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Abstract. In this paper, we deal with a system of linear and nonlinear integral
algebraic equations (IAEs) of Hessenberg type. Convergence analysis of the discon-
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1 Introduction

Consider the system of integral equations of the form

A(t)y(t) +

∫ t

0

k(t, s)y(s) ds = f(t), t ∈ I := [0, T ], (1.1)

where matrix A ∈ C(I,Rr×r), functions f ∈ C(I,Rr) and k ∈ C(D,Rr×r)
with D := {(t, s) : 0 ≤ s ≤ t ≤ T}. If A(t) is a singular matrix with constant
rank for all t ∈ I, then the system (1.1) will be an IAE or a singular system of
Volterra integral equations of the fourth kind.

The properties of IAEs are very similar to the differential algebraic equa-
tions (DAEs). Indeed, a simple integration of DAEs change them to IAEs. So
the study of IAEs has important effect on the study of DAEs.

We recall the DAEs and IAEs classification by the index notions. There
are many index notions by considering analytical and numerical properties of
solutions [2, 5, 6, 7, 8, 10, 12, 13, 18, 19]. In this paper, we introduce the “rank-
degree” index and we use it for simplification of our analysis.
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We study the numerical properties of integral algebraic equations of Hes-
senberg type:

A1,1(t) · · · A1,ν−1(t) 0
...

. . .
...

...
Aν−1,1(t) · · · 0 0

0 · · · 0 0



y1(t)
y2(t)

...
yν(t)



+

t∫
0


k1,1(t, s) k1,2(t, s) · · · k1,ν(t, s)

...
...

. . .
...

kν−1,1(t, s) kν−1,2(t, s) · · · 0
kν,1(t, s) 0 · · · 0



y1(s)
y2(s)

...
yν(s)

 ds=

f1(t)
f2(t)

...
fν(t)

 , (1.2)

where
∏ν−1
i=1 Ai,ν−i and

∏ν
i=1 ki,ν+1−i(t, t) are assumed to be invertible and

Ai,j , ki,j(t, t) and fj(t) are matrix functions of size ri × rj , ri × rj and ri × 1
respectively. Let r = r1 + · · · + rν , with ri = rν+1−i and ri = rν−i, i =
1, . . . , ν− 1. Then r1 = r2 = · · · = rν . We use the letter r for the size of system
and the letter r1 instead of ri for i = 1, . . . , ν. For the sake of simplicity we
consider the following first kind system of Volterra integral equations for ν = 1∫ t

0

k1,1(t, s)y1(s) ds = f1(t)

and we suppose that k1,1 is an invertible matrix function of size r × r.
The piecewise polynomial collocation methods are popular methods for solv-

ing various types of operator equations, such as integral, differential and partial
differential equations. From many existing papers on this subject, those which
are close to our study are [3, 4, 5, 14,15,17]. The piecewise discontinuous poly-
nomial collocation methods for IAEs with differential index 1 of the form

y(t) +K11y(t) +K12z(t) = q1(t), (1.3)

K21y(t) +K22z(t) = q2(t) (1.4)

have been investigated by Kauthen [16], where Ki,jy(t) =
∫ t
0
kij(t, s)y(s) ds

for i, j ∈ {1, 2} with det k22 6= 0. This paper deals with application of dis-
continuous piecewise polynomial collocation method on higher index IAEs of
Hessenberg form, since there is less investigation on these equations and their
analyses are not as easy as the index one IAEs.

The next sections are organized as follows: In Section 2, we introduce a
new definition based on the left index. In Section 3, we recall application
of piecewise polynomial collocation method for the system (1.1). In Section 4,
a global convergence theorem is proved which implies the convergent properties
of the given methods for the research problem given in [5, p. 499]. In Section 5,
we extend the results for nonlinear case. In Section 6, we illustrate the results
of paper by numerical experiments. Finally, in Section 7, we extend our results
to the IAEs which are strongly equivalent to the IAEs of Hessenberg form.
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2 Existence and Uniqueness of Solution

Definition 1. [8] The matrix A−(t) is called semi-inverse matrix for A(t)
if it satisfies the equation A(t)A−(t)A(t) = A(t), which can be rewritten as
V (t)A(t) = 0, with V (t) = I−A(t)A−(t), where I is an r × r identity matrix.

Definition 2. [20] Suppose A ∈ C(I,Rr×r) and k ∈ C(D,Rr×r). Let

A0 ≡ A, k0 ≡ k, Λiy =
d

dt

((
I−Ai(t)A−i (t)

)
y
)

+ y,

Ai+1 ≡ Ai +
(
I−Ai(t)A−i (t)

)
ki(t, t), ki+1 = Λiki, i = 0, . . . , ν − 1.

Then we say that the ‘rank degree’ index of (A, k) is ν if

ki(t) ∈ C1
(
I,Rr×r

)
for i = 1, . . . , ν,

rankAi(t) = const., ∀t ∈ I for i = 0, . . . , ν,

detAi = 0, for i = 0, . . . , ν − 1, detAν 6= 0.

Moreover, we say that the ‘rank-degree’ index of system (1) is ν (indr = ν) if
in addition to the above hypotheses, we have f ∈ C(I,Rr) and

F0 ≡ f, Fi+1 ≡ ΛiFi, i = 0, . . . , ν − 1, Fi ∈ C1
(
I,Rr

)
, i = 1, . . . , ν,

where I is an identity operator.

