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1 Introduction

The discretization in space of time-dependent advection–diffusion–reaction dif-
ferential equations leads to large systems of ordinary differential equations
(ODEs) of the form{

y′(t) = f
(
y(t)

)
+ g
(
y(t)

)
, t ∈ [t0, T ],

y(t0) = y0,
(1.1)
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where f(y) represents the non-stiff processes, obtained by discretization of ad-
vection terms, and g(y) represents stiff processes, obtained by discretization
of diffusion or chemical reaction terms. For such systems it is, in general, not
practical to apply the same integration formula to the different parts of the
system, and the better approach is to treat non-stiff parts by explicit method
and stiff parts by implicit formula. To formulate this approach consider first
the class of singly diagonally-implicit Runge–Kutta (SDIRK) methods defined
on the uniform grid tn = t0 + nh, n = 0, 1, . . . , N , Nh = T − t0, by

Y
[n+1]
i = yn + h

i∑
j=1

aij
(
f
(
Y

[n+1]
j

)
+ g
(
Y

[n+1]
j

))
, i = 1, 2, . . . , s,

yn+1 = yn + h

s∑
j=1

bj
(
f
(
Y

[n+1]
j

)
+ g
(
Y

[n+1]
j

))
,

(1.2)

n = 0, 1, . . . , N−1, aii = λ, i = 1, 2, . . . , s. Here, Y
[n+1]
i is an approximation to

y(tn+cih) and yn is an approximation of order p to y(tn). Similarly as in [11] we

propose to handle the non-stiff terms f(Y
[n+1]
j ) in (1.2) in an explicit manner

by applying the extrapolation formula of the form

f(Y
[n+1]
j ) ≈ αj,0f(yn−1) +

s∑
k=1

αjkf
(
Y

[n]
k

)
+ βj,0f(yn) +

j−1∑
k=1

βjkf
(
Y

[n+1]
k

)
, j = 1, 2, . . . , s. (1.3)

Substituting (1.3) into (1.2) and proceeding as in [11], i.e., changing the order of
summation in the resulting double sums and interchanging the indices j and k,
we obtain a class of so-called extrapolated implicit–explicit (IMEX) SDIRK
schemes defined by the formulas

Y
[n+1]
i = yn + hāi,0f(yn−1) + h

s∑
j=1

āijf
(
Y

[n]
j

)
+ ha∗i,0f(yn)

+ h

i−1∑
j=1

a∗ijf
(
Y

[n+1]
j

)
+ h

i∑
j=1

aijg
(
Y

[n+1]
j

)
, i = 1, 2, . . . , s,

yn+1 = yn + hb̄0f(yn−1) + h

s∑
j=1

b̄jf
(
Y

[n]
j

)
+ hb∗0f(yn) + h

s−1∑
j=1

b∗jf
(
Y

[n+1]
j

)
+ h

s∑
j=1

bjg
(
Y

[n+1]
j

)
,

(1.4)

n = 0, 1, . . . , N − 1, where the coefficients āij , a
∗
ij , b̄j , and b∗j are given by

āij =

i∑
k=1

aikαkj , a∗ij =

i∑
k=j+1

aikβkj , i = 1, 2, . . . , s, j = 0, 1, . . . , s,
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b̄j =

s∑
k=1

bkαkj , b∗j =

s∑
k=j+1

bkβkj , j = 0, 1, . . . , s.

Observe that (1.4) is a two-step method which requires a starting procedure to

compute Y
[0]
i such that

Y
[0]
i = y

(
t0 + (ci − 1)h

)
+O

(
hp
)
, i = 1, 2, . . . , s, (1.5)

where p is the order of the SDIRK formula (1.2), and it is assumed that the
solution y(t) to (1.1) is also defined on the initial interval [t0 − h, t0]. Putting

Y [n] =


Y

[n]
1
...

Y
[n]
s

 , f
(
Y [n]

)
=


f
(
Y

[n]
1

)
...

f
(
Y

[n]
s

)
 , g

(
Y [n]

)
=


g
(
Y

[n]
1

)
...

g
(
Y

[n]
s

)
 ,

the method (1.4) can be written in a more compact vector form
Y [n+1] = yne + ha0f(yn−1) + hĀf

(
Y [n]

)
+ ha∗0f(yn) + hA∗f

(
Y [n+1]

)
+ hAg

(
Y [n+1]

)
,

yn+1 = yn + hb̄0f(yn−1) + hb̄T f
(
Y [n]

)
+ b∗0f(yn) + hb∗T f

(
Y [n+1]

)
+ hbT g

(
Y [n+1]

)
,

(1.6)

n = 0, 1, . . . , N − 1. Here, e = [1, . . . , 1]T ∈ Rs,

ā0 =
[
a1,0 · · · as,0

]T
, Ā = [āij ]

s
i,j=1, A∗ =

[
a∗ij
]s
i,j=1

, A = [aij ]
s
i,j=1,

b̄ =
[
b̄1 · · · b̄s

]T
, b∗ =

[
b∗1 · · · b∗s

]T
, b =

[
b1 · · · bs

]T
.

