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Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

E-mail(corresp.): rc@vgtu.lt

E-mail: natalija.tumanova@vgtu.lt

Received January 13, 2014; revised March 13, 2014; published online April 15, 2014

Abstract. In this paper the one- and two-dimensional pseudoparabolic equations
with nonlocal boundary conditions are approximated by the Euler finite difference
scheme. In the case of classical boundary conditions the stability of all schemes is
investigated by the spectral method. Stability regions of finite difference schemes ap-
proximating pseudoparabolic problem are compared with the stability regions of the
classical discrete parabolic problem. These results are generalized for problems with
nonlocal boundary conditions if a matrix of the finite difference scheme can be diago-
nalized. For the two-dimensional problem an efficient algorithm is constructed, which
is based on the combination of the FFT method and the factorization algorithm. Gen-
eral stability results, known for the three level finite difference schemes, are applied
to investigate the stability of some explicit approximations of the two-dimensional
pseudoparabolic problem with classical boundary conditions. A connection between
the energy method stability conditions and the spectrum Hurwitz stability criterion
is shown. The obtained results can be applied for pseudoparabolic problems with
nonlocal boundary conditions, if a matrix of the finite difference scheme can be diag-
onalized.
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1 Introduction

The correctness of main types of boundary value problems for parabolic equa-
tions is well investigated in many papers and textbooks. It is shown that
boundary conditions can introduce essential changes in construction and theo-
retical analysis of stable numerical approximations of differential problems with
nonlocal boundary conditions.
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In various real-world applications non-classical boundary conditions are for-
mulated and nonlocal boundary value problems make a basis for important
modelling and simulation projects. Thus the analysis of mathematical mod-
els and numerical methods for solving such problems is considered in many
papers, e.g. parabolic problems in heat conduction and thermodynamics are
investigated in [1, 3, 8], pseudoparabolic problems in underground water flow
are studied in [2, 9, 28].

Let us consider domain D = (0, 1). We formulate an initial boundary value
pseudoparabolic problem:

∂u

∂t
=

∂

∂x

(
k(x)

∂u

∂x

)
+

∂2

∂t∂x

(
g(x)

∂u

∂x

)
+ f(x, t), x ∈ D, t > 0, (1.1)

u(x, 0) = ϕ(x), x ∈ D̄ := [0, 1], (1.2)

u(0, t) = 0, u(1, t) = 0. (1.3)

where f , ϕ, k, g are known functions, such that

0 < km ≤ k(x) ≤ kM , 0 < gm ≤ g(x) ≤ gM . (1.4)

We also consider nonlocal boundary conditions:

u(0, t) = γ1

∫ 1

0

u(x, t) dx, u(1, t) = γ2

∫ 1

0

u(x, t) dx, t > 0, (1.5)

where γ1, γ2 are given constants.
The stability analysis of numerical approximations of parabolic and pseu-

doparabolic problems with nonlocal boundary conditions is done by various
methods. Here we review the three main classes of such methods.

For parabolic problems with nonlocal boundary conditions, the maximum
principle is the most popular technique for the stability analysis, see [7, 10].
The method of bounding functions is used in [8] to get the stability estimate
in the maximum norm. We note, that for stationary problems this method
enables us to get sufficient (and in many cases even necessary and sufficient)
stability conditions (see, [6] and references contained therein).

The energy method is used to investigate the stability of the numerical
approximations in the case of general parabolic and pseudoparabolic equa-
tions with non-constant coefficients, see [2, 10, 12, 14] and references contained
therein. The drawback of this method is that in order to apply energy estimates
we should answer the important question how to find the right norm or func-
tional suited for the given problem. In this paper we apply general techniques
which are known for the two-level and three-level operator based finite differ-
ence or finite volume approximations of partial difference equations [23]. Then
some simple sufficient stability conditions are known for the given templates of
operator equations.

A general technique to prove necessary and sufficient stability conditions for
non-stationary numerical approximations is the spectrum method. Our aim is
to show a connection of the energy based techniques and spectral stability anal-
ysis methods. It is important to note, that for non-normal matrices (which are
typical in the case of nonlocal boundary conditions) a modified spectral method
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technique gives a similar eigenvalue criterion [16, 17]. This similarity makes a
bridge for application of stability results known for pseudoparabolic problems
with classical boundary conditions to problems with nonlocal boundary con-
ditions. The main features of the spectral technique for non-normal operators
can be explained for a linear system

w′(t) = Aw(t)

with a matrix A, which is diagonalizable

A = UΛU−1, Λ = diag(λj),

where λj are the eigenvalues of A. Let us introduce vectors Z(t) = U−1w(t),
then:

Z ′(t) = ΛZ(t) ⇒ Z(t) = etΛZ(0).