Lemma 1. [9] Let rankA(t) = const., ∀t ∈ I and the elements of A(t) are
in Cp(I,Rr×r). If rank(I−AA−) = deg det (λ(I−AA−) + (I−AA−)′ + I) =
const., then the initial value problem(

(I−AA−)x(t)
)′

+ x(t) = 0, x(0) = 0

has only trivial solution on I.

Now, we can state the following theorem of the uniqueness and existence
for higher index IAEs.

Theorem 1. Suppose the following conditions are satisfied for (1.1):

1. indr = ν ≥ 1,

2. Ai(t) ∈ C1(I,Rr×r), Fi(t) ∈ C1(I,Rr) and ki ∈ C1(D, Rr×r) for i =
1, . . . , ν,

3. Ai(0)A−1ν (0)Fν(0) = Fi(0) for i = 0, . . . , ν − 1 (consistency conditions),

4. rank(I−AiA−i ) = deg det(λ(I−AiA−i ) + (I−AiA−i )′ + I) = const.

Then the system (1.1) has a unique solution on I.

Math. Model. Anal., 19(1):99–117, 2014.
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Proof. The proof stands on the fact that the systems

Ai(t)y(t) +

∫ t

0

ki(t, s)y(s) ds = Fi(t), t ∈ I := [0, T ], i = 0, . . . , ν (2.1)

are equivalent (i.e., every solution of the (i + 1)th system is a solution of ith
system and vice versa, if the consistency conditions are satisfied). To prove
this assertion, let y be a solution of ith system and operate the operator Λi
on the ith system. Then the (i + 1)th system will be obtained. Hence, y is a
solution of the (i + 1)th system. Conversely, let y be a solution of (i + 1)th
system. Define

Dix := Ai(t)x(t) +

∫ t

0

ki(t, s)x(s) ds− Fi(t),

then

d((I−Ai(t)A−i (t))Diy)

dt
+Diy = 0, Diy(0) = Ai(0)y(0)− F (0) = 0,

since y is a solution of (i + 1)th system and from Lemma 1 we have Diy = 0.
Since the final system is a system of second kind Volterra integral equations, it
has a unique solution. Therefore, a unique solution satisfies all systems in (2.1).
ut

To prove existence of a solution for the system (1.2), it is enough to show
its index is ν, and the consistency conditions hold. The proof is simple and we
omit it.

3 Collocation Method for IAEs

The content of this section is recalled from [5]. Let

Ih := {tn : 0 = t0 < t1 < · · · < tN = T}

be a given (not necessarily uniform) partition of I, and set σn := (tn, tn+1],
σn := [tn, tn+1], with hn = tn+1 − tn (n = 0, 1, . . . , N − 1) and diameter h =
max{hn : 0 ≤ n ≤ N}. Each component of the solution of (1.1) is approximated
by elements of the discontinuous piecewise polynomial space

S(−1)m−1(Ih) :=
{
v : v|σn ∈ πm−1 (n = 0, 1, . . . , N − 1)

}
, (3.1)

where πm denotes the space of all (real valued) polynomials of degree not

exceeding m. A collocation solution uh ∈ (S(−1)m−1(Ih))r for (1.1) is defined by
the equation

A(t)uh(t) +

∫ t

0

k(t, s)uh(s) ds = f(t) (3.2)

for t ∈ Xh = {tn,i := tn + cihn : 0 < c1 < . . . < cm ≤ 1, n = 0, . . . , N − 1}.
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The collocation parameters ci completely determine the set of collocation
points Xh. By defining un = uh|σn ∈ (πm−1)r, we have

un(tn + shn) =

m∑
j=1

Lj(s)Un,j , s ∈ (0, 1], Un,i := u(tn,i), (3.3)

where the polynomials

Lj(v) :=

m∏
k=0
k 6=j

v − ck
cj − ck

, j = 0, . . . ,m

denote the Lagrange fundamental polynomials with respect to the distinct col-
location parameters ci. By partitioning the domain of integral in (3.2) and
changing of variable, we have

A(tn,i)Un,i + Fn,i + h

∫ ci

0

k(tn,i, tn + shn)un(tn + shn) ds = f(tn,i), (3.4)

where the lag terms are defined by

Fn,i = h

n−1∑
l=0

∫ 1

0

k(tn,i, tl + shl)ul(tl + shl) ds.

By substituting from (3.3) in (3.4), for i = 1, . . .m, we obtain the rm × rm
system

A(tn,i)Un,i + h

m∑
j=1

∫ ci

0

k(tn,i, tn + shn)Lj(s) dsUn,j = −Fn,i + f(tn,i) (3.5)

with

Fn,i = h

n−1∑
l=0

m∑
j=1

∫ 1

0

k(tn,i, tl + shl)Lj(s) dsUl,j . (3.6)

By solving the system (3.5), the approximate solution of (1.1) is determined at
the collocation points and tn+1 by

un(tn+1) =

m∑
j=1

Lj(1)un(tn,j).

Remark 1. To apply this method, it is necessary to compute the integrals which
appeared in (3.5) and (3.6). To do this, we apply the following quadrature rule
by using the same collocation parameters ci, i = 0, . . . ,m, such that the order
of the quadrature rule to be at least the same order of the method (O(hm)),∫ ci

0

k(tn,i, tn + shn)Lj(s) ds ' ai,jk(tn,i, tn + cjhn),∫ 1

0

k(tn,i, tl + shl)Lj(s) ds ' bjk(tn,i, tl + cjhl)

with ai,j =
∫ ci
0
Lj(t) dt and bj =

∫ 1

0
Lj(t) dt. If all integrals are computed by

quadrature rule then the method will be called fully discretised.

