluid with couple stresses was stud-
ied by Ahmadi [1]. He observed that the critical Rayleigh number is a sharp
limit separating the stability and instability region. The electrically conducting
couple-stress fluid heated from below in porous medium in the presence of uni-
form magnetic field was studied by Sharma and Thakur [10]. They concluded
that, for stationary convection, the couple stress and magnetic field postpone
the onset of convection whereas the medium permeability hastens the onset of
convection. Also, the magnetic field introduces oscillatory modes in the sys-
tem which were non-existent in its absence. Devakar and Iyengar [2] studied
Stokes first and second problems for an incompressible couple-stress fluid un-
der isothermal conditions and observed that an increase in the couple-stress
parameter has a decreasing influence on the velocity. Malashetty et al. [8] ex-
amined analytically the stability of a horizontal couple stress fluid saturated
porous layer heated from below when the solid and fluid phases are not in
local thermal equilibrium. They showed that the results of the thermal non-
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equilibrium Darcy model for the Newtonian fluid case can be recovered in the
limit as couple stress parameter approaches zero. They also found an excel-
lent agreement between the exact solutions and asymptotic solutions when the
interphase heat transfer coefficient is very small. The nonlinear stability as
well as linear instability analysis of couple-stress fluid heated from below was
discussed by Sunil et al. [14]. They established that the linear instability and
nonlinear stability Rayleigh numbers are the same. Further, they found that
the couple-stress fluid is thermally more stable than the ordinary fluid. Sara-
vanan and Premalatha [9] investigated the effect of couple stress on the onset
of thermovibrational convection in a horizontal porous layer heated from one
side. They found that the vibrating frequency can either augment or suppress
the onset of convection in the case of bottom heating whereas always augments
it in the case of top heating. In addition, they found that the presence of cou-
ple stress in the fluid restricts the ensuing synchronous convective pattern to
lower frequencies in the case of bottom heating whereas extends it to higher
frequencies in the case of top heating.

The aim of the present work is to extend the work of the work of Vadasz [17]
to study the influence of couple-stress fluid on chaotic convection in a fluid layer
heated from below. The truncated Galerkin approximation was applied to the
governing equations to deduce an autonomous system with three ordinary dif-
ferential equations. This system was used to investigate the dynamic behaviour
of thermal convection in the fluid layer and to elucidate the effects of couple-
stress fluid on the transition to chaos.

2 Problem Formulation

Consider a very long and narrow fluid layer subject to gravity and heated from
below, with the influence of couple-stress fluid. A Cartesian co-ordinate system
is used such that the vertical axis z is collinear with gravity, i.e. êg = −êz.

A linear relationship between density and temperature is assumed and can
be presented as ρ = ρ0[1 − β∗(T∗ − Tc)], where β∗ represents the thermal
expansion coefficient. Also, the Boussinesq approximation is applied indicating
that density variations are effected only for the gravity term in the momentum
equation.

Subject to these conditions, the dimensionless governing equations can be
written as

∇ · V = 0, (2.1)

1

Pr

[
∂

∂t
+ V · ∇

]
V =

−1

Pr
∇p+∇2V − C∇4V + RaT êz, (2.2)

∂T

∂t
+ V · ∇T = ∇2T, (2.3)

where V is the velocity, T is temperature, p is pressure, Ra is the Rayleigh
number defined in the form Ra = β∗∆Tcg∗H

3
∗/α∗ν∗, Pr is the Prandtl number

defined by Pr = ν∗/α∗, C is the couple-stress parameter defined by C =
µ1/µH

2
∗ , µ is dynamic viscosity, µ1 is couple-stress viscosity. The values α∗/H∗,
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ρ0α
2
∗/H

2
∗ , and ∆Tc = (TH − TC) were used to scale the velocity components

(u∗, v∗, w∗), pressure (p∗), and temperature variations (T∗ − TC), respectively,
where α∗ is the thermal diffusivity and ρ0 is a reference value of density. The
height of the layer H∗ was used for scaling the variables x∗, y∗, z∗ and H2

∗/α∗
for scaling the time t∗. Accordingly, x = x∗/H∗, y = y∗/H∗, z = z∗/H∗ and
t = t∗α∗/H

2
∗ .

The fluid layer with stress-free (i.e. no tangential shear stress) horizontal
boundaries is considered. Hence, the solution must follow the impermeability
conditions V ·ên = 0 and the stress free condition ∂u/∂z = ∂v/∂z = ∂2w/∂z2 =
0 on these boundaries, where ên is a unit vector normal to the boundary. The
temperature boundary conditions are: T = 1 at z = 0, T = 0 at z = 1.

