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Alina Ganina, Uno Hämarik and Urve Kangro

University of Tartu

Liivi 2, 50409 Tartu, Estonia

E-mail: alina.ganina@gmail.com

E-mail(corresp.): uno.hamarik@ut.ee

E-mail: urve.kangro@ut.ee

Received September 15, 2013; revised April 22, 2014; published online June 1, 2014

Abstract. We consider linear ill-posed problems where both the operator and the
right hand side are given approximately. For approximate solution of this equation
we use the least error projection method. This method occurs to be a regularization
method if the dimension of the projected equation is chosen properly depending on the
noise levels of the operator and the right hand side. We formulate the monotone error
rule for choice of the dimension of the projected equation and prove the regularization
properties.
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1 Introduction

In this paper we consider linear ill-posed problems

A0u = f0, (1.1)

where A0 ∈ L(H,F ) is a bounded operator and H,F are infinite dimensional
real Hilbert spaces with inner products (·,·) and norms ‖·‖, respectively. Typical
examples of ill-posed problems are equations (1.1) where the operator has a
non-closed range R(A0). We assume that f0 ∈ R(A0), N (A0) = {0} and
N (A∗0) = {0}, where A∗ is the adjoint operator of A. Denote the solution of
problem (1.1) by u∗. It is assumed that instead of exact data f0 and A0 there
are given noisy data f ∈ F and A ∈ L(H,F ) with

‖f − f0‖ ≤ δ, ‖A−A0‖ ≤ η (1.2)
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and known noise levels δ, η. The typical feature of ill-posed problems is insta-
bility of the solution of the problem Au = f with respect to noise in data. To
diminish the influence of noise in data to the approximate solution ill-posed
problems are typically solved by iteration methods or by special regularization
methods [3, 12, 24]. For using computers in solution procedures the discretiza-
tion of the problem is unavoidable. For some discretization methods additional
regularization is not needed. Namely, if the solution of the discretized equa-
tion converges in the case of exact data to the solution u∗, then in the case
of noisy data this method can be viewed as regularization method, when the
discretization level as a regularization parameter is properly chosen according
to the noise level. This effect is called as self-regularization by discretiza-
tion [1, 5, 10,16,17,18,23].

In this paper we consider the projection method for the problem (1.1). For
ill-posed problems the convergence conditions of projection methods in case
of exact data were stated in [2, 4, 5, 11, 13, 17, 18, 21, 22, 23]. These conditions
for traditional projection methods are quite restricting. These restrictions are
minimal in the least error method [1, 2, 4, 5, 7, 13, 19, 22, 23] and therefore we
devote this paper namely to this method. For the choice of the dimension of the
projected equation the discrepancy principle was used in [5, 13, 14, 15, 23], the
balancing principle in [1] and the monotone error rule (ME-rule) in [7]. From
these rules the discrepancy principle needs serious additional assumptions and
the balancing principle needs huge amount of computations. Note that from
mentioned papers only in [5, 23] the case of noisy operator was considered.
The aim of this paper is to extend the results of paper [7] to the case of noisy
operator and to prove the regularizing properties of the ME-rule in the least
error method.

The plan of this paper is the following. Section 2 is a short review (based
on papers [5, 23]) of the results of the least error projection methods for ill-
posed problems in the Hilbert spaces, concerning convergence conditions in the
case of exact data, but also self-regularization conditions, if the dimension of
the discretized equation is chosen a priori or by the discrepancy principle. In
Section 3 we formulate the ME-rule for the choice of dimension of the discretized
equation in the least error method and prove the regularizing properties. In
last Section 4 numerical examples are given.

2 Known Rules for Choice of the Dimension in the Least
Error Projection Method

Let H, F be Hilbert spaces and Hn ⊂ H, Fn ⊂ F (n ∈ N) be finite-dimensional
subspaces with dimHn = dimFn. We denote the corresponding orthoprojec-
tors by Pn and Qn: PnH = Hn, QnF = Fn. In the projection method the
approximate solution un of equation (1.1) is found from the condition

un ∈ Hn, (Aun − f, zn) = 0 (∀zn ∈ Fn) . (2.1)

The last condition is equivalent to the equation

QnAun = Qnf, un ∈ Hn. (2.2)
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In case of Hn = A∗Fn the corresponding projection method is called the
least error method. This name is justified by the property that in case f = f0,
A = A0 we have un = Pnu∗, while element un ∈ A∗Fn, which minimizes
‖un − u∗‖, satisfies condition (un − u∗, A∗zn) = 0 (∀zn ∈ Fn). This condition
is the same condition as (2.1).