Math. Model. Anal., 19(1):99–117, 2014.
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Some existence and uniqueness conditions for the solution of continuous
collocation methods can be found in [5].

4 Convergence Analysis

First we state the generalization of Gronwall inequality to use it in the proof
of stated convergence analysis. Note that, we write v = O(hm) whenever
‖v‖ = O(hm). We use throughout the paper max norm, (i.e. ‖[vij(t)]‖ =
maxi,j maxt∈I |vij(t)|).
Lemma 2. Let Bj (j ≥ 0) be a uniformly bounded sequence of υ× υ matrices,
M = diag(λ1, . . . , λυ) and λ = maxi |λi|. Let also {En} be a set of vectors with
E0 = O

(
hu1
)

and

En ≤MEn−1 + h

n−1∑
l=0

BlEl +O
(
hu2
)
, n = 1, . . . , N. (4.1)

Then

lim
N→∞

Nh=const.

‖EN‖ =∞ for λ > 1,

lim
N→∞

Nh=const.

‖EN‖ ≤ O
(
hmin{u1,u2}

)
for λi ∈ [−1, 1), i = 1, . . . , υ.

Proof. Using (Gronwall inequality) [5], it is easy and we omit it. ut

Now, we can investigate the convergence properties of perturbed discontin-
uous collocation methods for system of first kind Volterra integral equations
(SFVIE). The proof of Theorem 2 in this section is similar to the standard
technique introduced by De Hoog [14, 15], Brunner and Kauthen [3, 4, 5, 17].
However, for the convenience of the readers and self-dependency of the paper,
we give the proofs of all theorems in details.

Consider the SFVIE ∫ t

0

k(t, s)y(s) ds = f(t), (4.2)

where k(t, t) is an invertible r× r matrix for all t ∈ I. We analyze convergence
properties of the perturbed discontinuous polynomial collocation method. For
solving SFVIE, we perturb the corresponding system as

h

m∑
j=1

∫ ci

0

k(tn,i, tn + shn)Lj(s) dsUn,j = −Fn,i + f(tn,i) + δ(h, n, i), (4.3)

where

Fn,i = h

n−1∑
l=0

m∑
j=1

∫ 1

0

k(tn,i, tl + shl)Lj(s) dsUl,j , (4.4)

with F0,i = 0. Here, the perturbed term δ(h, n, i) depen ds only on h and tn,i,
and it is of order O(hm1).
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Theorem 2. Let f(t) ∈ Cm+1(I,Rr), ∂
ik(t,s)
∂ti ∈ C(D,Rr×r) for i = 1, . . . ,m

satisfy the system (4.2). Also suppose k(t, t) be invertible matrix function
for all t ∈ I, and f(0) = 0. Then the approximate solution uh of the per-
turbed discontinuous collocation method with distinct collocation parameters
c1, . . . , cm ∈ (0, 1], and cm ≤ 1 (if exists) converges to the solution y for any
m ≥ 2 if and only if

−1 ≤ λ = (−1)m
m∏
i=1

1− ci
ci

≤ 1

and the collocation error satisfies

‖y − uh‖ ≤
{
O(hmin{m1−1,m}), if λ ∈ [−1, 1),
O(hmin{m1−2,m−1}), if λ = 1.

Proof. Solving (4.3) and (4.4) is equivalent to find uh(s) ∈ (S(−1)m−1(Ih))r such
that ∫ tni

0

k(tni, s)uh(s) ds = f(tni) + δ(h, n, i). (4.5)

Subtracting this equation from (4.2) with t = tn,i, we obtain∫ tni

0

k(tni, s)e(s) ds = δ(h, n, i), (4.6)

where e(s) = y(s)− u(s). Introducing en = e|σn ∈ Cm[tn, tn+1], we have

en(tn + vh) =

m∑
j=1

Lj(v)en(tn,j) + rn(v), v ∈ [0, 1], (4.7)

where the interpolation error is determined by

rn(v) = hm
y(m)(ξn(v))

(m)!

m∏
i=1

(v − ci), ξn(v) ∈ (tn, tn+1). (4.8)

(Notice that we have f(t) ∈ Cm+1(I,Rr) and ∂ik(t,s)
∂ti ∈ C(D,Rr×r) for i =

1, . . . ,m.) From (4.6), we have∫ ci

0

k(tni, tn+sh)e(tn+sh) ds = −
n−1∑
l=0

∫ 1

0

k(tni, tl+sh)e(tl+sh) ds+
δ(h, n, i)

h
.

(4.9)
Rewriting (4.9) with n replaced by n − 1 and i = m, and subtracting it from
(4.9), we obtain∫ ci

0

k(tni, tn + sh)en(tn + sh) ds

=

∫ cm

0

k(tn−1,m, tn−1 + sh)en−1(tn−1 + sh) ds

Math. Model. Anal., 19(1):99–117, 2014.
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−
∫ 1

0

k(tni, tn−1 + sh)en−1(tn−1 + sh) ds

+

n−2∑
l=0

∫ 1

0

(
k(tn−1,m, tl + sh)− k(tni, tl + sh)

)
el(tl + sh) ds

+
δ(h, n, i)− δ(h, n− 1,m)

h
. (4.10)

