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Abstract. We investigate the existence and the number of solutions for a third
order boundary value problem with nonlocal boundary conditions in connection with
the oscillatory behavior of solutions. The combination of the shooting method and
scaling method is used in the proofs of our main results. Examples are included to
illustrate the results.
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1 Introduction

In this paper we consider the nonlocal boundary value problem consisting of
the nonlinear third order differential equation

x′′′ = −p(t)f(x) (1.1)

and the boundary conditions

x(0) = x′(0) = 0, x(η) = x(1), (1.2)

where 0 < η < 1, f : R → R and p : R → [0,∞), p(t) 6≡ 0 are continuous. We
assume throughout that

(H1) x f(x) > 0 for x 6= 0;

(H2) there exist m,M > 0 such that |f(x)| > M when |x| > m;

(H3)
∫ +∞
t0

p(s) ds =∞,
∫ t0
−∞ p(s) ds =∞.

These assumptions provide the oscillatory behavior of solutions of equation
(1.1).
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We also use the following assumptions

(H4) p(Bt) = Bkp(t) for some k ≥ 0 and all B > 0;

(H5) f(Bx) = Bqf(x) for some q > 1 and all B > 0.

An example of equation (1.1), which satisfies conditions (H1), (H2), (H3),
(H4) and (H5) is x′′′ = −t2x3.

The special case f(x) = |x|q sgnx, q > 1 is of a particular interest. In fact,
the Emden–Fowler type differential equation

x′′′ + p(t)|x|q sgnx = 0 (1.3)

is a prototype of (1.1). Therefore, equation (1.1) is a generalization of the
second order Emden–Fowler equation

u′′ + tν |u|µ sgnu = 0, (1.4)

where ν, µ are real constants. Such equations appear in the problems of poly-
tropic gas spheres of finite radius or finite mass [4, 8]. The study of Emden–
Fowler equation (1.4) has been one of the main objects in the field of nonlinear
analysis in recent years since the appearance of the monograph due to R. Bell-
man [2].

Boundary value problems with nonlocal conditions are an important and
actual field of research since they appear in physics and other areas of ap-
plied mathematics, and as a consequence, have generated a lot of interest
over the years. Survey of known results can be found in the monograph by
S.K. Ntouyas [6]. Results concerning nth order nonlocal boundary value prob-
lems were obtained by P.W. Eloe and B. Ahmad [3], J.R. Graef and T. Mous-
saoui [5]. In [3], applying the fixed point theorem in cones, the authors establish
the existence of at least one positive solution of the problem

u(n) + a(t)f(u) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2) = 0, αu(η) = u(1), (1.5)

where 0 < η < 1, 0 < αηn−1 < 1, if f is either superlinear or sublinear. In [5]
the authors discuss the existence of both sign changing solutions and positive
solutions for problem (1) under conditions different from those imposed in [3].
Some recent contributions to the study of second order nonlinear boundary
value problems with nonlocal conditions include, for example, the papers of
S. Pečiulyté and A. Štikonas [7], N. Sergejeva [9]. In [7] the authors consider
the Sturm–Liouville problem with various types of nonlocal two-point boundary
conditions. In [9] the author establishes the solvability results for the boundary
value problem with nonlocal conditions based on the knowledge of the spectrum
for the auxiliary problem.

In this paper, we are interested in the existence and the number of sign
changing solutions for problem (1.1), (1.2). Our approach in the estimation of
the number of solutions is based on the combination of the shooting method
and scaling method.
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Analogous technique was used by the author [10] to provide results on
the estimation of the number of solutions to the boundary value problem for
equation (1.1) subject to the two point conditions x(0) = x′(0) = 0, x(1) = 0.

In view of the use of the shooting method, the problem the author faced
with is the non-continuability of the solutions. For example, the function

x(t) = (105/8)
1
2 (t− t0)−

3
2 (1.6)

is a non-continuable solution with vertical asymptote t = t0 of the equation
x′′′ = −x3 defined for t > t0. Also, such kind equations can have oscillating
type non-continuable solutions. Results concerning non-continuability of so-
lutions of the third order nonlinear differential equations can be found in [1].
However, we will show that the non-continuability does not influence the results
on estimation of the number of solutions to boundary value problem.