Observe that

ā0 = Aα0, Ā = Aα, a∗0 = Aβ0, A∗ = Aβ,

b̄0 = bTα0, b̄T = bTα, b∗0 = bTβ0, b∗T = bTβ,

where α0 =
[
α1,0 · · · αs,0

]T
, α = [αi,j ]

s
i,j=1, β0 =

[
β1,0 · · · βs,0

]T
, β =

[βi,j ]
s
i,j=1. Observe also that the coefficient matrix A∗ is strictly lower trian-

gular, and that b∗s = 0.

The computational kernel of our method consists of the solution of s non
linear systems of dimension d, which is simplified by the assumption aii = λ,
for all i = 1, . . . , s. This is the same computational cost as the IMEX RK
methods proposed by Ascher et al. [1]. As a matter of fact our method, written
as in (1.4) has the same form of the method proposed in [1]. We underline that
our method has uncoupled order conditions, as we will show in the following,
while the previous one has coupled order conditions, and this aspect reduces
the degree of freedom in the search for optimal methods.
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Assuming that g(y) = 0 in (1.1), the formula (1.6) reduces to the explicit
two-step method

Y [n+1] = yne + hā0f(yn−1) + hĀf
(
Y [n]

)
+ ha∗0f(yn) + hA∗f

(
Y [n+1]

)
,

yn+1 = yn + hb̄0f(yn−1 + hb̄T f
(
Y [n]

)
+ hb∗0f(yn) + hb∗T f

(
Y [n+1]

)
,

(1.7)

n = 0, 1, . . . , N − 1. These methods, which depend on stage values on two
consecutive steps, are somewhat more general than two-step Runge–Kutta
(TSRK) methods, which were introduced in [19] and further investigated in
[2, 3, 20, 21, 23, 24, 25] and the monograph [18]. They can be represented as
general linear methods (GLMs) of the form

yn−1

Y [n]

yn

Y [n+1]

Y [n+1]

yn+1

yn


=



0 0T 0 0T 0T 0 1
0 0 0 0 I 0 0
0 0T 0 0T 0T 1 0
ā0 Ā a∗0 A∗ 0 e 0

ā0 Ā a∗0 A∗ 0 e 0

b̄0 b̄T b∗0 b∗T 0T 1 0
0 0T 0 0T 0T 1 0





hf(yn−1)

hf
(
Y [n]

)
hf(yn)

hf
(
Y [n+1]

)
Y [n]

yn
yn−1


, (1.8)

n = 0, 1, . . . , N − 1, where 0 stands for zero matrix of dimension s× s or zero
column vector of dimension s. Representations of TSRK methods are discussed
in [18,19,26].

The paper is organized as follows. Section 2 is devoted to the convergence
analysis of IMEX extrapolated methods. In Section 3 the study of the linear
stability of the proposed methods is illustrated. In Section 4 we construct
IMEX SDRK methods with optimal stability properties, up to order four. In
Section 5 we present the results of numerical experiments which confirm the
expected order of the IMEX schemes constructed in this paper. Last section
contains some concluding remarks.

2 Order Conditions for Extrapolated IMEX SDIRK
Methods

We will demonstrate in this section that the IMEX scheme (1.4) corresponding
to SDIRK method (1.2) of order p and extrapolation formula (1.3) of order p
is convergent with the same order p. We recall that the method (1.2) is said
to have order p if for sufficiently smooth problems (1.1) we have∥∥y(t0 + h)− y1

∥∥ = O
(
hp+1

)
as h→ 0, where y(t) is the solution to (1.1) and y1 is a numerical approximation
to y(t0+h) computed by the formula (1.2) corresponding to n = 0, compare [15].
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The extrapolation formula (1.3) is said to have order p if for sufficiently
smooth functions f(y(t)) we have

αj,0f(yn−1) +

s∑
k=1

αjkf
(
Y

[n]
k

)
+ βj,0f(yn) +

j−1∑
k=1

βjkf
(
Y

[n+1]
k

)
= f

(
y(tn + cjh)

)
+O

(
hp
)
, j = 1, 2, . . . , s. (2.1)

We first construct high order function extrapolation formulas.