In the following we formulate a theorem [5,23] about the convergence con-
ditions of least error method in the case of exact data and also in the case of
noisy data with a priori choice of n and with the choice of n by the discrepancy
principle. We denote the norm of the inverse of A∗0 in the finite dimensional
spaces by κn:

κn := sup
zn∈Fn

‖zn‖/‖A∗0zn‖ (∀n ∈ N) .

Theorem 1. The least error method determines in case ηκn < 1 the unique
approximation un. Assume ‖z −Qnz‖ → 0 as n→∞ (∀z ∈ F ). If δ = η = 0
then un → u∗ as n→∞. If δ > 0 or η > 0 and n = n(δ, η) is chosen a priori
by conditions

n(δ, η)→∞, (δ + η)κn(δ,η) → 0 as δ, η → 0, (2.3)

then un(δ,η) → u∗ as δ, η → 0. The last convergence holds also in the case when
there exists α ∈ R, α > 0 such that

(κn+1)
α ∥∥(I −Qn) (AA∗)

α/2∥∥ ≤ const (∀n ∈ N) (2.4)

and n = n(δ, η) is chosen by the discrepancy principle: n(δ, η) is the first index
n ∈ N satisfying

‖Aun − f‖ ≤ b
(
δ + ‖un‖η

)
, b = const >

(
1 + γ2

)α/2
.

Here γ satisfies the condition

(κn)
α ∥∥(I −Qn) (AA∗)

α/2∥∥ ≤ γ = const (∀n ∈ N) .

The essential advantage of the least error method in comparison with other
projection methods is that in the case of exact data it guarantees the conver-
gence under very mild conditions. This convergence was stated in [2,4,5,22,23].
A discrepancy principle for the choice of n is practical, but for the least error
method it is restricted by additional assumptions (2.4). In [1] a balancing
principle for the choice of n is proposed but this choice needs more informa-
tion about the solution and more calculations. In the next section we propose
another a posteriori rule for the choice of n for the least error method.

3 Monotone Error Rule in the Least Error Method

The choice of the regularization parameter is an actual problem in all regu-
larization methods. For the choice of regularization parameter r = r(δ, η) we
consider the monotone error rule. For the resulting parameter rME convergence
urME → u∗ as δ, η → 0 was shown and some order optimal error estimates were
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given [6,8,9]. The ME-rule is applicable in algorithms, where in the case of ex-
act data the monotone convergence ur → u∗ for r →∞ holds. The idea of the
ME-rule is to choose for the regularization parameter rME = r(δ, η) the largest
r-value, for which under information ‖A − A0‖ ≤ η and ‖f − f0‖ ≤ δ we can
prove that ‖ur−u∗‖ is monotonically decreasing for r ∈ (0, rME ]. For continu-
ous regularization methods as the Tikhonov method ur = (A∗A+r−1I)−1A∗f ,
where ur is differentiable with respect to r, this means that d

dr‖ur − u∗‖
2 ≤ 0

for all r ∈ (0, rME ). For iteration methods where regularization parameter r is
the stopping index n ∈ N, this means that

‖un − u∗‖ < ‖un−1 − u∗‖ for n = 1, 2, . . . , nME . (3.1)

In projection methods the regularization parameter is n ∈ N as in iteration
methods and the ME-rule should give nME = n(δ, η) satisfying condition (3.1).
The ME-rule for the least error method in case η = 0 was proposed in [7].

The aim of this section is to develop the ME-rule for the least error method
in case of noisy data (1.2). We assume that the subspaces Fn satisfy the
condition

Fn ⊂ Fn+1 (n = 0, 1, . . .) (3.2)

and we show that then ME-rule is applicable in the following form.