The paper is organized as follows. Section 2 contains some auxiliary results.
Section 3 is devoted to the oscillatory properties of solutions of equation (1.1).
In Section 4 we consider dependence of zeros of solutions on initial data. In
Section 5 we deal with the number of solutions to boundary value problem
(1.1), (1.2). Also one example is given to illustrate the results. In order the
paper to be self-contained, we provide some auxiliary results, published in [10]
with proofs.

2 Preliminary Results

First, let us discuss the relationship between assumptions (H1), (H2), (H3),
(H4) and (H5).

Proposition 1. If a function f(x) satisfies assumptions (H1) and (H5), then
f(x) satisfies assumption (H2) also.

Proof. Let us choose 0 < x1 < x2. Obviously, there exists a B > 1 such
that x2 = Bx1. Now consider f(x2) = f(Bx1) = Bqf(x1). Since 0 < x1
and xf(x) > 0, then Bqf(x1) > f(x1) and f(x2) > f(x1). Thus, f(x) is
strictly increasing function for x > 0. Analogously we can show that f(x) is
strictly increasing for x < 0. It is obviously, that increasing function satisfies
assumption (H2). ut

Remark 1. We state condition (H2) because some propositions below hold if
only (H1) and (H2) are satisfied for some function f(x).

Proposition 2. If a function p(t) satisfies assumption (H4), then p(t) satisfies
assumption (H3) also.

Proof. First, assume k > 0. We can obtain that the function p(t) is increasing
for t > 0 and is decreasing for t < 0 repeating the arguments used in the proof
of the previous proposition.

Next, assume k = 0. Since for every B > 0 p(Bt) = B0p(t) = p(t), it
follows that p(t) = Const > 0.

Evidently, that in both cases condition (H3) holds. ut

Math. Model. Anal., 19(2):145–154, 2014.
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Remark 2. We state condition (H3) because some propositions below hold if
only (H3) is satisfied for some function p(t).

Next, consider auxiliary results, which we will use in the proofs of the
oscillatory behavior for solutions of equation (1.1).

Proposition 3. Suppose x(t) ∈ C3(I). If x(a) ≥ 0, x′(a) ≤ 0, x′′(a) ≥ 0
(but not all zero) and x′′′(t)x(t) < 0 when x(t) 6= 0, then x(t) > 0, x′(t) < 0,
x′′(t) > 0 for t < a.

Proof. Let x(a) ≥ 0, x′(a) ≤ 0, x′′(a) ≥ 0 and (x(a))2+(x′(a))2+(x′′(a))2 > 0.
In all cases x(t) will be positive in some open interval with the right bound-

ary point t = a. Suppose that there exists a point t = t0 such that x(t0) = 0
and x(t) > 0 for t0 < t < a. Since x′′′(t)x(t) ≤ 0, it follows that x′′′(t) < 0 for
t0 < t < a. Consider

x′′(t) = x′′(a)−
∫ a

t

x′′′(s) ds, t0 ≤ t ≤ a.

The right-hand side is positive, and increases as t ↘ t0, as long as x′′′(t)
remains negative. We thus conclude that x′′(t) is positive for t0 ≤ t < a.

Consider

x′(t) = x′(a)−
∫ a

t

x′′(s) ds, t0 ≤ t ≤ a.

The right-hand side is negative, and decreases as t ↘ t0, as long as x′′(t)
remains positive. We thus conclude that x′(t) is negative for t0 ≤ t < a.

Consider

x(t) = x(a)−
∫ a

t

x′(s) ds, t0 ≤ t ≤ a.

The right-hand side is positive, and increases as t ↘ t0, as long as x′(t) re-
mains negative. We thus conclude that x(t) is positive for t0 ≤ t < a. These
contradictions prove the proposition. ut

Corollary 1. Suppose x(t) ∈ C3(I). If x(a) ≤ 0, x′(a) ≥ 0, x′′(a) ≤ 0 (but not
all zero) and x′′′(t)x(t) < 0 when x(t) 6= 0, then x(t) < 0, x′(t) > 0, x′′(t) < 0
for t < a.