If we know that maxj Reλj ≤ ω, then the stability estimate follows:∥∥w(t)
∥∥ ≤ ‖U‖∥∥U−1

∥∥etω∥∥w(0)
∥∥. (1.6)

In general, if the matrix A is not normal, an a priori estimate of cond (U)
may be difficult to obtain in a suitable norm. This technique is applied for
the stability analysis of parabolic and pseudoparabolic problems with nonlocal
boundary conditions in [15,18,19,20].

We note, that in this paper we will not investigate the spectrum of obtained
discrete schemes with nonlocal boundary conditions. The stability analysis of
the constructed finite difference schemes is based on the assumption that a
matrix of the discrete operator can be diagonalized and eigenvectors make a
complete basis system. Then the obtained results on the stability regions of
discrete approximations of pseudoparabolic problems can be used also in the
case of nonlocal boundary conditions. Here we also note that the structure of
the spectrum of some differential operators with nonlocal boundary conditions
is investigated in [25,26].

Starting from pioneer works [11,13], many numerical algorithms have been
developed for equations of pseudoparabolic type with various classical boundary
conditions. The explicit-implicit Euler and Crank–Nicolson approximations are
constructed in [13]. The ρ-stability and convergence analysis is done in the
discrete L2 norm by using the spectral analysis technique. Some comparison
of approximations for parabolic and pseudoparabolic equations is presented,
and it is noted that even the backward time pseudoparabolic problems can be
solved by the proposed discrete algorithms.

Our first goal is to define the stability regions of two-level finite differ-
ence schemes. A class of finite difference schemes with averaging in time
is considered, including high-order approximations, stability regions of these
schemes are constructed and investigated. Then by using a general template
defined above, the obtained results on the stability regions of the discrete pseu-
doparabolic operators are applied for problems with nonlocal boundary condi-
tions. The essential assumption is used that matrices of the constructed finite
difference operators can be diagonalized and eigenvectors define a complete
basis set.

Math. Model. Anal., 19(2):281–297, 2014.
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The second goal of this paper is to investigate the stability of three-level
explicit approximations of multidimensional pseudoparabolic problems. There
are many papers where implicit finite difference and finite element approxima-
tions are used, see [11, 22]. In order to find a discrete solution at each time
level a large system of linear equations is solved by iterative methods. There
we consider two approaches to construct efficient numerical algorithms to solve
multidimensional pseudoparabolic problems with various boundary conditions.
The first one is to use explicit finite difference schemes. Here we analyze the
stability of explicit algorithms, that are constructed as multidimensional gener-
alizations of one-dimensional algorithms proposed in [18]. Our goal is to apply
general results of the stability of three-level finite difference schemes. First we
consider the case of classical boundary conditions, when discrete operators are
symmetrical and positive. It is shown that the technique of operator estimates
enables users to derive the stability conditions for all proposed approximations.
Next we show a simple connection of the operator based estimates with stan-
dard spectral estimates based on the root condition of characteristic equations
(again for symmetrical and positive operators). This result enables us to in-
vestigate the stability of explicit schemes for multidimensional pseudoparabolic
problems with nonlocal conditions. These stability results are valid if the as-
sumption on diagonalization of a matrix of the discrete operator holds and all
eigenvalues are real.

The second possibility is to use splitting type approximations. A review
of this approach is given in [27]. Our aim is to investigate the convergence of
one Locally One-Dimensional (LOD) scheme, which is proposed in [19]. The
stability of this scheme is investigated in [19] by using the same assumption that
a matrix of the discrete operator can be diagonalized and the eigenvectors define
a complete basis set. Thus the main task is to investigate the approximation
error the discrete scheme in appropriate norms.

The rest of this paper is organized as follows. The structure of the spec-
trum of the pseudoparabolic equation is investigated in Section 2. In Section 3,
the implicit Euler finite difference scheme is constructed for approximation
of the pseudoparabolic problem (1.1)–(1.3) and the accuracy of the approxi-
mation is investigated. The stability regions of the finite difference schemes
are derived and investigated in Section 4. In Section 5, the two-dimensional
pseudoparabolic problem with nonlocal boundary conditions is solved. The
approximation and convergence of the split step and the full approximation
implicit finite difference schemes is investigated. Explicit three-level multidi-
mensional finite difference schemes are constructed in Section 6. Some final
conclusions are done in Section 7.

