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Abstract. Using the weighted general control modulo, we prove several Tauberian
remainder theorems for the weighted mean method of summability. Our results gen-
eralize the results proved by Meronen and Tammeraid [Math. Model. Anal. 18 (1)
2013, 97–102].
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1 Introduction

Let x = {ξn} be a sequence of real numbers and any term with a nonnegative
index be zero. Assume that p = {pn} is a sequence of nonnegative numbers
with p0 > 0 such that

Pn :=

n∑
k=0

pk →∞ as n→∞.

The nth weighted mean of the sequence x = {ξn} is defined by

σ(1)
n,p(x) :=

1

Pn

n∑
k=0

pkξk.

A sequence x = {ξn} is said to be summable by the weighted mean method
determined by the sequence p, in short; (N, p) summable to a finite number σ(x)
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if
lim
n→∞

σ(1)
n,p(x) = σ(x).

If pn = 1 for all nonnegative n, then (N, p) summability method reduces to
Cesàro summability method.

The weighted Kronecker identity [1] is given by

ξn − σ(1)
n,p(x) = V (0)

n,p (∆x), (1.1)

where

V (0)
n,p (∆x) :=

1

Pn

n∑
k=0

Pk−1∆ξk.

The weighted classical control modulo of {ξn} is given by

ω(0)
n,p(x) =

Pn−1
pn

∆ξn

and the weighted general control modulo [1] of integer order m ≥ 1 of {ξn} is
defined by

ω(m)
n,p (x) = ω(m−1)

n,p (x)− σ(1)
n,p

(
ωm−1(x)

)
.

For each integer m ≥ 0, we define σ
(m)
n,p (x) by

σ(m)
n,p (x) =


1

Pn

n∑
k=0

pkσ
(m−1)
k,p (x), m ≥ 1,

ξn, m = 0.

In the recent years different classes of sequences associated with multiplier
sequences have been introduced and their different algebraic and topological
properties have been investigated by researchers with specific objectives. The
studies on sequence spaces associated with multiplier sequences was started
by Goes and Goes [3], followed by Tripathy and Mahanta [14], Tripathy and
Hazarika [13], Tripathy and Chandra [12] and others.

A sequence x = {ξn} is called λ-bounded with the rapidty λ = {λn} (0 <
λn ↑ ∞) if

λn(ξn − ξ) = O(1)

with lim ξn = ξ. We denote the set of all λ-bounded sequences by mλ.
A sequence x = {ξn} is called λ-bounded by the weighted mean method of

summability (N, p) if (N, p)x is λ-bounded. This is equivalent to saying that

λn
(
σ(1)
n,p(x)− σ(x)

)
= O(1)

with

σ(1)
n,p(x) :=

1

Pn

n∑
k=0

pkξk and lim
n→∞

σ(1)
n,p(x) = σ(x).

In short, we write x ∈
(
(N, p),mλ

)
.
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A number of authors including Kangro [4], Tammeraid [11] and Šeletski and
Tali [10] proved Tauberian remainder theorems for some summability methods
using summability with given rapidity. Meronen and Tammaraid [5] obtained
a Tauberian condition under which λ-boundedness of {ξn} transformed by the
generalized Euler–Knopp method implies λ-boundedness of {ξn}. In [6], they
obtained sufficient conditions for the generalized Nörlund method and Taube-
rian conditions to deduce x ∈ mλ

X fromNx ∈ mλ
X . Meronen and Tammaraid [7]

also proved gap Tauberian theorems for the generalized linear methods. More-
over, they proved some results on λ-summable series by the Cesàro method of
order one and by the weighted mean method (N, p) in [8]. Recently, Mero-
nen and Tammeraid [9] have proved Tauberian remainder theorems for Cesàro
summability method using the concept of the general control modulo of inte-
ger order m ≥ 1, defined by Dik [2]. In this paper we obtain some Tauberian
conditions to deduce x ∈ mλ from (N, p)x ∈ mλ. Our results generalize the
results proved by Meronen and Tammeraid [9].