Proof. The proof follows from Proposition 3 considering y(t) = −x(t). ut

Remark 3. The function x(t) from Proposition 3 and Corollary 1 may be as-
sumed to be a solution of differential equation (1.1).

3 Oscillatory Properties of Solutions

An application of Proposition 3 and Corollary 1 leads to the following results.
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Corollary 2. Assume that condition (H1) is satisfied. If x(t) is a nontrivial
solution of (1.1), x(a) = x(b) = 0 and a < b, then x′(b) 6= 0 (a simple zero
cannot exist on the left of a double zero).

Proof. Let x′(b) = 0, and, without loss of generality, let x′′(b) > 0. In view of
(H1) x′′′(t)x(t) < 0. Then, by Proposition 3 x(t) > 0 for t < b. But x(a) = 0,
a < b. The contradiction proves the corollary. ut

Corollary 3. Suppose that condition (H1) holds. If x(t) is a nontrivial solution
of (1.1) and x(a) = x(b) = 0 (a < b), then x′(b)x′′(b) > 0.

Proof. Assume x′(b)x′′(b) ≤ 0. In view of (H1) x′′′(t)x(t) < 0. If x′(b) < 0,
x′′(b) ≥ 0, then, by Proposition 3 x(t) > 0 for t < b. We have a contradiction,
since x(a) = 0. If x′(b) > 0, x′′(b) ≤ 0, then, by Corollary 1 x(t) < 0 for t < b.
We have a contradiction, since x(a) = 0. In view of Corollary 2, x′(b) 6= 0. ut

Proposition 4. Let x(t) be a solution of equation (1.1) such that x(a) =
x′(b) = 0 (a < b), x(t) 6= 0 for t ∈ (a, b). If condition (H1) is fulfilled,
then x(t) vanishes in (b,+∞).

Proof. Assume that x(t) does not change sign for t > b. Without loss of
generality, let x(t) > 0, t > b. Then x(t) > 0 for t ∈ (a, b). Multiplying
equation (1.1) by x(t) and integrating from a to t, we obtain∫ t

a

x(s)x′′′(s) ds = −
∫ t

a

x(s)p(s)f
(
x(s)

)
ds.

Integrating the first term by parts, we get

x(t)x′′(t)− x(a)x′′(a)−
∫ t

a

x′′(s)x′(s) ds = −
∫ t

a

x(s)p(s)f
(
x(s)

)
ds,

or

x(t)x′′(t) =
1

2
x′ 2(t)− 1

2
x′ 2(a)−

∫ t

a

x(s)p(s)f
(
x(s)

)
ds.

If t = b we obtain

x(b)x′′(b) =
1

2
x′ 2(b)− 1

2
x′ 2(a)−

∫ b

a

x(s)p(s)f
(
x(s)

)
ds < 0.

First of all exclude the case x(b) = 0. If x(b) = 0, then a simple zero exists
on the left of a double zero, which contradicts Corollary 2. So x(b) > 0, then
x′′(b) < 0. Since x(t) > 0, then (in view of (H1) and (1.1)) x′′′(t) < 0 and
x′′(t) is strictly decreasing. Thus, x′′(t) < 0 for t > b and x′(t) is strictly
decreasing for t > b. Since x′(b) = 0 and x′(t) is strictly decreasing for t > b,
then x′(t) < 0 for t > b. Thus, x(t) is strictly decreasing for t > b. If
two consecutive derivatives of x(t) are negative then x(t) must ultimately be
negative. This completes the proof of the proposition. ut

Math. Model. Anal., 19(2):145–154, 2014.
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Proposition 5. Let x(t) be a solution of equation (1.1) such that x(a) = 0. If
conditions (H1), (H2) and (H3) hold, then x(t) vanishes in (a,+∞).

Proof. Suppose that x(t) does not vanish for t > a. Without loss of generality,
let x(t) > 0 for t > a. If there exists b > a such that x′(b) = 0, then the proof
follows from Proposition 4 above. Therefore, assume that x′(t) does not vanish
for t > a. Since x′(t) > 0 for t immediately to the right of a, it follows that
x′(t) > 0 for t > a. As x(t) > 0, then (in view of (H1) and (1.1)), x′′′(t) < 0
and x′′(t) is strictly decreasing.