2.1 Construction of high order function extrapolation formulas

We first build the explicit Runge–Kutta method with s+ j + 1 stages

ĉ(j) Â(j)

b̂(j) T

d̂(j) T

, (2.2)

where the weights b̂(j) are used for solution extrapolation, and the weights d̂(j)

for function extrapolation. The extended Butcher tableau is defined by

0 0 01×s 0 01×(j−1)
c 0s×1 A 0s×1 0s×(j−1)
1 0 bT 0 01×(j−1)

1(j−1)×1 + c1:j−1 0(j−1)×1 1(j−1)×1 · bT 0(j−1)×1 A1:j−1,1:j−1

µj,0 µj,1:s νj,0 νj,1:j−1

αj,0 αj,1:s βj,0 βj,1:j−1

.

Note that if the first stage of the SDIRK method is explicit then we fix µj,0 =
αj,0 = 0. Similarly, if the SDIRK method is stiffly accurate we fix νj,0 =
βj,0 = 0.

To construct high order function extrapolation formulas we make use of S-
series [14]. Let φ be a smooth scalar function. An S-series is a formal expansion
of the form

S (a, hφ, hf, y) =
∑
t∈T

h|t|

σ(t)
a(t)Φ(t)(y),

where the elementary differentials Φ are defined as

Φ(•)(y) = φ(y), Φ(t) = φ(m)(y)
(
F (t1)(y), . . . , F (tm)(y)

)
, t = [t1, . . . , tm].

Here F (t)(y) are the elementary differentials associated with the solution of
the original ODE. Here t ∈ T and T is the set of labelled Butcher trees [15].
The tree densities are denoted by γ(t).

The essential property of S-series is that they allow to expand the function
φ applied to a regular B-series [14]

hφ
(
B(a, hf, y)

)
= S(a′, hφ, hf, y),
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where a′(t) = a(t1) · a(t2) · · · a(tm), t = [t1, . . . , tm].
We seek to build extrapolation formulas for the smooth scalar function φ

using its values at the stage vectors φ(Y
[n]
j ) and φ(Y

[n+1]
j ). The φ function

applied to the exact solution is represented as the following S-series

hφ
(
y(tn+1 + cjh)

)
= S

(
e′j , hφ, h(f + g), y

)
, (2.3)

where e represents the B-series of the exact solution

y(tn+1 + cjh) ∼ ej , where ej(t) =
(1 + cj)

ρ(t)

γ(t)
for t ∈ T.

The coefficients of the B-series ej and its derivative e′j are given in Table 1 for
trees up to order 4.

Table 1. The B-series of the exact solution together with its derivative. The tree notation
follows the one in [15, Table 2.2, page 148].

Tree Children ej e′j

τ 1 + cj

t2,1 τ (1 + cj)
2/2 1 + cj

t3,1 τ ; τ (1 + cj)
3/3 (1 + cj)

2

t3,2 t2,1 (1 + cj)
3/6 (1 + cj)

2/2

t4,1 τ ; τ ; τ (1 + cj)
4/4 (1 + cj)

3

t4,2 τ ; t2,1 (1 + cj)
4/8 (1 + cj)

3/2

t4,3 t3,1 (1 + cj)
4/12 (1 + cj)

3/3

t4,4 t3,2 (1 + cj)
4/24 (1 + cj)

3/6

Recall the extended Runge–Kutta method (2.2). We have the following

B-series for the stage vectors Ŷ
(j)
` ∼ Ψ̂ (j)

` . We have that

Ψ̂
(j)
` (∅) = 1, Ψ̂

(j)
` (t) =

∑
k

â`,k
(
Ψ̂

(j)
k

)′
(t).

We notice that
(
Ψ̂

(j)
`

)′
= Φ̂

(j)
` , where Φ̂ are the B-series used in the traditional

analysis of Runge–Kutta schemes [15, Table 2.2, page 148].
The smooth function φ applied to the stage vectors has the following S-series

representation:

hφ
(
Ŷ

(j)
`

)
= S

((
Ψ̂

(j)
`

)′
, hφ, h(f + g), y

)
= S

(
Φ̂
(j)
` , hφ, h(f + g), y

)
. (2.4)

The coefficients of the series Ψ̂
(j)
` and their derivatives Φ̂

(j)
` are given in Table 2

for trees up to order 4.
We are now ready to state the extrapolation order conditions result.

Math. Model. Anal., 19(1):18–43, 2014.
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Table 2. The B-series of the numerical solutions together with their derivatives. The tree
notation follows the one in [15, Table 2.2, page 148].