ME-rule: choose nME = n(δ, η) in the least error approximation

un = A∗vn (vn ∈ Fn)

as the first index n = 1, 2, . . . for which

dME (n) :=
(vn+1 − vn, f)

2‖vn+1 − vn‖
≤ δ +Mη, (3.3)

where ‖u∗‖ ≤M .
Note that we get the element vn ∈ Fn in a computational procedure au-

tomatically without extra work. Note also that the function dME (n) can be
represented in the equivalent form

dME (n) =
‖un+1‖2 − ‖un‖2

2‖vn+1 − vn‖
. (3.4)

Namely the approximation un = A∗vn, (vn ∈ Fn) in the least error method
satisfies the equality

‖un‖2 = ‖A∗vn‖2 = (AA∗vn − f + f, vn) = (Aun − f, vn) + (f, vn),

therefore due to equality (Aun − f, vn) = 0 (see 2.1) also the equality

‖un‖2 = (f, vn). (3.5)

From the last equality follows the equality of functionals dME (n) in (3.3) and
(3.4). The following result holds.
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Theorem 2. If ηκn < 1 then the equation QnAun = Qnf in the least error
method has a unique solution un = A∗vn, vn ∈ Fn. Assume that the subspaces
Fn satisfy condition (3.2) and ‖z −Qnz‖ → 0 for n→∞ (∀z ∈ F ). Then

1) un is minimum norm solution of the equation QnAu = Qnf (u ∈ H),

2) ‖un‖ ≤ ‖un+1‖ (n ≥ 1).

If n = nME is chosen as first n ∈ N for which dME (n) ≤ δ + Mη, where
‖u∗‖ ≤M , then

3) ‖un − u∗‖ ≤ ‖un−1 − u∗‖ (n = 1, 2, . . . , nME );

4) if nME →∞ as δ → 0, η → 0, then ‖unME
− u∗‖ → 0 as δ → 0, η → 0,

5) 0 ≤ dME (n) ≤ ‖Aun − f‖/2 (∀n ∈ N).

Proof. Unique solvability of the equation under condition ηκn < 1 is proved
in [5]. From the equality

N (QnA) =
(
R
(
(QnA)∗

))⊥
=
(
R(A∗Qn)

)⊥
= (A∗Fn)⊥ (3.6)

follows that approximation un ∈ A∗Fn in the least error method is the mini-
mum-norm solution of the equation QnAu = Qnf (u ∈ H). Indeed, due
to (3.6) all solutions of equation QnAu = Qnf have form u = un + u′n with
un ∈ A∗Fn and u′n ∈ (A∗Fn)⊥, but ‖un + u′n‖2 = ‖un‖2 + ‖u′n‖2 ≥ ‖un‖2.
From (3.2) follows that un+1 ∈ A∗Fn+1 solves both equations Qn+1(Au−f) = 0
and Qn(Au− f) = 0. This fact with property 1) un = arg min{‖u‖ : u ∈ H,
Qn(Au− f) = 0} gives ‖un‖ ≤ ‖un+1‖, hence the assertion 2) is proved.

To prove assertion 3) we use equality (3.5), the inequality

‖f −Au∗‖ =
∥∥f − f0 + (A0 −A)u∗

∥∥ ≤ δ +Mη

(see (1.2)) and get

‖un − u∗‖2 − ‖un−1 − u∗‖2 = ‖un‖2 − ‖un−1‖2 − 2(un − un−1, u∗)
= (vn − vn−1, f)− 2

(
A∗(vn − vn−1), u∗

)
= (vn − vn−1, f − 2Au∗)

= (vn − vn−1, 2(f −Au∗)− f)

≤ 2‖vn − vn−1‖(δ +Mη)− (vn − vn−1, f)

= 2‖vn − vn−1‖
(
(δ +Mη)− dME (n− 1)

)
. (3.7)

As dME (n− 1) > δ +Mη, inequality 3) is proved.
To prove assertion 4) we start with error estimate

‖un − u∗‖ ≤ ‖u∗ − Pnu∗‖+ (δ +Mη)κn/(1− ηκn) (3.8)

from [5]. This estimate guarantees convergence ‖un0−u∗‖ → 0 as δ → 0, η → 0
for every a priori parameter choice n0 = n0(δ, η) under conditions (2.3).