The governing equations can be represented in terms of a stream function
defined by u = −∂ψ/∂z and w = ∂ψ/∂x, as for convective rolls having axes
parallel to the shorter dimension (i.e. y) when v = 0. Applying the curl
(∇×) operator on Eq. (2.2) yields the following system of partial differential
equations from Eqs. (2.1)–(2.3):[

1

Pr

(
∂

∂t
− ∂ψ

∂z

∂

∂x
+
∂ψ

∂x

∂

∂z

)
−∇2 + C∇4

](
∇2ψ

)
= Ra

(
∂T

∂x

)
, (2.4)

∂T

∂t
− ∂ψ

∂z

∂T

∂x
+
∂ψ

∂x

∂T

∂z
=
∂2T

∂x2
+
∂2T

∂z2
. (2.5)

The boundary conditions for the stream function are ψ = ∂ψ/∂z = 0 on all
horizontal boundaries and the couple stresses vanish at the boundary.

The set of partial differential equations, (2.4) and (2.5), form a nonlinear
coupled system and together with the corresponding boundary conditions will
accept a basic motionless conduction solution.

3 Reduced Set of Equations

In order to obtain the solution to the nonlinear coupled system of partial dif-
ferential equations in (2.4) and (2.5), the stream function and temperature are
represented in the form

ψ = A11 sin(κx) sin(πz), T = 1− z +B11 cos(κx) sin(πz) +B02 sin(2πz).

This representation is equivalent to a Galerkin expansion of the solution in
both the x- and z-directions. Unlike in the works of Vadasz [17], the time and
amplitudes are rescaled with respect to their convective fixed points of the form

X =
Ã11√
λ (R−S)

S

, Y =
B̃11

S
√
λ (R−S)

S

, Z =
−B̃02

(R− S)

to have the following system of ordinary differential equations

Ẋ = SPr(Y −X), (3.1)

Ẏ =

(
R

S

)
X − Y −

(
R− S
S

)
XZ, (3.2)

Ż = λ(XY − Z), (3.3)
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where

R =
Ra

Rac
, Rac =

(κ2 + π2)3

κ2
, λ =

8

[(κ/κcr)2 + 2]
, (3.4)

τ = (κ2 + π2)t, κcr =
π√
2
, S = 1 +

5π2

6
C,

Ã11 =
(κ/κcr)

[(κ/κcr)2 + 2]
A11, B̃11 = κcrRB11, B̃02 = πRB02

and the primes (̇) denote time derivatives d()/dτ . When C = 0, (i.e. S = 1),
system (3.1)–(3.3) reduces to the Vadasz system [17] (Eqs. (11)–(13)). System
(3.1)–(3.3) is equivalent to the Lorenz equations [6,12], although with different
coefficients. By using the wavenumber corresponding to the convection thresh-
old, i.e. κcr, in the definitions of λ and Rac (Eq. (3.4)) yields λ = 8/3 and
Rac = 27π4/4.

4 Stability Analysis

Stability analysis of the stationary solutions was performed in order to deter-
mine the nature of the dynamics of the fixed points. The nonlinear dynamics
of a Lorenz-like system (3.1)–(3.3) has been analyzed and solved for Pr = 10
and λ = 8/3. This rescaled system has three fixed points.

The first fixed point is X1 = Y1 = Z1 = 0, corresponding to the motion-
less solution, while the second and the third fixed points corresponding to the
convection solution are X2,3 = Y2,3 = ±1, Z2,3 = 1.

The stability of the first fixed point, X1 = Y1 = Z1 = 0, is controlled by the
zeros of the following characteristic polynomial equation for the eigenvalues αi

(i = 1, 2, 3):
(−λ− α)

[
(SPr + α)(1 + α)− PrR

]
= 0.

The first eigenvalue, α1 = −λ, is negative since λ = 8/3. The other two
eigenvalues are always real and given by

α2,3 =
1

2

[
−(1 + SPr)±

√
(1 + SPr)2 + 4Pr(R− S)

]
.

α3 is also negative and α2 provides the stability condition for the motionless
solution in the form α2 < 0⇔ R < S. Therefore, the critical value of R, where
the motionless solution loses stability and the convection solution (expressed
by the other two fixed points) takes over, is obtained as

Rc1 = Rcr = S, (4.1)

which corresponds to Racr = (27π4/4)S. This means that there is a direct
proportion between the couple-stress parameter C and the Rayleigh number
Ra as in Fig. 1.