Tree Children Ψ̂
(j)
`

(
Ψ̂

(j)
`

)′
≡ Φ̂(j)

`

∅ 1

τ ∅ ĉ
(j)
` 1

t2,1 τ Â
(j)
`,: · ĉ

(j)
: ĉ

(j)
`

t3,1 τ ; τ Â
(j)
`,:

(
ĉ
(j)
:

)2 (
ĉ
(j)
`

)2
t3,2 t2,1 Â

(j)
`,: · Â

(j)
:,: · ĉ

(j)
: Â

(j)
`,: · ĉ

(j)
:

t4,1 τ ; τ ; τ Â
(j)
`,:

(
ĉ
(j)
:

)3 (
ĉ
(j)
`

)3
t4,2 τ ; t2,1 ĉ

(j)
` Â

(j)
`,: · ĉ

(j)
: ĉ

(j)
` Â

(j)
`,: · ĉ

(j)
:

t4,3 t3,1 Â
(j)
`,: · Â

(j)
:,: ·

(
ĉ
(j)
:

)2
Â

(j)
`,:

(
ĉ
(j)
:

)2
t4,4 t3,2 Â

(j)
`,: · Â

(j)
:,: · Â

(j)
:,: · ĉ

(j)
: Â

(j)
`,: · Â

(j)
:,: · ĉ

(j)
:

Theorem 1 [Order conditions for function extrapolation]. The extrap-
olation formula

s+j+1∑
`=1

d̂
(j)
` hφ

(
Ŷ

(j)
`

)
= αj,0 hφ(yn−1) +

s∑
k=1

αjk hφ
(
Y

[n]
k

)
+ βj,0 hφ(yn) +

j−1∑
k=1

βjk hφ
(
Y

[n+1]
k

)
(2.5)

(for any j = 1, 2, . . . , s) has order p

s+j+1∑
`=1

d̂
(j)
` hφ

(
Ŷ

(j)
`

)
= hφ

(
y(tn + cjh)

)
+O

(
hp+1

)
if and only if the following order conditions are fulfilled:

s+j+1∑
`=1

d̂
(j)
` Φ̂

(j)
` (t) = e′j(t), ∀t ∈ T : ρ(t) ≤ p. (2.6)

Proof. From (2.4) the extrapolation (2.5) has the following S-series:

s+j+1∑
`=1

d̂
(j)
` hφ

(
Ŷ

(j)
`

)
= S

(
s+j+1∑
`=1

d̂
(j)
`

(
Φ̂
(j)
`

)′
, hφ, hf, y

)
.

The proof is based on matching the S-series coefficients of the extrapolation
formula to those of the exact solution (2.3) for all trees of order up to p. ut
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Using the series coefficients given in Tables 1 and 2 we obtain the following
function extrapolation order conditions (2.6) for up to order 4:

1. 1 = d̂(j) T · 1(s+j+1)×1

2. 1 + cj = d̂(j) T · ĉ(j)

3. (1 + cj)
2 = d̂(j) T ·

(
ĉ(j)
)2

(1 + cj)
2/2 = d̂(j) T · Â(j) · ĉ(j)

4. (1 + cj)
3 = d̂(j) T ·

(
ĉ(j)
)3

(1 + cj)
3/2 =

(
d̂(j) � ĉ(j)

)T
· Â(j) · ĉ(j)

(1 + cj)
3/3 = d̂(j) T · Â(j) ·

(
ĉ(j)
)2

(1 + cj)
3/6 = d̂(j) T · Â(j) · Â(j) · ĉ(j)

Here (·) represents matricial multiplication, and (�) component-wise multi-
plication. Vector powers are taken component-wise.

2.2 Construction of high order solution extrapolation formulas

We now consider the solution extrapolation formula:

Ŷ
[n+1]
j = yn−1 +

s+j+1∑
`=1

n̂
(j)
` h(f + g)

(
Ŷ

(j)
`

)
= yn−1 + hµj,0(f + g)(yn−1) + h

s∑
k=1

µj,k(f + g)
(
Y

[n]
k

)
+ hνj,0(f + g)(yn)+h

j−1∑
k=1

νj,k(f + g)
(
Y

[n+1]
k

)
, j = 1, 2, . . . , s. (2.7)

We have the following.

Theorem 2 [Order conditions for solution extrapolation]. The solution
extrapolation (2.7) has order p

Ŷ
[n+1]
j = y(tn + cjh) +O

(
hp
)

if and only if the following order conditions hold:

s+j+1∑
`=1

b̂
(j)
` Φ̂

(j)
` (t) =

(1 + cj)
ρ(t)

γ(t)
, ∀t ∈ T : ρ(t) ≤ p− 1. (2.8)

Proof. The result follows directly from the Runge–Kutta order conditions the-
ory. ut

Math. Model. Anal., 19(1):18–43, 2014.
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Using the series coefficients from Table 1 one obtains the following order
conditions for solution extrapolation (2.8), for up to order 4:

1. 1 + cj = b̂(j) T · 1(s+j+1)×1

2. (1 + cj)
2/2 = b̂(j) T · ĉ(j)

3. (1 + cj)
3/3 = b̂(j) T ·

(
ĉ(j)
)2

(1 + cj)
3/6 = b̂(j) T · Â(j) · ĉ(j)

4. (1 + cj)
4/4 = b̂(j) T ·

(
ĉ(j)
)3

(1 + cj)
4/8 =

(
b̂(j) � ĉ(j)

)T · Â(j) · ĉ(j)

(1 + cj)
4/12 = b̂(j) T · Â(j) ·

(
ĉ(j)
)2

(1 + cj)
4/24 = b̂(j) T · Â(j) · Â(j) · ĉ(j)

Here (·) represents matricial multiplication, and (�) component-wise multi-
plication. Vector powers are taken component-wise.

Consider the SDIRK method (1.2) together with the solution extrapola-
tion formula (2.7) where the previous step solution approximations (2.7) are
used

Ŷ
[n+1]
i = yn−1 + hµi,0(f + g)(yn−1) + h

s∑
k=1

µi,k
(
f
(
Y

[n]
k

)
+ g
(
Y

[n]
k

))
+ hνi,0(f + g)(yn) + h

i−1∑
k=1

νi,k
(
f
(
Y

[n+1]
k

)
+ g
(
Y

[n+1]
k

))
,

Y
[n+1]
i = yn + h

i∑
j=1

aij
(
f
(
Y

[n+1]
j

)
+ g
(
Y

[n+1]
j

))
,

+ haii
(
f
(
Ŷ

[n+1]
i

)
+ g
(
Y

[n+1]
i

))
, i = 1, 2, . . . , s,

yn+1 = yn + h

s∑
j=1

bj
(
f
(
Y

[n+1]
j

)
+ g
(
Y

[n+1]
j

))
,

(2.9)

n = 0, 1, . . . , N − 1, aii = λ, i = 1, 2, . . . , s.

2.3 Convergence of IMEX SDIRK schemes

Theorem 3. Assume that the SDIRK method (1.2) has order p and that the
extrapolation formula (1.3) has order p. Then the IMEX SDIRK scheme (1.4)
is convergent with the same order p, i.e.,

∥∥y(t0 +h)−y1
∥∥ = O

(
hp+1

)
as h→ 0,

where y1 is a numerical approximation to y(t0 + h) computed by the formula
(1.4) corresponding to n = 0.
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Proof. Substituting y(t0 + cih) for Y
[1]
i , y(t0 + (cj − 1)h) for Y

[0]
j , y(t0) for y0,

and y(t0 + h) for y1 in the formula (1.4) corresponding to n = 0 we obtain

y(t0 + cih) = y(t0) + hāi,0f
(
y(t0 − h)

)
+ h

s∑
j=1

āijf
(
y
(
t0 + (cj − 1)h

))
+ ha∗i,0f

(
y(t0)

)
+h

i−1∑
j=1

a∗ijf
(
y(t0 + cjh)

)
+h

i∑
j=1

aijg
(
y(t0+cjh)

)
+ hd(t0+cih), i = 1, 2, . . . , s,

y(t1) = y(t0) + hb̄0f
(
y(t0 − h)

)
+ h

s∑
j=1

b̄jf
(
y
(
t0 + (cj − 1)h

))
+ hb∗0f

(
y(t0)

)
+ h

s−1∑
j=1

b∗jf
(
y(t0 + cjh)

)
+ h

i∑
j=1

bjf
(
y(t0 + cjh)

)
+ hd̂(t1),

where hd(t0 + cih) are local discretization errors of the stage values Y
[1]
i , and

hd̂(t1) is local discretization error of the approximation y1 to y(t1) which prop-
agates to the next step. Using the formulas for āij , a

∗
ij , b̄j , and b∗j , and then

interchanging the indices j and k, and changing the order of summation in the
resulting double sums we obtain

y(t0 + cih) = y(t0) + h

i∑
j=1

aij

(
αj,0f

(
y(t0 − h)

)
+

s∑
k=1

αjkf
(
y
(
t0 + (ck − 1)h

))
+ βj,0f

(
y(t0)

)
+

j−1∑
k=1

βjkf
(
y(t0 + ckh)

))
+ h

i∑
j=1

aijg
(
y(t0 + cjh)

)
+ hd(t0 + cih), i = 1, 2, . . . , s,

y(t1) = y(t0) + h

s∑
j=1

bj

(
αj,0f

(
y(t0 − h)

)
+

s∑
k=1

αjkf
(
y
(
t0 + (ck − 1)h

))
+ βj,0f

(
y(t0)

)
+

j−1∑
k=1

βjkf
(
y(t0 + ckh)

))
+h

s∑
j=1

bjg
(
y(t0 + cjh)

)
+hd̂(t1).