2 The Spectral Stability Analysis

Let us write the differential equation (1.1) in the operator form

(I + B)
∂u

∂t
+Au = f, (x, t) ∈ D × (0, T ], (2.1)
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where

Au := − ∂

∂x

(
k(x)

∂u

∂x

)
, Bu := − ∂

∂x

(
g(x)

∂u

∂x

)
.

It is easy to check, that in the case of boundary conditions (1.3) these operators
are symmetric in the Hilbert space H1

0 (D)

(Au, v) = (u,Av), (Bu, v) = (u,Bv), u, v ∈ H1
0 (D),

where (u, v) denotes the inner product of functions u and w:

(u, v) =

∫
D

u(x)v(x) dx.

With this notation the eigenvalue problem can be stated as: find a number λ
and a function ϕ ∈ H1

0 (D), ϕ 6= 0 such that

Aϕ = λ(I + B)ϕ. (2.2)

Let λj be the jth eigenvalue and ϕj the corresponding eigenfunction. We
assume that eigenfunctions {ϕj}∞j=1 form an orthonormal basis forH1

0 (D). This
statement is true if operators A and B are symmetric and positive definite.

We now seek the solution to problem (1.1)–(1.3) of the form

u(x, t) =

∞∑
j=1

cj(t)ϕj(x). (2.3)

Let us assume that f ≡ 0. Inserting the sum (2.3) into the differential equation
(1.1) and using (2.2) we obtain the ODE for functions cj :

c′j(t) + λcj(t) = 0, j = 1, 2 . . . ,

so that

cj(t) = e−λjtcj(0).

We obtain the standard conclusion, that the given differential problem is stable
if Reλj ≥ 0, but for the pseudoparabolic problem the eigenvalues are defined
by the generalized eigenvalue problem (2.2) (see also [13]).

Next we consider the important example, when

B = ηA.

Let us assume that eigenvalues and eigenvectors of the operator A are defined
as

Aϕj = µjϕj , j = 1, 2, . . . .

Then we may easily determine the eigenvalues of the generalized problem (2.2)
explicitly

λj =
µj

1 + ηµj
, j = 1, 2, . . .

Math. Model. Anal., 19(2):281–297, 2014.
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For the definition of the stability region, we consider a general case of com-
plex eigenvalues. Let us denote µ = µR + iµI . After simple computations we
find that the stability region of the pseudoparabolic problem is defined by the
inequality

µR(1 + ηµR) + ηµ2
I ≥ 0. (2.4)

By assuming that η > 0, we can write it in the following form

(ηµR + 0.5)
2

+ (ηµI)
2 ≥ 0.25. (2.5)

Note, that the obtained stability region is much larger than the stability region
µR ≥ 0 of the classical parabolic equation.

3 Finite Difference Schemes

For the construction and analysis of finite difference schemes we shall use results
obtained in [8]. The domain D̄ is covered by the discrete uniform grid

D̄h =
{
xj : xj = jh, j = 0, . . . , J

}
, xJ = 1,

D̄h = Dh ∪ ∂Dh. Let ωτ be a uniform time grid

ωτ =
{
tn: tn = nτ, n = 0, . . . , N, Nτ = T

}
,

where τ is the time step. Although the constant time step is taken here, the
following studies can be easily extended to the case when τ varies.

We consider numerical approximations Unj to the exact solution values unj =

u(xj , t
n) at the grid points (xj , t

n) ∈ D̄h × ωτ . For functions defined on the
grid we introduce the forward and backward difference quotients with respect
to x

∂xU
n
j =

(
Unj+1 − Unj

)
/h, ∂x̄U

n
j =

(
Unj − Unj−1

)
/h

and similarly the backward difference quotient and the averaging operator with
respect to t

∂t̄U
n
j =

(
Unj − Un−1

j

)
/τ, Un−1+θ

j = θUnj + (1− θ)Un−1
j .