Using ∫ ci

0

k(tni, tn + sh)Lj(s) ds = k(tn, tn)aij +O(h),∫ cm

0

k(tn−1,m, tn−1 + sh)Lj(s) ds = k(tn, tn)amj +O(h),∫ 1

0

k(tni, tn−1 + sh)Lj(s) ds = k(tn, tn)bj +O(h)

and

k(tn−1,m, tl + sh)− k(tni, tl + sh) = h(1 + ci − cm)kt(ξn, tl) +O(h)

in (4.10), we obtain

(
k(tn, tn) +O(h)

)( m∑
j=1

aijen(tnj) +O
(
hm
))

=
(
k(tn, tn) +O(h)

)( m∑
j=1

amjen−1(tn−1,j) +O
(
hm
))

−
(
k(tn, tn) +O(h)

)( m∑
j=1

bjen−1(tn−1,j) +O
(
hm
))

+
(
h(1 + ci − cm)kt(ξn, tl) +O(h)

) n−2∑
l=0

(
m∑
j=1

bjel(tl,j) +O
(
hm
))

+
δ(h, n, i)− δ(h, n− 1,m)

h
. (4.11)

Since k(t, t) is invertible and continuous with respect to t, k(tn, tn) +O(h) has
continuous inverse, say W, for sufficiently small h. Hence, equation (4.11) can
be written as

m∑
j=1

aijen(tnj) =

m∑
j=1

amjen−1(tn−1,j)−
m∑
j=1

bjen−1(tn−1,j)

+ hWU

n−2∑
l=0

m∑
j=1

bjel(tl,j) +O
(
hm1−1

)
+O

(
hm
)
, (4.12)
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where hU := h(1 + ci− cm)kt(ξn, tl) +O(h), and so U is bounded with respect
to its variables. Thusa11I · · · a1mI

...
. . .

...
am1I · · · ammI


 en(tn,1)

...
en(tn,m)


=

(am1 − b1)I · · · (amm − bm)I
...

. . .
...

(am1 − b1)I · · · (amm − bm)I


 en−1(tn−1,1)

...
en−1(tn−1,m)


+ h

n−2∑
l=0

BlEl +O
(
hm1−1

)
+O

(
hm
)
, (4.13)

where El = [el(tl,1), . . . , el(tl,m)]T and Bl are appropriate matrices. By using
the Kronecker product, we summarize equation (4.13) in the form:

(Ã⊗I)En = (B⊗I)En−1+h

n−2∑
l=0

BlEl+O
(
hu
)
, u = min{m1−1,m}. (4.14)

Here Ãij = aij and Bij = (amj − bj), for i, j ∈ {1, . . . ,m}. Since Ã and I are
invertible matrices, we have

En =
((
Ã−1B

)
⊗ I
)
En−1 + h

n−2∑
l=0

(
Ã−1 ⊗ I

)
BlEl +O

(
hu
)
. (4.15)

From [5, Lemma 2.4.3], there exists an invertible matrix P such that D :=

P (Ã−1B)P−1 = diag(λ, 0, . . . , 0) with

λ = (−1)m
m∏
i=1

1− ci
ci

.

Equation (4.15) can be written as

(P ⊗ I)En = (D ⊗ I)(P ⊗ I)En−1 (4.16)

+ h

n−2∑
l=0

(P ⊗ I)−1(Ã−1 ⊗ I)Bl(P ⊗ I)−1(P ⊗ I)El +O
(
hu
)
.

It is obvious that E0 = O(hmin{m1−1,m}). Thus we can use Lemma 2 to prove
that

lim
N→∞

Nh=const.

∥∥(P ⊗ I)EN
∥∥ =≤ O

(
hmin{m1−1,m}

)
.

Then by using (4.7), the proof is completed for the case λ ∈ [−1, 1).
For the case λ = 1, we use an indirect proof as follows, since it can not be

proved directly. we apply the given ideas in [17] to use interpolation formula
for e(t) at the less number of collocation points, but this application in the
perturbation case is not as simple as the ideas of [17] and we need the following
remarks.

Math. Model. Anal., 19(1):99–117, 2014.
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Remark 2. Let aij =
∫ ci
0
Lj(s) ds and bj =

∫ 1

0
Lj(s) ds, where Lj(v), j =

1, . . . , l are the Lagrange polynomials of degree l defined at the points 0 <
d1 < · · · < dl < 1. Then M = A−1B has the only eigenvalue

R(∞) = (−1)l
l∏
i=1

1− di
di

,

where A = (aij) and B = (Bij) with Bij = amj − bj . Moreover

e(tn + vh) =

l∑
j=1

Lj(v)en(tn,j) + hm
e
(l)
n (t

+
n )

l!

l∏
i=1

(τ − ci), τ ∈ [0, 1], (4.17)

where tn,j = tn + djh (see for example [17]).

Remark 3. For the case λ = 1 with respect to the collocation parameters
c1, . . . , cm, we know the matrix M of Remark 2 has the only eigenvalue

R(∞) = (−1)m
m∏
i=1

1− ci
ci

= 1

(see [17]). Hence, it can be easily proved that for each l < m, one can choose
the l points d1, . . . , dl through c1, . . . , cm, such that

R(∞) = (−1)l
l∏
i=1

1− di
di

< 1.

Let l1 = min{m1− 1,m}. Then, we use the above remarks with l = l1 − 1
and the collocation points d1, . . . , dl, to get

en(tn + vh) =

l∑
j=1

Lj(v)en(tn,j) +O
(
hl
)
, v ∈ [0, 1]. (4.18)

By substituting (4.18) into (4.10) and following the lines of proof after equation
(4.10), we obtain

En = (M ⊗ I)En−1 + h

n−1∑
l=0

BnlEl +O
(
hl
)
.