First suppose there exists t1 ≥ a such that x′′(t1) = 0. Then x′′(t) < 0
for t > t1. If two consecutive derivatives of x′(t) are negative then x′(t) must
ultimately be negative.

Now assume that x′′(t) > 0 for t > a. So x′(t) is strictly increasing for
t > a. Integrating equation (1.1) between t0 > a and t we obtain∫ t

t0

x′′′(s) ds = −
∫ t

t0

p(s)f
(
x(s)

)
ds,

or eliminating nonnegative terms and using assumption (H2) we get

x′′(t0) = x′′(t) +

∫ t

t0

p(s)f
(
x(s)

)
ds ≥

∫ t

t0

p(s)f
(
x(s)

)
ds ≥M

∫ t

t0

p(s) ds.

The left side is independent of t and thus the integral on the right hand side
must converge as t→ +∞. This contradiction proves the proposition. ut

Remark 4. The condition x(a) = 0 in Proposition 5 is essential, because there
exist solutions (for example (1.6)) of equation (1.1) which do not vanish.

Corollary 4. Assume that conditions (H1), (H2) and (H3) fulfil. If x(t) is a
nontrivial solution of (1.1) and t = a is a zero of x(t), then x(t) has an infinity
of simple zeros in (a,+∞). If t = a is a double zero of x(t), then x(t) does not
vanish in (−∞, a).

Proof. Proposition 5 implies that after any zero of x(t) must follow another
zero. At the same time, according to Corollary 2 there is no zero to the left of
a double zero. Hence the proof. ut

4 Scaling Formula

Proposition 6. Suppose that conditions (H4) and (H5) are fulfilled. If x(t) is
a solution of equation (1.1), then the function

y(t) = B
3+k
q−1 x(Bt),

where B > 0 is an arbitrary constant, is also a solution of equation (1.1).

Remark 5. A similar statement for higher order Emden–Fowler type autono-
mous equation can be found in [1].
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Proof. The proposition can be proved by direct substitution. So

y′′′(t) = B
3+k
q−1+3x′′′(Bt), f

(
y(t)

)
= B

3+k
q−1 qf

(
x(Bt)

)
.

Then

B
3+k
q−1+3x′′′(Bt) = −p(t)B

3+k
q−1 qf

(
x(Bt)

)
= −p(Bt)B−kB

3+k
q−1 qf

(
x(Bt)

)
= B−kB

3+k
q−1 qx′′′(Bt).

Therefore

B
3+k
q−1+3 = B−kB

3+k
q−1 q, or B

3q+k
q−1 = B

3q+k
q−1 .

Hence the proof. ut

Proposition 7. Suppose that conditions (H4) and (H5) are fulfilled. If x(t, β0)
is a solution of equation (1.1), such that

x(0, β0) = x′(0, β0) = 0, x′′(0, β0) = β0 6= 0,

then every solution x(t, β) of equation (1.1) which has a double zero at t = 0
and the second derivative β at t = 0 of the same sign as β0 (ββ0 > 0) can be
expressed via solution x(t, β0) as

x(t, β) = (β/β0)
3+k

1+k+2q x
(
(β/β0)

q−1
1+k+2q t, β0

)
.

Remark 6. We distinguish the cases of x′′ having opposite signs at t = 0 in
Proposition 7, because if x(t) is a solution of (1.1), then (−x(t)) need not to
be a solution of (1.1). As an example we present the equation

x′′′ = −
{
x3, x ≥ 0,

2x3, x < 0,

where f(x) satisfies condition (H5) with q = 3.

Proof. The proof follows from Proposition 6 and direct substitution. So

x′′(0, β) = B
3+k
q−1+2β0 = β.

Thus B = (β/β0)
(q−1)/(1+k+2q)

. The proof is complete. ut

5 Number of Solutions for Boundary Value Problem

Proposition 8. Assume that conditions (H1), (H2) and (H3) are satisfied.
Let x(t, β0) be a nontrivial solution of equation (1.1) with the initial conditions
x(0) = 0, x′(0) = 0, x′′(0) = β0. For every 0 < η < 1 the equation

x(t, β0) = x(ηt, β0)

has a countable set of zeros τi > 0, i = 1, 2, . . . .