The following cubic equation for the eigenvalues, αi (i = 1, 2, 3), controls
the stability of the second and the third fixed points of the rescaled system

α3 + (1 + λ+ SPr)α2 +
(
SPr +RS−1

)
λα+ 2Prλ(R− S) = 0. (4.2)
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Figure 1. A graph of C and Ra showing the direct proportionality between them.

Eq. (4.2) yields three eigenvalues, and the smallest of which α1 is always real
and negative over the whole range of parameter values. The other two are
real and negative at slightly supercritical values of R, such that the convection
fixed points are stable, that is, simple nodes. These two roots move on the
real axis towards the origin as the value of R increases. For Pr = 10 and
λ = 8/3, these roots become equal when R ∼= 2.445 for C = 0.1 and R ∼= 3.54
for C = 0.2 compared with R ∼= 1.35 for C = 0 (Vadasz case). It is exactly
at this point that these two roots become a complex conjugate. In any case,
they still have negative real parts, and so the convection fixed points are stable,
that is, spiral nodes. Both the imaginary and real parts of these two complex
conjugate eigenvalues increase and extend over the imaginary axis as the value
of R increases. The real part becomes nonnegative at a value of R given by

Rc2 =
S2Pr(3 + λ+ SPr)

(SPr − λ− 1)
. (4.3)

C=0.2
C=0.1
Vadasz

Re(σ)

I
m
(σ
)

21.510.50-0.5-1-1.5-2

30

20

10

0

-10

-20

-30

Figure 2. Evolution of the complex eigenvalues with increasing Rayleigh number, for
Pr = 10, λ = 8/3, Vadasz case, C = 0.1 and C = 0.2.

Relation (4.3) is an extension of R0 in [17] to the couple stress case C 6= 0
(i.e. S 6= 1). At this point, the convection fixed points lose their stability
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and other (periodic or chaotic) solutions take over. The loss of stability of the
convection fixed points for Pr = 10 and λ = 8/3 using Eq. (4.3) are evaluated
to be Rc2 = 54.50771700 for C = 0.1 and Rc2 = 98.61581171 for C = 0.2
compared with R0 = 24.737 for Vadasz loss of stability of the convection fixed
points when C = 0. For Pr = 10, λ = 8/3, C = 0.1 and C = 0.2, the evolutions
of the complex eigenvalues are presented in Fig. 2.

5 Results and Discussion

In this section, some numerical simulations of the system (3.1)–(3.3) are pre-
sented for the time domain 0 ≤ τ ≤ 210. All calculations were done using
MATLAB’s built-in ODE45 based on the fourth-order Runge–Kutta method
on double precision with stepsize 0.001, fixing the values Pr = 10 and λ = 8/3,
and taking the initial conditions X(0) = Y (0) = 0.8 and Z(0) = 0.92195.

Also, the bifurcation diagrams are presented in Fig. 3, in terms of maxima
and minima in the post-transient values of Z versus R for C = 0 (Vadasz case),
C = 0.1 and C = 0.2 with 15 ≤ R ≤ 450 and a resolution of ∆R = 0.25.

 

 

 

 

(a) (b)
 

 

(c)

Figure 3. Bifurcation diagrams of Z versus R representing maxima and minima of the
post-transient solution of Z(t) for Pr = 10, λ = 8/3, (a) C = 0 Vadasz case, (b) C = 0.1

and (c) C = 0.2.

It is observed from Fig. 3 that the chaotic behaviour is delayed with in-
creasing the chaotic region when using the couple-stress fluid.

A comparison between Vadasz case and the cases under study is displayed
in Table 1 for R is a solitary limit cycle, signifying the loss of stability of the
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steady convection fixed points and the critical value of R at which the chaotic
behaviour solution occurs.

Table 1. Comparison between Vadasz case (C = 0) and the couple-stress case for C = 0.1
and C = 0.2 with Pr = 10, λ = 8/3 for R a solitary limit cycle signifying the loss of stability
of the steady convection fixed points and the critical value of R at which the chaotic behaviour
solution occurs.

C R R
(limit cycle) (critical value, chaotic behaviour)

C = 0 (Vadasz) 24.4207 24.737
C = 0.1 53.81 54.50771700
C = 0.2 97.3038 98.61581171

Further, a comparison between Vadasz case and the couple stress case is
mentioned in Table 2 for the critical value of R at which the chaotic behaviour
solution occurs.

Table 2. Comparison between Vadasz case (C = 0) and the couple-stress case (C 6= 0)
with Pr = 10, λ = 8/3 for the critical value of R at which the chaotic behaviour solution
occurs.