Math. Model. Anal., 19(3):299–308, 2014.
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Since nME →∞ as δ → 0, η → 0, convergence ‖u∗−Pnu∗‖ → 0 as n→∞
follows from assumption ‖z −Qnz‖ → 0 (∀z ∈ F ). In case nME > n0 we have
‖unME − u∗‖ ≤ ‖un0 − u∗‖ → 0 as δ → 0, η → 0 due to the monotonicity
property 3) of the error. In case nME < n0 we have κnME < κn0 due to (3.2)
hence convergence ‖unME

− u∗‖ → 0 as δ → 0, η → 0 follows from (3.8), (2.3).

In assertion 5) the left inequality holds due to assertion 2) and equality
(3.4). Solutions of projected equations un = A∗vn and un+1 = A∗vn+1 satisfy
due to (2.1) equalities (Aun − f, vn) = 0, (Aun+1 − f, vn) = 0. It yields that
(A(un+1 − un), vn) = 0 and via relations

0 =
(
A(un+1 − un), vn

)
=
(
AA∗(vn+1 − vn), vn

)
=
(
(vn+1 − vn), Aun

)
we get equality (Aun, vn+1 − vn) = 0. Hence the numerator of the function
(3.3) can be written also in the form (vn+1 − vn, f − Aun) and dME can be
estimated by ‖Aun − f‖/2. ut

Remark 1. In paper [8] the information about the noise level was given in a
more general form ∥∥D(f − f0)

∥∥ ≤ δ, ∥∥D(A−A0)
∥∥ ≤ η (3.9)

instead of (1.2), where D is a linear injective, possibly unbounded operator
in F with domain D(D). We assume that f, f0 ∈ D(D). In this case we can
estimate in analogy to (3.7)

‖un − u∗‖2 − ‖un−1 − u∗‖2 = (vn − vn−1, 2(f −Au∗)− f)

=
((
D−1

)∗
(vn − vn−1), 2D(f −Au∗)

)
− (vn − vn−1, f)

≤ 2
∥∥(D−1)∗(vn − vn−1)

∥∥(δ +Mη)− (vn − vn−1, f).

Therefore under (3.9) the monotonicity of the error for n=1, . . . , nME is guar-
anteed where nME is the first index for which

dME (n) :=
(vn+1 − vn, f)

2‖(D−1)∗(vn+1 − vn)‖
≤ δ +Mη. (3.10)

In this case Theorem 2 holds with 5) substituted by

5′) 0 ≤ dME (n) ≤ ‖D(Aun − f)‖/2 (∀n ∈ N).

4 Numerical Examples

4.1 Numerical differentiation

We consider Volterra integral equation

A0u(t) ≡
∫ t

0

(t− s)l−1

(l − 1)!
u(s) ds = f0(t), t ∈ [0, 1]
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with H = F = L2(0, 1) and with f0 such that the solution u∗ = f
(l)
0 ∈ L2(0, 1).

Subspaces Fn consist of piecewise constant functions on k(n) = 2n subintervals
generated by m = k + 1 mesh points ti = (i− 1)/(m− 1), i = 1, . . . ,m:

Fn = span
{
Ψi(t), i = 1, . . . , k(n)

}
, Ψi(t) =

{
1, t ∈ [ti, ti+1],
0, otherwise.

The approximation un is in the case of exact data the best approximation of
u∗ in subspace Hn = span{A∗Ψi(t), i = 1, . . . , k(n)}, where

A∗Ψi(t) =


(ti+1−t)l

l! − (ti−t)l
l! , t ∈ [0, ti),

(ti+1−t)l
l! , t ∈ [ti, ti+1),

0, t ∈ [ti+1, 1].

For computations we used noisy data f with ‖f − f0‖ ≤ δ, where δ =
10−1, . . . , 10−5. In experiments we computed two parameters: nME chosen
by the monotone error rule and nopt found as the last number for which the
inequality ‖un − u∗‖ ≤ ‖un−1 − u∗‖ was true.

We give the results for three examples with exact operator A0 and dif-
ferent right-hand sides f0, solutions u∗ and differentiation order l. We used
perturbed data f(t) = f0(t) + δ cos(10t)/0.723. The problems are normalized
so that ‖f‖ ≈ 1. Then in examples 1, 2 and 3 norms of the solutions are
approximately 1,1 and 5,5 and 14. In the tables the numbers of subintervals
kME = 2nME , kopt = 2nopt corresponding to the parameters nME , nopt are given.
The relative errors ek(n) = ‖un−u∗‖/‖u∗‖ corresponding to kME , kopt are also
presented. Note that due to (3.1) the inequality nME ≤ nopt always holds.