We approximate the differential problem (1.1)–(1.3) by the finite difference
scheme

∂t̄U
n
j = ∂x

(
kj− 1

2
∂x̄U

n−1+θ
j + gj− 1

2
∂x̄∂t̄U

n
j

)
+ fn−1+θ

j , xj ∈ Dh, n > 0,

(3.1)

U0
j = ϕ(xj), xj ∈ D̄h. (3.2)

Un0 = 0, UnJ = 0, n > 0. (3.3)

Let us define discrete operators

AhU := −∂x(kj− 1
2
∂x̄Uj), BhU := −∂x(gj− 1

2
∂x̄Uj)

and consider boundary conditions (3.3).
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Lemma 1. For a sufficiently smooth solution of problem (1.1)–(1.3) the finite
difference scheme (3.1)–(3.2) approximates the differential problem and the fol-
lowing estimate is valid for the residual error

∥∥R(un)∥∥∞ ≤ C(τp + h2
)
, for n > 0, p =

{
2, θ = 1/2,

1, otherwise,
(3.4)

where the residual is defined by

R(u) := ∂t̄u
n
j +Ahun−1+θ + Bh∂t̄un − fn−1+θ

j .

Proof. It is sufficient to analyze the approximation error of the term Bh∂t̄un,
the remaining analysis can be done in a similar way. Let us denote t̄ := tn−1/2.
Using the Taylor formula with the remainder term in the integral form we
obtain

un = u(x, t̄) +
τ

2

∂u(x, t̄)

∂t
+
τ2

8

∂2u(x, t̄)

∂t2
+
τ3

16

∫ 1

0

(1− s)2 ∂
3u(x, t̄+ 1

2sτ)

∂t3
ds,

un−1 = u(x, t̄)− τ

2

∂u(x, t̄)

∂t
+
τ2

8

∂2u(x, t̄)

∂t2
− τ3

16

∫ 0

−1

(1+s)2 ∂
3u(x, t̄+ 1

2sτ)

∂t3
ds,

∂t̄u
n =

∂u(x, t̄)

∂t
+
τ2

16

∫ 1

−1

ρ3(s)
∂3u(x, t̄+ 1

2sτ)

∂t3
ds,

where

ρ3(s) =

{
(1 + s)2 for −1 ≤ s ≤ 0,

(1− s)2 for 0 < s ≤ 1.

Then we obtain the estimate

Bh∂t̄un = B∂u(x, t̄)

∂t
+
τ2

16

∫ 1

−1

ρ3(s)
∂3Bu(x̃, t̄+ 1

2sτ)

∂t3
ds+O

(
h2
)

= B∂u(x, t̄)

∂t
+O

(
τ2 + h2

)
. ut

Let us consider the important example [20]

k(x) = 1, g(x) = η, x ∈ D.

Then we construct the high-order approximation finite-difference scheme(
I +

h2

12
L
)
∂t̄U

n
j = L

(
U
n+ 1

2
j + η∂t̄U

n
j

)
+

(
I +

h2

12
L
)
f
n+ 1

2
j , (3.5)

where the notation

LUj := ∂x̄∂xUj

is used. This scheme is defined on the same compact stencil of the grid ωh as
for the finite difference scheme (3.1) and the approximation accuracy of (3.5)
is equal to O(τ2 + h4).

Math. Model. Anal., 19(2):281–297, 2014.
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4 The Stability Region

In this section we find the stability regions of the forward and backward Euler
methods. Here we restrict ourselves to the case B = ηA.

The forward Euler scheme. We take θ = 0 in the equation (3.1). The
scalar stability test equation is defined by

(1 + ηµ)
cn − cn−1

τ
+ µcn−1 = 0,

where µ = µR + iµI are complex eigenvalues of the operator A. Then we get
the recursion

cn = qcn−1, q =
1 + ηµ− τµ

1 + ηµ
.

The stability region of the finite difference scheme is

S =
{
µ ∈ C: |q| ≤ 1

}
.

After simple computations we obtain that the stability condition for the forward
Euler scheme is defined by

µR + η|µ|2 ≥ τ

2
|µ|2.

If τ < 2η, then the stability region of the forward Euler finite difference scheme
is (

η̃µR +
η

2η̃

)2

+ (η̃µI)
2 ≥

(
η

2η̃

)2

,

where η̃ =
√
η(η − τ/2).

The backward Euler scheme. We take θ = 1 in the equation (3.1). The
scalar stability test equation is defined by

(1 + ηµ)
cn − cn−1

τ
+ µcn = 0,

Then we get the recursion

cn = qcn−1, q =
1 + ηµ

1 + ηµ+ τµ
.