C S R
(critical value, chaotic behaviour)

C = 0 (Vadasz) 1 24.737
C = 0.1 1.822467034 54.50771700
C = 0.2 2.644934068 98.61581171
C = 0.3 3.467401101 156.4180196
C = 0.4 4.289868134 227.8105223
C = 0.5 5.112335169 312.7614720
C = 0.6 5.934802202 411.2578375
C = 0.7 6.757269235 523.2932968
C = 0.8 7.579736270 648.8644104
C = 0.9 8.402203303 787.9691482
C = 1.0 9.224670336 940.6062324

Comparing to Vadasz case [17], and referring to Table 2, it is obvious that
the critical value of R in each case is greater than the critical value in Vadasz
case (in huge manner). Thus, the onset of chaotic convection is strongly de-
layed. More details are presented below for C = 0.1 and C = 0.2.

5.1 Case C = 0.1

In the case of C = 0.1, it is found that at Rc1 = 1.822467034, obtained from
Eq. (4.1), the motionless solution loses stability and the convection solution
takes over. Moreover, the values of the eigenvalues α2 and α3 from Eq. (4.2) be-
come equal and complex conjugate when R ∼= 2.445. At the value of R = 53.81,
a solitary limit cycle signifying the loss of stability of the steady convection
fixed points are obtained. When R = 54.507717, the convection fixed points
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Figure 4. Computational results for the evolution of trajectories over time in the state
space for increasing values of scaled Rayleigh number (R). The graphs represent the

projection of the solution data points onto X-Y -Z plane for Pr = 10, λ = 8/3 and C = 0.1
for (a) R = 1.9, (b) R = 40, (c) R = 53, (d) R = 53.81, (e) R = 53.813, (f) R = 54.50771700.

lose their stability and a chaotic solution takes over. The evolution of trajec-
tories over time in the state space for two values of Rayleigh number R, where
the solution is limit cycle and the critical value of R, is presented in Fig. 4.

5.2 Case C = 0.2

In this case of study (C = 0.2), it is found that at Rc1 = 2.644934068, ob-
tained from Eq. (4.1), the motionless solution loses stability and the convec-
tion solution takes over. Also, the values of the eigenvalues α2 and α3 from
Eq. (4.2) become equal and complex conjugate when R ∼= 3.54. At the value of
R = 97.3038, a solitary limit cycle signifying the loss of stability of the steady
convection fixed points are obtained. When R = 98.61581171, the convection
fixed points lose their stability and a chaotic solution takes over. The evolution
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Figure 5. Computational results for the evolution of trajectories over time in the state
space for increasing values of scaled Rayleigh number (R). The graphs represent the

projection of the solution data points onto X-Y -Z plane for Pr = 10, λ = 8/3 and C = 0.2
for for (a) R = 2.7, (b) R = 50, (c) R = 97, (d) R = 97.3038, (e) R = 97.308, (f)

R = 98.61581171.

of trajectories over time in the state space is presented in Fig. 5 for two values
of Rayleigh number R, where the solution is limit cycle and the critical value
of R.

6 Conclusions

In this paper, chaotic behaviour in a fluid layer subject to gravity and heated
from below under the effect of couple-stress fluid are studied. It is noticed
that there is a direct proportion between the couple-stress parameter C and
the Rayleigh number Ra. In comparison with Vadasz case, it is concluded that
the onset of chaotic convection can be strongly delayed under the influence of
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couple-stress fluid. Thus, the stability region can be strongly increased under
the influence of couple-stress fluid.

References

[1] G. Ahmadi. Stability of a cosserat fluid layer heated from below. Acta Mech.,
31:243–252, 1979. http://dx.doi.org/10.1007/BF01176852.

[2] M. Devakar and T.K.V. Iyengar. Stokes’ problems for an incompressible couple
stress fluid. Nonlinear Anal. Model. Control, 1(2):181–190, 2008.

[3] R. Idris and I. Hashim. Effects of a magnetic field on chaos for low Prandtl
number convection in porous media. Nonlinear Dynam., 62:905–917, 2010.
http://dx.doi.org/10.1007/s11071-010-9773-8.

[4] J.M. Jawdat and I. Hashim. Low Prandtl number chaotic convection in porous
media with uniform internal heat generation. International Communication in
Heat and Mass Transfer, 37:629–636, 2010.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.03.011.

[5] J.M. Jawdat, I. Hashim and S. Momani. Dynamical system analysis of thermal
convection in a horizontal layer of nanofluids heated from below. Math. Probl.
Eng., 2012, 2012. http://dx.doi.org/10.1155/2012/128943.