Example 1. u∗(t) = π
2 cos

(
πt
2

)
, f(t) = sin

(
πt
2

)
, l = 1

δ kopt kME enopt
enME

10−1 2 1 0.106 0.121
10−2 2 2 0.027 0.027
10−3 4 2 0.010 0.025
10−4 16 8 0.0013 0.0018
10−5 32 16 0.0002 0.0004

Example 2. u∗(t) = 25(t4 − 2t3 + t), f(t) = 5
6 t

6 − 5
2 t

5 + 25
6 t

3, l = 2

δ kopt kME enopt enME

10−1 2 1 0.444 0.800
10−2 4 2 0.235 0.423
10−3 8 8 0.071 0.071
10−4 16 16 0.022 0.022
10−5 32 16 0.007 0.017

Example 3. u∗(t) = 10(t2−1− π3

32 cos
(
πt
2 )
)
, f(t) = 1

6 t
5− 5

3 t
3 + 5

2 sin
(
πt
2

)
− 5π

4 t,
l = 3

Math. Model. Anal., 19(3):299–308, 2014.
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δ kopt kME enopt enME

10−1 1 1 0.521 0.521
10−2 2 1 0.348 0.521
10−3 4 4 0.188 0.188
10−4 8 4 0.104 0.162
10−5 16 8 0.055 0.060

4.2 Phillips problem

We consider the normalized Phillips problem (see [20])∫ 6

−6
φ(t− s)u(s) ds =

6− |t|
15

(
1 +

1

2
cos

(
πt

3

))
+

3

10π
sin

(
π|t|
3

)
,

where

φ(x) =

{
1 + cos

(
πx
3

)
, |x| < 3,

0, |x| ≥ 3.

We use H = F = L2(−6, 6). The solution of the problem is φ(x)/15 with
‖φ‖ = 0.2. The subspaces Fn consist again of piecewise constant functions on
k(n) = 2n subintervals of [−6, 6]. We added the perturbations δ cos 10t/

√
6,

with δ = 10−1, 10−2, 10−3, 10−4 to the right hand side. The computations
were performed with perturbed operator, where η

6 cos 10t cos s was added to
the kernel, with three noise levels, η = 1, η = 0.1 and η = 0.01.

η δ kopt kME enopt
enME

1 10−1 8 2 0.18 0.78
1 10−2 8 2 0.10 0.78
1 10−3 8 2 0.09 0.78
1 10−4 8 2 0.09 0.78

0.1 10−1 8 4 0.112 0.430
0.1 10−2 16 8 0.035 0.431
0.1 10−3 16 8 0.028 0.035
0.1 10−4 16 8 0.014 0.035
0.01 10−1 8 4 0.105 0.431
0.01 10−2 16 8 0.016 0.035
0.01 10−3 16 8 0.007 0.033
0.01 10−4 16 8 0.005 0.033

For small perturbations of the operator the results obtained were rather good:
the discretization levels proposed by the ME-rule were typically kn with nME

as the optimal n minus 1.
Note that typically the error of the regularized solution decreases mono-

tonically also somewhat further in all regularization methods, up to some
nopt ≥ nME in iteration methods and up to some αopt ≤ αME in Tikhonov
method. Our numerical experiments suggest to use instead of regularization
parameters from the ME-rule the post-estimated parameters, using in Tikhonov
method the parameter αME/2.3 and in the Landweber iteration method the
integer part of 2.3nME . In the least error projection method the situation is the
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same as the tables here show: instead of the discretization level nME usually the
level nME +1 is better to use, but in case of operator perturbations even larger
n may be better. Unfortunately the amount of our numerical experiments is
not sufficient for more precise recommendation for choice of n ≥ nME .

Note also that the derivation of the ME-rule in (3.7) uses only one inequality,
which turns to the equality in certain case, in this case the ME-rule gives the
optimal parameter. We do not see possibility to get a better estimate.
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