Using the relation (2.1) this leads to

y(t0 + cih) = y(t0) + h

i∑
j=1

aij
(
f
(
y(t0 + cjh)

)
+ g
(
y(t0 + cjh)

))
+ hd(t0 + cih) + h

i∑
j=1

aijη(t0 + cjh), i = 1, 2, . . . , s,
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y(t1) = y(t0) + h

s∑
j=1

bj
(
f
(
y(t0 + cjh)

)
+ g
(
y(t0 + cjh)

))
+ hd̂(t1) + h

s∑
j=1

bjη(t0 + cjh). (2.10)

Substituting y(t0 + cih) for Y
[1]
i , y(t0) for y0, and y(t1) for y1 in (1.2) with

n = 0 we have also

y(t0 + cih) = y(t0) + h

s∑
j=1

aij
(
f
(
y(t0 + cjh)

)
+ g
(
y(t0 + cjh)

))
+ hdRK(t0 + cih), i = 1, 2, . . . , s,

y(t1) = y(t0) + h

s∑
j=1

bj
(
f
(
y(t0 + cjh)

)
+ g
(
y(t0 + cjh)

))
+ hd̂RK(t1), (2.11)

where hdRK(t0+cih) are local discretization errors of the stage values Y
[1]
i , and

hd̂RK(t1) is local discretization error of the approximation y1 to y(t1) computed
by the method (1.2). Comparing (2.10) and (2.11) it follows that

d(t0 + cih) = dRK(t0 + cih) +O
(
hp+1

)
, d̂(t1) = d̂RK(t1) +O

(
hp+1

)
.

These relations imply that the Taylor series for the exact solution y(t0 +h) and
numerical solution y1 defined by IMEX scheme (1.4) coincide up to the terms
of order p as they do for the underlying Runge–Kutta method (1.2), i.e.,∥∥y(t0 + h)− y1

∥∥ = O
(
hp+1

)
as h→ 0. This completes the proof. ut

3 Linear Stability Analysis

In this section we will investigate the stability properties of IMEX SDIRK
methods (1.4) with respect to the scalar complex test equation

y′(t) = λ0y(t) + λ1y(t), t ≥ 0, (3.1)

where λ0, λ1 ∈ C. Stability with respect to this test equation generalizes the
concept of absolute stability to systems of equations which are the sum of non-
stiff λ0y(t) and stiff λ1y(t) parts. Stability properties of some classes of IMEX
methods with respect to (3.1) were examined in [11,17,22,27,28].

Applying (1.6) to (3.1) and putting zi = hλi, i = 0, 1, we obtain the vector
recurrence relations

Y [n+1] = yne + z0ā0yn−1 + z0ĀY
[n] + z0a

∗
0yn + z0A

∗Y [n+1] + z1AY
[n+1],

yn+1 = yn + z0b̄0yn−1 + z0b̄
TY [n] + z0b

∗
0yn + z0b

∗TY [n+1] + z1b
TY [n+1],
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n = 0, 1, . . . , N−1. This is equivalent to the implicit matrix recurrence relation

 I−z0A∗−z1A 0 0

−z0b∗T−z1bT 1 0

0T 0 1

Y [n+1]

yn+1

yn

=

 z0Ā e+z0a
∗
0 z0ā0

z0b̄
T 1+z0b

∗
0 z0b̄0

0T 1 0

Y [n]

yn
yn−1

 . (3.2)

SinceI− z0A∗ − z1A 0 0

−z0b∗T − z1bT 1 0

0T 0 1

−1=
 (I− z0A∗ − z1A)−1 0 0

(z0b
∗T + z1b

T )(I− z0A∗ − z1A)−1 1 0

0T 0 1

 ,
the recurrence relation (3.2) can be written in the explicit formY [n+1]

yn+1

yn

 = M(z0, z1)

Y [n]

yn
yn−1

 , (3.3)

where the stability matrix M(z0, z1) is defined by

M(z0, z1) =

m11(z0, z1) m12(z0, z1) m13(z0, z1)
m21(z0, z1) m22(z0, z1) m23(z0, z1)

0T 1 0


with

m11(z0, z1) = z0(I− z0A∗ − z1A)−1Ā,

m12(z0, z1) = (I− z0A∗ − z1A)−1(e + z0a
∗
0),

m13(z0, z1) = z0(I− z0A∗ − z1A)−1ā0,

m21(z0, z1) = z0
(
b̄T + (z0b

∗T + z1b
T )(I− z0A∗ − z1A)−1Ā

)
,

m22(z0, z1) = 1 + z0b
∗
0 +

(
z0b
∗T + z1b

T
)
(I− z0A∗ − z1A)−1(e + z0a

∗
0),

m23(z0, z1) = z0
(
b̄0 +

(
z0b
∗T + z1b

T
)
(I− z0A∗ − z1A)−1ā0

)
.