Since M is diagonalizable, there exists an invertible matrix P such that D =
PMP−1 = diag(R(∞), 0, . . . , 0) with |R(∞)| < 1. Now applying Lemma 2 to
the equation

(P ⊗ I)En = (D ⊗ I)(P ⊗ I)En−1 + h

n−1∑
l=0

(P ⊗ I)BnlEl +O
(
hl
)

(4.19)

completes the proof. ut

This perturbed analysis on the numerical solution of the system of first kind
Volterra integral equations makes it easy for Hessenberg form of IAEs.
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Theorem 3. Let f(t) ∈ Cm+1(I,Rr), ∂
ik(t,s)
∂ti ∈ C(D,Rr×r) for i = 1, . . . ,m

and A(t) ∈ Cm(I,Rr×r) satisfy system (1.1). Suppose that this system has
Hessenberg form of index ν (see Eq. (1.2)). Also suppose that the consistency
conditions of Theorem 1 hold for this system. Then the approximate solution
uh of the discontinuous collocation method with distinct collocation parameters
c1, . . . , cm ∈ (0, 1] (if exists) converges to the solution y iff −1 ≤ λ ≤ 1. Then
the collocation error satisfies

‖yi − ui‖ ≤
{
O(hm+1−i), if λ ∈ [−1, 1),

O(hm+1−2i), if λ = 1

for i = 1, . . . , ν. Thus

‖y − uh‖ ≤
{
O(hm+1−ν), if λ ∈ [−1, 1),

O(hm+1−2ν), if λ = 1,

where uh = [u1, . . . , uν ]T .

Proof. The proof is done by induction on ν. For the case ν = 1, it is trivial.
Suppose that it is true for ν = n. Let ν = n+ 1, the problem takes the form
A1,1(t) · · · A1,n(t) 0

...
. . .

...
...

An,1(t) · · · 0 0
0 · · · 0 0



y1(t)
y2(t)

...
yn+1(t)

 (4.20)

+

t∫
0


k1,1(t, s) k1,2(t, s) · · · k1,n+1(t, s)

...
...

. . .
...

kn,1(t, s) kk,2(t, s) · · · 0
kn+1,1(t, s) 0 · · · 0



y1(t)
y2(t)

...
yn+1(t)

 ds =


f1(t)
f2(t)

...
fn+1(t)

.
The last n equations of this system form an IAE of index n. By the hypothesis
of induction, we have

‖ei‖ ≤
{
O(hm+1−i), if λ ∈ [−1, 1),

O(hm+1−2i), if λ = 1

for i = 1, . . . , n (here ei = yi − ui). Hence∥∥∥A1,1(t)e1(t) + · · ·+A1,n(t)en(t)

+

∫ t

0

k1,1(t, s)e1(s) ds . . .+

∫ t

0

k1,n(t, s)en(s) ds
∥∥∥

≤ ‖A1,1e1‖+ · · ·+ ‖A1,nen‖" By triangle inequality

+
∥∥∥∫ t

0

k1,1(t, s)e1(s) ds
∥∥∥ . . .+ ∥∥∥∫ t

0

k1,n(t, s)en(s) ds
∥∥∥
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≤ ‖A1,1‖‖e1‖+ · · ·+ ‖A1,n‖‖en‖" By properties of max norm

+ ‖e1‖
∥∥∥∫ t

0

∣∣k1,1(t, s)
∣∣1 ds∥∥∥ . . .+ ‖en‖∥∥∥∫ t

0

∣∣k1,n(t, s)
∣∣1 ds∥∥∥

≤M1

(
‖e1‖+ · · ·+ ‖en‖

)
" By continuous conditions

+M2

(
‖e1‖ . . .+ ‖en‖

)
≤
{
O(hm+1−n), if λ ∈ [−1, 1),

O(hm+1−2n), if λ = 1,
(4.21)

where M1 and M2 are upper bounds of ‖A1,j‖ and ‖
∫ t
0
|k1,j(t, s)|1 ds‖ for

j = 1, . . . , n, respectively and 1 = [1, . . . , 1]T . For obtaining (4.21), we also
used following inequalities

max
t∈I

∣∣∣∫ t

0

k1,j(t, s)ej(s) ds
∣∣∣

≤ max
t∈I

∫ t

0

∣∣k1,j(t, s)ej(s)∣∣ ds ≤ max
t∈I

∫ t

0

∣∣k1,j(t, s)∣∣∣∣ej(s)∣∣ ds
≤ max

t∈I

∫ t

0

∣∣k1,j(t, s)∣∣1∥∥ej(s)∥∥ ds ≤ ∥∥ej(s)∥∥max
t∈I

∫ t

0

∣∣k1,j(t, s)∣∣1 ds. (4.22)

The first equation of system (4.20) is a Volterra integral equation of first kind
i.e.∫ t

0

k1,n+1(t, s)yn+1(s) ds = f1(t)−A1,1(t)y1(t) . . .−A1,n(t)yn(t) (4.23)

−
∫ t

0

k1,1(t, s)y1(s) ds . . .−
∫ t

0

k1,n(t, s)yn(s) ds.