After simple computations we obtain the stability region of the backward Euler
finite difference scheme(

(2η + τ)µR + 1
)2

+ (2η + τ)2µ2
I ≥ 1.
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Real eigenvalues. Now we consider the case when operators A and B are
symmetrical and positive definite

A = A∗ > 0, B = B∗ > 0.

Then the stability analysis can be based on general results of the stability of
two-level finite difference schemes [23]. Let us consider the problem

(I + τR) ∂t̄U
n +AUn−1 = 0, U0 = φ,

where I+ τR > 0 and the operator R is called a regularizator. If A = A∗ > 0,
then a sufficient stability condition is given by

R ≥ σ0A, σ0 =
1

2
− 1

τ‖A‖
.

For the pseudoparabolic discrete problem (3.1) the regularizator is equal to

R =
1

τ
B + θA.

Let us assume that B ≥ cA, then the finite difference scheme (3.1) is stable if
the inequality

c

τ
+ θ ≥ 1

2
− 1

τ‖A‖
(4.1)

is valid. It follows from (4.1) that the symmetrical scheme with θ = 1
2 and the

high-order approximation scheme θ = 1
2 −

h2

12τ are unconditionally stable.

Nonlocal boundary conditions. In this section, the stability estimates
are derived for the solution of problem (3.1)–(3.2), when the discrete nonlocal
boundary conditions are formulated instead of boundary conditions (3.3). We
approximate the integral conditions (1.5) by the discrete conditions

Un0 = γ1SJU
n, UnJ = γ2SJU

n, n > 0, (4.2)

where SJU
n approximates the integral by the trapezoidal rule

SJU =
h

2
U0 +

J−1∑
j=1

Ujh+
h

2
UJ .

The obtained finite difference scheme (3.1), (3.2), (4.2) defines the non-
symmetrical operators A, B. Let us consider the case of operators A = −L,
B = −ηL. Then it is proved in [24] that for γ1 + γ2 < 2 all eigenvalues of
the operator A are real and positive. Then the stability of the finite difference
scheme (3.1), (3.2) can be investigated by using the matrix diagonalization
method (1.6). The simple spectral stability analysis proves that the stability
condition (4.1) is valid for the problem with nonlocal boundary conditions, if
we use the norm ‖A‖ = maxj |µj |. This matrix norm is compatible with the
vector norm ‖X‖ = ‖U−1X‖∞, where U is the matrix of linearly independent
eigenvectors of the matrix A.

Math. Model. Anal., 19(2):281–297, 2014.
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5 Finite Difference Schemes for the Two-Dimensional
Pseudoparabolic Problem

In domain D = {(x, y): 0 < x, y < 1} we consider the problem

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+ η

∂

∂t

(
∂2u

∂x2
+
∂2u

∂y2

)
+ f(x, y, t), (x, y) ∈ D, t > 0, (5.1)

u(0, y, t) = γ1

∫ 1

0

u(x, y, t) dx+ ϕ1(y, t), 0 ≤ y ≤ 1, t > 0, (5.2)

u(1, y, t) = γ2

∫ 1

0

u(x, y, t) dx+ ϕ2(y, t), 0 < y < 1, t > 0, (5.3)

u(x, 0, t) = 0, u(x, 1, t) = 0, 0 ≤ x ≤ 1, t > 0, (5.4)

u(x, y, 0) = ϕ(x, y). (5.5)

The main goal of this section is to investigate efficient numerical approxi-
mations of the multidimensional pseudoparabolic problem. Parallel numerical
algorithms for the three-dimensional parabolic problem with nonlocal condi-
tions are investigated in [4].

The LOD finite difference scheme. The following splitting into locally
one-dimensional (LOD) differential problems

1

2

∂u

∂t
=
∂2u

∂x2
+ η

∂

∂t

(
∂2u

∂x2

)
+

1

2
f(x, y, t), (x, y) ∈ D, tn−1 ≤ t ≤ tn− 1

2 ,

(5.6)

1

2

∂u

∂t
=
∂2u

∂y2
+ η

∂

∂t

(
∂2u

∂y2

)
+

1

2
f(x, y, t), (x, y) ∈ D, tn− 1

2 ≤ t ≤ tn (5.7)

is proposed in [19]. This type of splitting is based on ideas used for solving the
multidimensional parabolic problems [23]. It is proved in [19] that the computa-
tional algorithm which is obtained after approximation of the one-dimensional
sub-problems by the finite difference schemes is stable. This result is obtained
by using the diagonalization of the matrix of two-dimensional discrete elliptic
operator with discrete nonlocal boundary conditions.