Math. Model. Anal., 19(2):145–154, 2014.
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Remark 7. The values x(τi, β0) = x(ητi, β0) depend on the value of 0 < η < 1.

Proof. The proof follows from the fact that x(t, β0) has an infinity of simple
zeros in (0,+∞) (Corollary 4). ut

Now we are ready to prove our main result.

Theorem 1. Suppose that conditions (H1), (H4) and (H5) are fulfilled, then
boundary value problem (1.1), (1.2) has a countable set of solutions yi(t) with
y′′i (0) > 0 and a countable set of solutions ui(t) with u′′i (0) < 0, i = 1, 2, . . . .

Proof. Let x(t, β0) be a nontrivial solution of equation (1.1) with the initial
conditions x(0) = 0, x′(0) = 0, x′′(0) = β0.

By Proposition 7

y(t, β) = (β/β0)
3+k

1+k+2q x
(
(β/β0)

q−1
1+k+2q t, β0

)
is a solution of equation (1.1) with initial data y(0) = y′(0) = 0, y′′(0) = β.
Next, consider the function

y(ηt, β) = (β/β0)
3+k

1+k+2q x
(
(β/β0)

q−1
1+k+2q ηt, β0

)
.

Let t = 1, we get

y(1, β) = (β/β0)
3+k

1+k+2q x
(
(β/β0)

q−1
1+k+2q , β0

)
and

y(η, β) = (β/β0)
3+k

1+k+2q x
(
(β/β0)

q−1
1+k+2q η, β0

)
.

By Proposition 8 for every 0 < η < 1 there exist τi (i = 1, 2, . . .) such, that

x(τi, β0) = x(ητi, β0), i = 1, 2, . . . .

Obviously, we can choose β = βi (i = 1, 2, . . .) such, that (βi/β0)
q−1

1+k+2q = τi.
Thus, there exists a countable set of values βi such, that

x
(
(βi/β0)

q−1
1+k+2q , β0

)
= x

(
(βi/β0)

q−1
1+k+2q η, β0

)
.

Therefore, the equation y(1, β) = y(η, β) has countable set of zeros βi (i =
1, 2, . . .). Hence the proof. ut

Remark 8. Theorem 1 remains valid if boundary conditions (1.2) are replaced
by more general ones

x(0) = 0, x(i)(0) = 0, x(j)(η) = x(j)(1), i ∈ {1, 2}, j ∈ {0, 1, 2}. (5.1)

Example 1. Consider the problem

x′′′ = −t2x3, x(0) = x′(0) = 0, x(1/2) = x(1). (5.2)
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xHtL

xHt �2L

0.5 1.0 1.5 2.0 2.5 3.0 3.5
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-1

1

2

xHtL, xHt�2L

Figure 1. Functions x(t) (solid) and x(t/2) (dashed).

0.2 0.4 0.6 0.8 1.0
t

5

10

15

xHtL

Figure 2. Solution x1(t) of problem (5.2).

Conditions (H1), (H4) and (H5) are fulfilled, then boundary value problem
(5.2) has a countable set of solutions.

Let us construct first two solutions x1(t) and x2(t) of problem (5.2) by using
the technique, described in the proof of Theorem 1. So, consider the auxiliary
initial value problem

x′′′ = −t2x3,
x(0) = x′(0) = 0, x′′(0) = 1 (5.3)

and denote its solution by x(t). Then, consider the function x(t/2) and find first
two zeros τ1 and τ2 of the equation x(t) = x(t/2) (see Figure 1). Thus, by using
numerical simulation, we obtain τ1 ≈ 2.542, τ2 ≈ 3.431. Next, find the values of
the second derivative β1 and β2 for solutions to boundary value problem (5.2)
from the equation β9/2 = τi, i = 1, 2. So, β1 ≈ 66.578, β2 ≈ 256.681. Solutions
x1(t) and x2(t) of boundary value problem (5.2) are presented in Figure 2 and
Figure 3.
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Figure 3. Solution x2(t) of problem (5.2).
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