From (4.21), the corresponding discontinuous collocation method for Eq. (4.23)
is equivalent to the perturbed discontinuous collocation method with the per-
turbation term

δ(h, n, i) =

{
O(hm+1−n), if λ ∈ [−1, 1),

O(hm+1−2n), if λ = 1

Then Theorem 2, yields

‖yn+1 − un+1‖ ≤
{
O(hm−n), if λ ∈ [−1, 1),

O(hm−1−2n), if λ = 1

that completes the proof. ut

The fully discretised perturbed discontinuous collocation solution ûn(tn +

shn) =
∑m
j=0 Lj(s)Ûn,j , for the fully discretised discontinuous collocation met-

hod (FDDCM) is obtained by solving the system

h

m∑
j=1

aijk(tn,i, tn,j)Ûn,j + h

n−1∑
l=0

m∑
j=1

bjk(tn,i, tn,j)Ûl,j = f(tn,i) + δ(h, n, i).

(4.24)
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The FDDCM has also the same order of convergence which we obtained for
the discontinuous collocation method. To prove this, we need a new version of
Theorem 2.

Theorem 4. Let f(t) ∈ Cm+1(I,Rr), ∂ik(t,s)
∂ti ∈ C(D,Rr×r) (i = 1, . . . ,m),

satisfy system (4.2). Also suppose K(t, t) is invertible matrix function for all
t ∈ I, and f(0) = 0. Then the approximate solution uh of the fully discretised
perturbed discontinuous collocation method with distinct collocation parameters
c1, . . . , cm ∈ (0, 1], and cm ≤ 1 (if exists) converges to the solution y for all
m ≥ 2 if and only if −1 ≤ λ ≤ 1 and the collocation error satisfies

‖y − uh‖ ≤

{
O(hmin{m1−1,m+1}), if λ ∈ [−1, 1),

O(hmin{m1−2,m}), if λ = 1,

where m1 is the order of perturbed term.

Proof. Proceeding similarly to the proof of Theorem 2, we show that ‖ûh−uh‖
has the same order of ‖y − uh‖. Then using

‖y − ûh‖ ≤ ‖ûh − uh‖+ ‖y − uh‖

completes the proof. ut

Analyzing the index 2 IAEs of the form (1.2) is a question requested in [5,
p. 499], and for this purpose, it is enough to set ν = 2, in the previous theorems.
This analysis has recently been done (see [11]).

5 Nonlinear Case

Suppose that the equation

A(t)y(t) +

∫ t

0

κ
(
t, s, y(s)

)
ds = f(t), t ∈ I := [0, T ] (5.1)

has a unique solution. Then, the collocation solution uh ∈ (S(−1)m−1(Ih))r of the
system (5.1) is defined as the solution equation

A(t)uh(t) +

∫ t

0

k
(
t, s, uh(s)

)
ds = f(t) (5.2)

for t ∈ Xh. Proceeding as in Section 3, we obtain the following nonlinear
equations

A(tn,i)Un,i + Fn,i + h

∫ ci

0

κ
(
tn,i, tn + shn,

m∑
j=1

Lj(s)Un,j

)
ds = f(tn,i) (5.3)

for i = 1, . . . ,m, where the lag term is defined by

Fn,i = h

n−1∑
l=0

∫ 1

0

κ
(
tn,i, tl + shl,

m∑
j=1

Lj(s)Ul,j

)
ds.
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A suitable method for solving this system is the Newton’s iterative method,
since it can be proved (see [1]) that this method converges to the solution
Un,i with the initial value Un−1,i, for sufficiently small h. Subtracting (5.2)
from (5.1), we obtain

A(t)e(t) +

∫ t

0

(
κ
(
t, s, y(s)

)
− κ
(
t, s, uh(s)

))
ds = 0.

Now suppose k(t, s, y) is continuously differentiable with respect to y. Then
using the mean value theorem and letting t = tn,i, we get

A(tn,i)e(tn,i) +

∫ tn,i

0

κy
(
tn,i, s, η(s)

)
e(s) ds = 0,

where η(s) is between y(s) and u(s). This is a linear system and its index can
be considered as an index definition for the nonlinear system (5.1). Hence, for
the nonlinear Hessenberg type system

A1,1(t) · · · A1,ν−1(t) 0
...

. . .
...

...
Aν−1,1(t) · · · 0 0

0 · · · 0 0



y1(t)
y2(t)

...
yν(t)



+

t∫
0


k1(t, s, y1(s), y2(s), . . . , yν(s))

...
kν−1(t, s, y1(s), y2(s))

kν(t, s, y1(s))

 ds =


f1(t)
f2(t)

...
fν(t)

 (5.4)

the index is ν, if
∏ν
i=1 ki,yν+1−i(t, t, y1(t), . . . , yν+1−i(t)) is invertible in a neigh-

bourhood of (y1(t), . . . , yν(t)). We should have the same results for the order
of the collocation methods that we obtained in previous sections.

Theorem 5. Let f(t) ∈ Cm+1(I,Rr),
∂ik(t,s,y1(s),...,yν+1−j(s))

∂ti ∈ C(D,Rr×r)
for i = 1, . . . ,m and j = 1, . . . , ν and A(t) ∈ Cm+1(I,Rr×r) satisfy sys-
tem (5.4). Suppose that the system has Hessenberg form of index ν. Also
suppose that the consistency conditions of Theorem 1 hold for this system.
Then the approximate solution uh of the (fully discretised) discontinuous collo-
cation method with distinct collocation parameters c1, . . . , cm ∈ (0, 1] (if exists)
converges to the solution y if and only if

−1 ≤ λ = (−1)m
m∏
i=1

1− ci
ci

≤ 1.

Moreover, collocation error satisfies

‖yi − ui‖ ≤
{
O(hm+1−i), if λ ∈ [−1, 1),

O(hm+1−2i), if λ = 1
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Table 1. Errors of the discontinuous collocation method for Example 1 with different N.