We note here that such a stability result is not sufficient to prove the con-
vergence of the discrete solution of the LOD scheme to the solution of the
differential problem (5.1)–(5.5). We will show that this LOD scheme is not
approximating the two-dimensional problem (5.1)–(5.5). In order to prove this
result, let us consider the following scalar test problem:(

1 + η(a1 + a2)
)dc
dt

+ (a1 + a2)c(t) = 0, c(0) = c0, (5.8)

where a1, a2 > 0 are given positive constants. The exact analytical solution of
equation (5.8) is

c(t) = exp

(
− (a1 + a2)t

1 + η(a1 + a2)

)
c0.
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Next, let us consider the split step approximation of (5.8)

1

2

(
1 + ηa1

)dC
dt

+ a1C(t) = 0, tn ≤ t ≤ tn+ 1
2 , (5.9)

1

2

(
1 + ηa2

)dC
dt

+ a2C(t) = 0, tn+ 1
2 ≤ t ≤ tn+1.

The solution of this discrete problem is equal to

Cn = exp

(
− a1τ

1 + ηa1

)
exp

(
− a2τ

1 + ηa2

)
Cn−1

= exp

(
−
[

a1

1 + ηa1
+

a2

1 + ηa2

]
tn
)
c0.

We see that the error Zn = Cn − cn does not depend on the split parameter τ
and therefore the convergence can not be proved for the solution of the LOD
scheme (5.9).

The backward Euler finite difference scheme. In this section we con-
struct the efficient algorithm to solve the two-dimensional pseudoparabolic
problem. It is based on spectral method and FFT. The domain D̄ is covered
by the discrete uniform grid

D̄h =
{

(xj , yk): xj = jh, yk = kh, j, k = 0, . . . , J
}
, Jh = 1.

In this paragraph we consider the backward Euler finite difference scheme

∂t̄U
n
ij = (Lx + Ly)

(
Unij + η ∂t̄U

n
ij

)
+ fnij , (x, y) ∈ Dh, n > 0, (5.10)

Un0j = γ1ShU
n + ϕn1 (yj), 0 < yj < 1, n > 0, (5.11)

UnJj = γ2ShU
n + ϕn2 (yj), 0 < yj < 1, n > 0, (5.12)

Uni0 = 0, UniJ = 0, 0 ≤ xi ≤ 1, n > 0, (5.13)

U0
ij = ϕij , (xi, yj) ∈ Dh. (5.14)

For a sufficiently smooth exact solution of the differential problem, the trun-
cation error of the backward Euler finite difference scheme is of order O(τ+h2).

We take into account the structure of the boundary conditions (5.13) and
introduce the Fourier sums

Unij =

J−1∑
k=1

Ûnk (xi) sinπkyj ,

fnij =

J−1∑
k=1

f̂nk (xi) sinπkyj , ϕnα(yj) =

J−1∑
k=1

ϕ̂nα,k sinπkyj .

Substituting these sums into finite difference scheme (5.10)–(5.14) we obtain

a sequence of independent discrete problems for spectral coefficients Ûnk,i, k =
1, . . . , J − 1:
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∂t̄Û
n
k,i =

(
Lx − µnkI

)(
Ûnk,i + η∂t̄Û

n
k,i

)
+ f̂nk,i, 0 < xi < 1, n > 0,

Ûnk,0 = γ1ShÛ
n
k + ϕ̂n1,k, Ûnk,J = γ2ShÛ

n
k + ϕ̂n2,k.

Let us assume that the parameters γ1 and γ2 are such (or the time step τ is
sufficiently small) that the obtained systems of linear equations are solvable.
Then all these problems can be solved independently in parallel by using the
modified factorization algorithm tailored for solving one dimensional discrete
problems with the nonlocal boundary conditions [8]. The complexity of this
part of the algorithm is O(J2) floating point operations.

The Fourier sums are computed by using the FFT algorithm. If J = 2k

the complexity of this part of the scheme is O(J2 log J) operations. Thus the
full complexity of the implementation of one time step of the finite difference
scheme (5.10)–(5.10) is O(J2 log J).

The presented implementation algorithm enables us also to prove the sta-
bility of the given finite difference scheme, if the assumption that matrices of
one-dimensional operators can be diagonalized and the eigenvectors define a
complete set of vectors. Note that results given in Section 5 on the stability of
1D problems can be used here.