[6] E.N. Lorenz. Deterministic nonperiodic flow. J. Atmospheric Sci., 20:130–141,
1963. http://dx.doi.org/10.1175/1520-0469(1963)020¡0130:DNF¿2.0.CO;2.

[7] M.N. Mahmud and I. Hashim. Effects of magnetic field on chaotic convection in
fluid layer heated from below. International Communication in Heat and Mass
Transfer, 38:481–486, 2011.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.12.023.

[8] M.S. Malashetty, I.S. Shivakumarab and S. Kulkarni. The onset of convection
in a couple stress fluid saturated porous layer using a thermal non-equilibrium
model. Phys. Lett. A, 373:781–790, 2009.
http://dx.doi.org/10.1016/j.physleta.2008.12.057.

[9] S. Saravanan and D. Premalatha. Effect of couple stress on the onset of ther-
movibrational convection in a porous medium. International Journal of Thermal
Sciences, 57:71–77, 2012. http://dx.doi.org/10.1016/j.ijthermalsci.2012.02.013.

[10] R.C. Sharma and K.D. Thakur. On couple-stress fluid heated from below in
porous medium in hydromagnetics. Czechoslovak J. Phys., 50:753–758, 2000.
http://dx.doi.org/10.1023/A:1022886903213.

[11] L.J. Sheu. An autonomous system for chaotic convection in a porous medium
using a thermal non-equilibrium model. Chaos Solitons Fractals, 30:672–689,
2006. http://dx.doi.org/10.1016/j.chaos.2005.11.080.

[12] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos and Strange Attractors.
Springer-Verlag, New York, 1982.

[13] V.K. Stokes. Couple stresses in fluids. Phys. Fluids, 9:1709–1715, 1966.
http://dx.doi.org/10.1063/1.1761925.

[14] Sunil, R. Devi and A. Mahajan. Global stability for thermal convection in a
couple-stress fluid. International Communication in Heat and Mass Transfer,
38:938–942, 2011. http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.03.030.

Math. Model. Anal., 19(3):359–370, 2014.

http://dx.doi.org/10.1007/BF01176852
http://dx.doi.org/10.1007/s11071-010-9773-8
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.03.011
http://dx.doi.org/10.1155/2012/128943
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.12.023
http://dx.doi.org/10.1016/j.physleta.2008.12.057
http://dx.doi.org/10.1016/j.ijthermalsci.2012.02.013
http://dx.doi.org/10.1023/A:1022886903213
http://dx.doi.org/10.1016/j.chaos.2005.11.080
http://dx.doi.org/10.1063/1.1761925
http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.03.030


370 J.M. Jawdat, I. Hashim, B.S. Bhadauria and S. Momani

[15] P. Vadasz. Local and global transitions to chaos and hysteresis in a porous layer
heated from below. Transp. Porous Media, 37:213–245, 1999.
http://dx.doi.org/10.1023/A:1006658726309.

[16] P. Vadasz. On the homoclinic orbit for convection in a fluid layer heated from
below. International Journal of Heat and Mass Transfer, 42:3557–3561, 1999.
http://dx.doi.org/10.1016/S0017-9310(99)00042-3.

[17] P. Vadasz. Subcritical transitions to chaos and hysteresis in a fluid layer heated
from below. International Journal of Heat and Mass Transfer, 43:705–724, 2000.
http://dx.doi.org/10.1016/S0017-9310(99)00173-8.

[18] P. Vadasz and S. Olek. Transitions and chaos for free convection in a rotating
porous layer. International Journal of Heat and Mass Transfer, 41:1417–1435,
1999. http://dx.doi.org/10.1016/S0017-9310(97)00265-2.

[19] P. Vadasz and S. Olek. Weak turbulence and chaos for low Prandtl number
gravity driven convection in porous media. Transp. Porous Media, 37:69–91,
1999. http://dx.doi.org/10.1023/A:1006522018375.

[20] P. Vadasz and S. Olek. Route to chaos for moderate Prandtl number convection
in a porous layer heated from below. Transp. Porous Media, 41:211–239, 2000.
http://dx.doi.org/10.1023/A:1006685205521.

http://dx.doi.org/10.1023/A:1006658726309
http://dx.doi.org/10.1016/S0017-9310(99)00042-3
http://dx.doi.org/10.1016/S0017-9310(99)00173-8
http://dx.doi.org/10.1016/S0017-9310(97)00265-2
http://dx.doi.org/10.1023/A:1006522018375
http://dx.doi.org/10.1023/A:1006685205521