N 16 32 64 128 256

‖e1(tN,1)‖ 4.1566e–007 5.1406e–008 6.3917e–009 7.9681e–010 9.9455e–011
‖e1(tN,2)‖ 4.9129e–008 9.5320e–009 1.3936e–009 1.8653e–010 2.3868e–011
‖e1(tN,3)‖ 3.5239e–006 4.2741e–007 5.2632e–008 6.5299e–009 8.1413e–010
‖e2(tN,1)‖ 9.5560e–004 2.3208e–004 5.7218e–005 1.4207e–005 3.5376e–006
‖e2(tN,2)‖ 1.1945e–004 3.2942e–005 8.5943e–006 2.1917e–006 5.5255e–007
‖e2(tN,3)‖ 5.6018e–004 1.4063e–004 3.5224e–005 8.8139e–006 2.2026e–006
‖e3(tN,1)‖ 5.3729e–001 2.6906e–001 1.3461e–001 6.7320e–002 3.3626e–002
‖e3(tN,2)‖ 2.0794e–001 1.0465e–001 5.2481e–002 2.6276e–002 1.3135e–002
‖e3(tN,3)‖ 4.4270e–001 2.1834e–001 1.0851e–001 5.4095e–002 2.6978e–002

for i = 1, . . . , ν. Hence

‖y − uh‖ ≤
{
O(hm+1−ν), if λ ∈ [−1, 1),

O(hm+1−2ν), if λ = 1,

where uh = [u1, . . . , uν ]T .

6 Numerical Experiments

The following examples are given to confirm the theoretical results for the
system of IAEs of Hessenberg type. The order of the error is slop of function
log(‖(e(h))‖) with respect to log(h) with h = 1/N. To shorten notation we let
be±a stands for b× 10±a, in the given tables where a and b are real numbers.

Example 1. Let

A(t) =

1 1 0
1 0 0
0 0 0

 , k(t, s) =

s2 + t+ 1 0 −1
st+ 1 1 0

1 0 0


and determine f such that the exact solution of (1.1) is y = [et, cos(t), et]T .
To solve this index 3 system on [0, 1], we use FDDCM with c = [.1, .6, .9]. For
these values of c, we have λ = −0.6667. Tables 1 and 2, show the errors and
orders of each component at the collocation parameters tN,i, i = 1, . . . ,m for
different values of N . We expect e1 = O(h3), e2 = O(h2) and e3 = O(h) which
confirm the results of Theorem 3.

Example 2. Let

A(t) =

(
1 0
0 0

)
, k(t, s) =

(
1 + st 1

1 0

)
,

f =

(
2 exp(t) + sin(t) + t(exp(t)(t− 1) + 1)− 1

exp(t)− 1

)
.

Then the exact solution of the index 2 IAE in (1) is given by y = [exp(t),
cos(t)]T . For solving this IAE on [0, 1], we use FDDCMs with c = [.1, 0.4, .6, .9].
For these values of c, we have λ = 1.
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Table 2. Order of discontinuous collocation method for Example 1.

order of\N 8–16 16–32 32–64 64–128 128–256

‖e1(tN,1)‖ 3.0308 3.0154 3.0077 3.0039 3.0021
‖e1(tN,2)‖ 0.76612 2.3657 2.774 2.9013 2.9663
‖e1(tN,3)‖ 3.0985 3.0435 3.0216 3.0108 3.0037
‖e2(tN,1)‖ 2.0899 2.0418 2.0201 2.0099 2.0057
‖e2(tN,2)‖ 1.6098 1.8585 1.9385 1.9713 1.9879
‖e2(tN,3)‖ 1.9858 1.994 1.9973 1.9987 2.0006
‖e3(tN,1)‖ 0.99385 0.99781 0.99909 0.9997 1.0015
‖e3(tN,2)‖ 0.97675 0.9905 0.99576 0.99806 1.0003
‖e3(tN,3)‖ 1.0501 1.0197 1.0088 1.0043 1.0037

Table 3. Errors and order of the discontinuous collocation method for Example 2.

N 8 16 32 64 128

‖e1(tN,1)‖ 3.4237e–006 4.2369e–007 5.2700e–008 6.5787e–009 7.8815e–010
order – 3.0145 3.0071 3.0019 3.0613
‖e1(tN,2)‖ 9.0836e–007 1.0912e–007 1.3372e–008 1.6570e–009 1.9780e–010
order – 3.0574 3.0286 3.0126 3.0664
‖e1(tN,3)‖ 9.4369e–007 1.1126e–007 1.3504e–008 1.6648e–009 1.9798e–010
order – 3.0844 3.0424 3.0200 3.0719
‖e1(tN,4)‖ 3.9889e–006 4.5793e–007 5.4807e–008 6.7084e–009 7.9538e–010
order – 3.1228 3.0627 3.0303 3.0762
‖e2(tN,1)‖ 2.7945e–003 1.3852e–003 6.8932e–004 3.4406e–004 1.6942e–004
order – 1.0125 1.0069 1.0025 1.0220
‖e2(tN,2)‖ 7.3529e–004 3.5580e–004 1.7474e–004 8.6623e–005 4.2503e–005
order – 1.0472 1.0258 1.0124 1.0272
‖e2(tN,3)‖ 8.4381e–004 3.8165e–004 1.8105e–004 8.8182e–005 4.2874e–005
order – 1.1447 1.0759 1.0378 1.0404
‖e2(tN,4)‖ 3.5730e–003 1.5708e–003 7.3461e–004 3.5526e–004 1.7209e–004
order – 1.1856 1.0965 1.0481 1.0457

Table 3 shows the errors and orders of each component at the collocation
parameters tN,i, i = 1, . . . ,m for different values of N . This table shows that
the order of the errors cannot be exceeded from what we proved in the case
λ = 1. Hence this order is optimal. This table confirms the phenomenon of
decreasing order of collocation methods by two, when the index of the method
increases by one for the special case λ = 1.