We define also the stability function of the IMEX SDIRK method (1.4) as a
characteristic polynomial of the stability matrix M(z0, z1), i.e.,

p(w, z0, z1) = det
(
wI−M(z0, z1)

)
.

Putting z0 = 0 the stability matrix reduces to

M(0, z1) =

 0 (I− z1A)−1e 0

0T 1 + z1b
T (I− z1A)−1e 0

0T 1 0

 ,
and it follows that the stability function takes the form

p(0, z1) = ws+1
(
w −R(z1)

)
,
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where R(z) = 1 + zbT (I − zA)−1e is the stability function of the underlying
SDIRK method (1.2). Putting z1 = 0 the stability matrix takes the form

M(z0, 0) =

z0(I− z0A∗)−1Ā (I− z0A∗)−1(e + z0a
∗
0) z0(I− z0A∗)−1ā0

m21(z0, 0) m22(z0, 0) m23(z0, 0)

0T 1 0


with

m21(z0, z1) = z0
(
b̄T + z0b

∗T (I− z0A∗)−1Ā
)
,

m22(z0, z1) = 1 + z0b
∗
0 + z0b

∗T (I− z0A∗)−1(e + z0a
∗
0),

m23(z0, z1) = z0
(
b̄0 + z0b

∗T (I− z0A∗)−1ā0
)
.

It can be verified that this corresponds to the stability matrix

V + z0G(I− z0Q)−1U

of the explicit method (1.8) with

Q =


0 0T 0 0T

0 0 0 0
0 0T 0 0T

ā0 Ā a∗0 A∗

 , U =


0T 0 1
I 0 0
0T 1 0
0 e 0

 ,
G =

 ā0 Ā a∗0 A∗

b̄0 b̄T b∗0 b∗T

0 0T 0 0T

 , V =

 0 e 0
0T 1 0
0T 1 0

 .
We say that the IMEX GLM (2.1) is stable for given z0, z1 ∈ C if all the

roots wi(z0, z1), i = 1, 2, . . . , s + 2, of the stability function p(w, z0, z1) are
inside of the unit circle. In this paper we will be mainly interested in IMEX
SDIRK schemes which are A(α)- or A-stable with respect to the implicit part
z1 ∈ C. To investigate such methods we consider, similarly as in [11, 17, 27],
the sets

Sα =
{
z0 ∈ C : the IMEX SDIRK method is stable for any z1 ∈ Aα

}
,

where the set Aα ⊂ C is defined by

Aα =
{
z ∈ C : Re(z) < 0 and

∣∣Im(z)
∣∣ ≤ tan(α)

∣∣Re(z)
∣∣}.

It follows from the maximum principle that Sα has a simpler representation
given by

Sα =

{
z0 ∈ C: the IMEX SDIRK method is stable for any

z1 = −|y|/ tan(α) + iy, y ∈ R

}
. (3.4)

As in [11], for fixed values of y ∈ R we define also the sets

Sα,y =

{
z0 ∈ C: the IMEX SDIRK method is stable for fixed

z1 = −|y|/ tan(α) + iy

}
. (3.5)
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Observe that Sα =
⋂
y∈R Sα,y. Observe also that the region Sα,0 is independent

of α, and corresponds to the region of absolute stability of the explicit method
(1.8). This region will be denoted by SE . We have Sα ⊂ SE , and we will look
for IMEX SDIRK schemes for which the stability region Sα contains a large
part of the stability region SE of the explicit method (1.8). We will start our
search for such IMEX SDIRK schemes with the explicit formulas (1.8) with
sufficiently large regions of absolute stability SE .

The boundary ∂Sα,y of the region Sα,y can be determined by the boundary
locus method which computes the locus of the curve

∂Sα,y =
{
z0 ∈ C: p

(
eiθ, z0,−|y|/ tan(α) + iy

)
= 0, θ ∈ [0, 2kπ]

}
,

where k is a positive integer. In [11] we have also developed an algorithm
to compute the boundary ∂Sα of the stability region Sα of the IMEX GLMs.
This algorithm, which is applicable to the methods considered in this paper,
will be used in Section 4 to determine stability regions Sα for IMEX SDIRK
schemes (1.4) up to the order p = 4.