6 Explicit Finite Difference Schemes

In this section we consider the stability of some explicit finite difference schemes,
which were proposed and analyzed in [18]. We will generalize these schemes
for two-dimensional pseudoparabolic problem and note that three-dimensional
problems can be solved in a similar way. Explicit schemes are very important
since parallelization of these algorithms can be done very efficiently.

For the most part of our analysis we consider classical boundary conditions.
Our goal is to investigate the efficiency of a general stability analysis technique
which is developed for three-level operator equations [23]. Also, we are inter-
ested to establish the connection between this energy method and the Hurwitz
stability criterion, since the last one can be used for problems with nonlocal
boundary conditions.

Let us introduce the difference operators

∂0
t
Un =

Un+1 − Un−1

2τ
, ∂t̄tU

n =
Un+1 − 2Un + Un−1

τ2
.

The well-known stability result is valid for the three-level finite difference
schemes written in a canonical form [23]:

B∂0
t
Un + τ2R∂t̄tUn +AUn = 0. (6.1)

Theorem 1. Let operators R and A be symmetric and positively definite A =
A∗ > 0, R = R∗ > 0 and they do not depend on t. Then the following
conditions B(t) ≥ 0, R > 1

4A are sufficient for the stability of (6.1) with
respect to the initial conditions.

This stability criteria was applied for the analysis of hyperbolic heat con-
duction equations in [5, 21].
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Finite difference scheme 1. We solve the two-dimensional equation (5.1).
The most simple explicit three-level finite difference scheme is obtained if both
diffusion operators are approximated on the nth time level:

∂t̄U
n+1
jk =

(
Lx + Ly

)
Unjk + η

(
Lx + Ly

)
∂t̄U

n
jk + fnjk, (6.2)

Unjk = 0, (xj , yk) ∈ ∂ωh.

The initial condition for n = 1 time level can be computed by using the implicit
scheme (3.1). This selection has no influence on the stability of the explicit
scheme (6.2). It is easy to check that the approximation error of this explicit
finite difference scheme is O(τ + h2).

The finite difference scheme (6.2) can be written in the canonical form by
taking

A = −(Lx + Ly), B = I + ηA, R =
1

2τ
(I − ηA).

Then we straightforwardly obtain, that the stability condition R > 1
4A is not

satisfied, therefore the scheme (6.2) is unstable.

Finite difference scheme 2. The second scheme is constructed as a modifi-
cation of the well-known Dufort–Frankel three-level finite difference scheme [23]:

∂0
t
Unjk =

(
1 +

η

τ

)(
Unj+1,k − (Un+1

jk + Un−1
jk ) + Unj−1,k

h2
(6.3)

+
Unj,k+1 − (Un+1

jk + Un−1
jk ) + Unj,k−1

h2

)
− η

τ
(Lx + Ly)Un−1

jk + fnjk,

(xj , yk) ∈ ωh,

Unjk = 0, (xj , yk) ∈ ∂ωh.

The approximation error of this scheme is O(τ + h2 + τ
h2 ). Finite difference

scheme (6.3) can be written in the canonical form by taking

A = −(Lx + Ly), B = I + ηA, R =
2

h2
I +

η

2τ

(
4

h2
I − A

)
.

From A < 8
h2 I it follows that the Dufort-Frankel scheme is unconditionally

stable for the two-dimensional parabolic problem when the parameter η = 0.
But since (AW`,W`) >

4
h2 (IW`,W`) for some eigenvectors W`, the explicit

finite difference scheme (6.3) is still unstable.

Finite difference scheme 3. The third explicit finite difference scheme is
constructed by perturbing the finite difference scheme (6.2):

∂t̄U
n+1
jk = (Lx + Ly)Unjk +

η

τ

(
Unj+1,k − 2Un+1

jk + Unj−1,k

h2
(6.4)
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−
Un−1
j+1,k − 2Unjk + Un−1

j−1,k

h2
+
Unj,k+1 − 2Un+1

jk + Unj,k−1

h2

−
Un−1
j,k+1 − 2Unjk + Un−1

j,k−1

h2

)
+ fnjk, (xj , yk) ∈ ωh,

Unjk = 0, (xj , yk) ∈ ∂ωh.