Finally we give the following example for the nonlinear IAEs.

Example 3. Let

A(t) =

1 1 0
1 0 0
0 0 0

 , f =

t+ cos(t) + et + et(t− 1)
t+ et + t3/3− 1

et − 1

 ,

k1(t, s, y1, y2, y3) = y1y2 + y3, k2(t, s, y1, y2) = y21 + y2, k3(t, s, y1) = ey1

with the exact solution y = [t, et, sin(t)]T . For this system ∂k1
∂y3

∂k2
∂y2

∂k3
∂y1

= ey1 ,
which is positive for all y1. Hence the index of this nonlinear system on I :=
[0, 1], is 3.
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Table 4. Errors of the discontinuous collocation method for Example 3 with different N.

N 16 32 64 128 256

‖e1(tN,1)‖ 4.1307e–007 5.1246e–008 6.3817e–009 7.9619e–010 9.9416e–011
‖e1(tN,2)‖ 4.4454e–008 9.0671e–009 1.3592e–009 1.8422e–010 2.3719e–011
‖e1(tN,3)‖ 2.1431e–006 2.7125e–007 3.4118e–008 4.2780e–009 5.3535e–010
‖e2(tN,1)‖ 8.3787e–004 2.1734e–004 5.5372e–005 1.3976e–005 3.5087e–006
‖e2(tN,2)‖ 1.2327e–004 3.3216e–005 8.6160e–006 2.1937e–006 5.5275e–007
‖e2(tN,3)‖ 5.3283e–004 1.3711e–004 3.4778e–005 8.7577e–006 2.1956e–006
‖e3(tN,1)‖ 4.8332e–001 2.5491e–001 1.3099e–001 6.6404e–002 3.3396e–002
‖e3(tN,2)‖ 1.9202e–001 1.0047e–001 5.1410e–002 2.6005e–002 1.3067e–002
‖e3(tN,3)‖ 3.9526e–001 2.0497e–001 1.0487e–001 5.3178e–002 2.6749e–002

Table 5. Order of discontinuous collocation method for Example 3.

order of\N 8-16 16-32 32-64 64-128 128-256

‖e1(tN,1)‖ 3.0218 3.0109 3.0054 3.0028 3.0016
‖e1(tN,2)‖ 0.6219 2.2936 2.7379 2.8833 2.9573
‖e1(tN,3)‖ 2.9642 2.9820 2.9910 2.9955 2.9984
‖e2(tN,1)‖ 1.9249 1.9468 1.9727 1.9863 1.9939
‖e2(tN,2)‖ 1.7761 1.8919 1.9468 1.9737 1.9887
‖e2(tN,3)‖ 1.9171 1.9583 1.9791 1.9896 1.9960
‖e3(tN,1)‖ 0.8535 0.9230 0.9605 0.9801 0.9916
‖e3(tN,2)‖ 0.8732 0.9345 0.9667 0.9833 0.9929
‖e3(tN,3)‖ 0.8990 0.9474 0.9668 0.9797 0.9913

For solving this IAE on I, we use FDDCMs with the same c that we used
for Example 1.

Tables 4 and 5, show the errors and orders of each component at the collo-
cation parameters tN,i, i = 1, . . . ,m for different values of N .

7 Strongly Equivalent

Consider the IAE

Ã(t)ỹ(t) +

∫ t

0

k̃
(
t, s, ỹ(s)

)
ds = f̂(t), t ∈ I := [0, T ], (7.1)

such that Ã(t) = EA(t)F (t), k̃(t, s, y(s)) = Ek(t, s, F (s)y(s)) and f̂(t) =
Ef(t), where E ∈ Rr×r is a nonsingular matrix and F ∈ C(I,Rr×r) is a
pointwise nonsingular matrix function. Then we say, systems (5.1) and (7.1)
are strongly equivalent. Let y and ỹ be a solutions of (5.1) and (7.1), respec-
tively. Then it is straightforward to verify that the relation ỹ(t) = F−1(t)y(t)
is a one-to-one correspondence between the corresponding solution sets. Let
uh and ũh also be the corresponding numerical solutions of applying FDCCMs
to (1.1) and its strongly equivalent form, respectively. Then one can easily
prove that ũh(tn,i) = F−1((tn,i))uh(tn,i). This fact generalize the obtained or-
der results of Hessenberg type IAEs to IAEs which are strongly equivalent with
Hessenberg type.

Math. Model. Anal., 19(1):99–117, 2014.
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8 Conclusion

In this paper, we investigated the integral algebraic equations of Hessenberg
type. We also stated a useful existence and uniqueness theorem for IAEs and we
analyzed the convergence properties of discontinuous collocation methods and
perturbed discontinuous collocation methods for IAEs and SVIEs, respectively.
The analysis showed that the order of collocation methods decreases by one
when the index of method increases by one for the case λ < 1 and it decreases
two times when the stability parameters λ is equal to one. From the numerical
examples we guess that each IAE of index ν has the same convergence properties
that we obtained for Hessenberg type, which is an open problem.
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