2 Tauberian Remainder Theorems For (N, p)

Using the classical control modulo, we prove the following Tauberian theorem
for (N, p) summability method.

Theorem 1. Let x ∈ ((N, p),mλ). If

λnV
(0)
n,p (∆x) = O(1), (2.1)

then x ∈ mλ.

Proof. Assume that x ∈ ((N, p),mλ). By the weighted Kronecker identity

ξn − σ(1)
n,p(x) = V (0)

n,p (∆x),

we have
λn
(
ξn − σ(x)

)
= λn

(
σ(1)
n,p(x)− σ(x)

)
+ λnV

(0)
n,p (∆x).

Taking (2.1) into account, we obtain x ∈ mλ. ut

Lemma 1. The following assertion is valid:

ω(1)
n,p(x) = ω(0)

n,p(x)− ξn + σ(1)
n,p(x). (2.2)

Proof. By the weighted general control modulo of integer order m = 1 and
(1.1), we have

ω(1)
n,p(x) = ω(0)

n,p(x)− σ(1)
n,p

(
ω(0)(x)

)
= ω(0)

n,p(x)− 1

Pn

n∑
k=0

pk
Pk−1
pk

∆ξk

= ω(0)
n,p(x)− V (0)

n,p (∆x) = ω(0)
n,p(x)− ξn + σ(1)

n,p(x).

ut
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Theorem 2. Let x ∈ ((N, p),mλ). If the conditions

λnω
(0)
n,p(x) = O(1), λnω

(1)
n,p(x) = O(1) (2.3)

are satisfied, then x ∈ mλ.

Proof. Assume that x ∈ ((N, p),mλ). By Lemma 1, we have

ξn − σ(x) = ω(0)
n,p(x)− ω(1)

n,p(x) +
(
σ(1)
n,p(x)− σ(x)

)
. (2.4)

It follows from (2.4) that

λn
(
ξn − σ(x)

)
= λnω

(0)
n,p(x)− λnω(1)

n,p(x) + λn
(
σ(1)
n,p(x)− σ(x)

)
.

Taking (2.3) into account, we obtain x ∈ mλ. ut

The next statement gives an identity for the weighted general control mod-
ulo of integer order m = 2 in terms of the classical control modulo and the nth

weighted means of x.

Lemma 2. The following assertion is valid:

ω(2)
n,p(x) = ω(0)

n,p(x)− 2ξn + 3σ(1)
n,p(x)− σ(2)

n,p(x). (2.5)

Proof. By the weighted general control modulo of integer order m = 2 and
(2.2), we have

ω(2)
n,p(x) = ω(1)

n,p(x)− σ(1)
n,p

(
ω(1)(x)

)
= ω(0)

n,p(x)− ξn + σ(1)
n,p(x)− 1

Pn

n∑
k=0

pk
(
ω
(0)
k,p(x)− ξk + σ

(1)
k,p(x)

)
= ω(0)

n,p(x)− ξn + σ(1)
n,p(x)− 1

Pn

n∑
k=0

pkω
(0)
k,p(x) +

1

Pn

n∑
k=0

pkξk

− 1

Pn

n∑
k=0

pkσ
(1)
k,p(x)

= ω(0)
n,p(x)− ξn + σ(1)

n,p(x)− V (0)
n,p (∆x) + σ(1)

n,p(x)− σ(2)
n,p(x)

= ω(0)
n,p(x)− ξn + σ(1)

n,p(x)− ξn + σ(1)
n,p(x) + σ(1)

n,p(x)− σ(2)
n,p(x)

= ω(0)
n,p(x)− 2ξn + 3σ(1)

n,p(x)− σ(2)
n,p(x).

ut

Theorem 3. Let x ∈ ((N, p),mλ). If the conditions (2.3),

λnω
(2)
n,p(x) = O(1), (2.6)

λn
(
σ(2)
n,p(x)− σ(x)

)
= O(1) (2.7)

are satisfied, then x ∈ mλ.
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Proof. Assume that x ∈ ((N, p),mλ). By Lemma 2, we have

2
(
ξn − σ(x)

)
= ω(0)

n,p(x)− ω(2)
n,p(x) + 3

(
σ(1)
n,p(x)− σ(x)

)
−
(
σ(2)
n,p(x)− σ(x)

)
.