The approximation error of this scheme is O(τ + h2 + τ
h2 ). Finite difference

scheme (6.4) can be written in the canonical form by taking

A = −(Lx + Ly), B = I + ηA, R =
1

2τ

(
I + η

(
8

h2
I − A

))
.

It follows from the definition of the operators A and R that the inequality
R > 1

4A is satisfied if the restriction τ ≤ h2 is valid. The obtained restriction
on discrete step τ and h improves the results of [18], where the conditional

stability estimate is proved for τ < h2

4 (in the case of one-dimensional problem).

Finite difference scheme 4. Let us consider the following explicit finite
difference scheme

∂0
t
Unjk =

Unj+1,k − (Un+1
jk + Un−1

jk ) + Unj−1,k

h2
(6.5)

+
Unj,k+1 − (Un+1

jk + Un−1
jk ) + Unj,k−1

h2
+
η

τ

(
Unj+1,k − 2Un+1

jk + Unj−1,k

h2

−
Un−1
j+1,k − 2Unjk + Un−1

j−1,k

h2
+
Unj,k+1 − 2Un+1

jk + Unj,k−1

h2

−
Un−1
j,k+1 − 2Unjk + Un−1

j,k−1

h2

)
+ fnjk, (xj , yk) ∈ ωh,

Unjk = 0, (xj , yk) ∈ ∂ωh.

The accuracy of this approximation again is of order O(τ + h2 + τ
h2 ). In [18],

one-dimensional version of scheme (6.5) was used in numerical experiments and
no stability results are presented. It can be written in the canonical form by
taking

A = −(Lx + Ly), B = I + ηA, R =
1

h2
I +

η

2τ

(
8

h2
I − A

)
.

Applying the stability criteria of Theorem 1 we obtain, that the explicit three-
level scheme (6.5) is unconditionally stable.

Nonlocal boundary conditions. As was noted above, in the case of the
nonlocal boundary conditions the Neumann stability analysis is changed to
the analysis of the spectrum of non-symmetrical operators. First, we restrict
ourselves to the cases when the diagonalization of the matrix can be done and
all eigenvalues are real. In the case of the three-level finite difference schemes
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the stability of the difference scheme depends on the solutions of the quadratic
characteristic equation

b
q2 − 1

2τ
+ r
(
q2 − 2q + 1

)
+ aq = 0, (6.6)

where a, b, r are given constants. The well known Hurwitz stability crite-
rion defines that the solution of the characteristic equation (6.6) satisfies the
estimate |q| < 1 if the following estimates are valid:

2τr − b
2τr + b

< 1,

∣∣∣∣2τ(a− 2r)

2τr + b

∣∣∣∣ < 2τr − b
2τr + b

+ 1.

After simple computations we obtain the equivalent conditions

b > 0, a > 0,
a

4
< r, (6.7)

which are the scalar variants of the energy estimates from Theorem 1. Thus we
can apply conditions (6.7) for the stability analysis of explicit finite difference
schemes in the case of nonlocal boundary conditions.

Next we examine shortly a case when eigenvalues of the matrix are com-
plex. There is no direct generalizations of the Hurwitz stability criterion for
complex quadratic polynomials to give us simple constructive conditions of the
stability. One possible way how to investigate the stability of explicit finite
difference schemes is to construct a contour of the stability region by using
the techniques developed for general multistep numerical algorithms [17]. But
for pseudoparabolic problems the contour depends on parameters τ , h and η.
Another possibility is to derive sufficient stability conditions from some well-
known bounds on the roots of a characteristic polynomial, e.g. the Rouche
theorem can be used.

7 Conclusions

In this paper the one- and two-dimensional pseudoparabolic equations with
nonlocal boundary conditions are approximated by the Euler finite difference
scheme. It is proved that the stability regions of the schemes for pseudopa-
rabolic problem are much larger than for the classical parabolic problem. For
the two-dimensional problem the efficient algorithm is constructed, which is
based on the combination of the FFT method and the factorization algorithm.
It is proved that the general stability results of the three level finite differ-
ence schemes can be applied efficiently to investigate the stability of explicit
approximations of the pseudoparabolic problem. The unconditionally stable
explicit schemes are proposed. a qualitative connection between the stability
conditions derived by the energy method and the spectrum Hurwitz stability
criterion is shown, which enables to transfer directly the obtained stability re-
sults also for pseudoparabolic problems with nonlocal boundary conditions if
the matrix of the discrete operator can be diagonalized and all eigenvalues are
real numbers.
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