Then it follows that

2λn
(
ξn−σ(x)

)
= λn

(
ω(0)
n,p(x)− ω(2)

n,p(x)+3
(
σ(1)
n,p(x)−σ(x)

)
−
(
σ(2)
n,p(x)−σ(x)

))
.

Taking (2.3) and (2.6) and (2.7) into account, we obtain x ∈ mλ. ut

Lemma 3. The following assertion is valid:

ω(3)
n,p(x) = ω(0)

n,p(x)− 3ξn + 6σ(1)
n,p(x)− 4σ(2)

n,p(x) + σ(3)
n,p(x). (2.8)

Proof. By the weighted general control modulo of integer order m = 3 and
(2.5), we have

ω(3)
n,p(x) = ω(2)

n,p(x)− σ(1)
n,p

(
ω(2)(x)

)
= ω(0)

n,p(x)− 2ξn + 3σ(1)
n,p(x)− σ(2)

n,p(x)

− 1

Pn

n∑
k=0

pk
(
ω
(0)
k,p(x)− 2ξk + 3σ

(1)
k,p(x)− σ(2)

k,p(x)
)

= ω(0)
n,p(x)−2ξn+3σ(1)

n,p(x)−σ(2)
n,p(x)− 1

Pn

n∑
k=0

pkω
(0)
k,p(x) +

2

Pn

n∑
k=0

pkξk

− 3

Pn

n∑
k=0

pkσ
(1)
k,p(x) +

1

Pn

n∑
k=0

pkσ
(2)
k,p(x)

= ω(0)
n,p(x)− 2ξn + 3σ(1)

n,p(x)− σ(2)
n,p(x)− V (0)

n,p (∆x) + 2σ(1)
n,p(x)

− 3σ(2)
n,p(x) + σ(3)

n,p(x)

= ω(0)
n,p(x)− 2ξn + 3σ(1)

n,p(x)− σ(2)
n,p(x)− ξn + σ(1)

n,p(x) + 2σ(1)
n,p(x)

− 3σ(2)
n,p(x) + σ(3)

n,p(x)

= ω(0)
n,p(x)− 3ξn + 6σ(1)

n,p(x)− 4σ(2)
n,p(x) + σ(3)

n,p(x).

ut

Theorem 4. Let x ∈ ((N, p),mλ). If the conditions (2.3), (2.7),

λnω
(3)
n,p(x) = O(1), λn

(
σ(3)
n,p(x)− σ(x)

)
= O(1) (2.9)

are satisfied, then x ∈ mλ.

Proof. Assume that x ∈ ((N, p),mλ). By Lemma 3, we have

3
(
ξn − σ(x)

)
= ω(0)

n,p(x)− ω(3)
n,p(x) + 6

(
σ(1)
n,p(x)− σ(x)

)
− 4
(
σ(2)
n,p(x)− σ(x)

)
+
(
σ(3)
n,p(x)− σ(x)

)
.

Then it follows that

3λn
(
ξn − σ(x)

)
= λnω

(0)
n,p(x)− λnω(3)

n,p(x) + 6λn
(
σ(1)
n,p(x)− σ(x)

)
− 4λn

(
σ(2)
n,p(x)− σ(x)

)
+ λn

(
σ(3)
n,p(x)− σ(x)

)
.

Taking (2.3), (2.7) and (2.9) into account, we obtain x ∈ mλ. ut
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