4 Construction of Highly Stable IMEX Schemes

In this section we will describe a search for IMEX SDIRK schemes with large
regions of absolute stability of the explicit part of the method, assuming that
the implicit part of the scheme, corresponding to z1 ∈ C, is A(α)- or A-stable.
We would like to find methods which are A-stable with respect to the implicit
part, but especially for higher order methods, we relax this condition to the
A(α)-stability in order to find larger stability regions for the explicit part. This
search is based on maximizing the area of the region of absolute stability Sα for
fixed α ∈ (0, π/2]. This area A(Sα) can be computed by integration in polar
coordinates and is given by

A(Sα) =

∫ π/2

0

r(θ) ds =

∫ π/2

0

r2(θ) dθ,

where r(θ) is the ray from the point z0 = 0 to the boundary ∂Sα of Sα, and θ
is the angle between this ray and the negative real axis. This integral can be
approximate by composite trapezoidal rule, and the ray r(θ) can be computed
by the bisection method applied to the function

p
(
w,−r(θ) cos(θ) + ir(θ) sin(θ),−|y|/ tan(α) + iy

)
= 0

with |w| = 1 and appropriate value of y, which corresponds to the point on the
boundary ∂Sα. We refer the reader to [11] for a more detailed description of this
process. Some techniques have been suitably adapted from the techniques used
for the construction of Nordsieck methods with quadratic stability [4, 5, 8, 9].
Using this procedure, we found methods with relatively large stability regions
Sπ/2 as compared to other IMEX methods from the literature. These methods
are suitable to efficiently solve ODEs with a stiff and a non-stiff part, since they
have no restrictions on the stepsize as regards the stiff part and have acceptable
restrictions on the stepsize as regards the non-stiff part.
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4.1 IMEX SDIRK methods with p = s = 1

The SDIRK method with p = s = 1 is the implicit θ-method{
Y [n+1] = hθ

(
f
(
Y [n+1]

)
+ g
(
Y [n+1]

))
+ yn,

yn+1 = h
(
f
(
Y [n+1]

)
+ g
(
Y [n+1]

))
+ yn,

(4.1)

n = 0, 1, . . . , N − 1, which is A-stable for θ ∈ [1/2, 1] and L-stable for θ ∈
(1/2, 1]. We consider the extrapolation procedure of the form

f
(
Y [n+1]

)
= f

(
Y [n]

)
, (4.2)

n = 1, 2, . . . , N−1, which does not depend on f(yn−1) and f(yn). Substituting
(4.3) into (4.2) we obtain IMEX θ-method{

Y [n+1] = hθ
(
f
(
Y [n]

)
+ g
(
Y [n+1]

))
+ yn,

yn+1 = h
(
f
(
Y [n]

)
+ g
(
Y [n+1]

))
+ yn,

(4.3)

n = 1, 2, . . . , N − 1. These methods were already analyzed in [11] and in what
follows we summarize briefly the results from this paper. Let SE = SE(θ) be
the stability region of the explicit method corresponding to g(y) = 0 in (4.3),
and Sα = Sα(θ) be the stability region of the IMEX scheme (4.3), assuming
that the implicit part of the method is A(α)-stable. Then

Sπ/2(1) = SE(1) =
{
z0 ∈ C: |z0 + 1| < 1

}
,

Sπ/2(θ) ⊂ SE(θ) and Sπ/2(θ) 6= SE(θ), θ ∈ (1/2, 1)

and Sπ/2(1/2) is empty. These relations are illustrated on Fig 1, where we have
plotted stability regions SE(θ) of explicit methods (dashed lines), and stability
regions Sπ/2(θ) of IMEX schemes (solid lines) for θ = 1/2, 2/3, 3/4, and 1.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

Re(z
0
)

Im
(z

0
)

θ=1

θ=1/2θ=2/3

θ=3/4

Figure 1. Stability regions SE(θ) of explicit methods (dashed lines), and stability regions
Sπ/2(θ) of IMEX schemes (solid lines) for θ = 1/2, 2/3, 3/4, and 1.

4.2 IMEX SDIRK methods with p = s = 2

SDIRK methods with s = p = 2 have the coefficients

c A

bT
=

λ λ
c2 c2 − λ λ

2c2−1
2(c2−λ)

1−2λ
2(c2−λ)

. (4.4)
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The stability function of the methods (4.4) does not depend on c2 and has the
form R(z) = P (z)/Q(z), with

P (z) = 1 + (1− 2λ)z +
(
1/2− 2λ+ λ2

)
z2, Q(z) = (1− λz)2.

It can be verified that this method is A-stable for λ ≥ 1/4 and L-stable for
λ = (2 ±

√
2)/2, see [6]. We consider the extrapolation procedure (1.3) with

α0 = [0, 0]T and β0 = [0, 0]T :

f
(
Y

[n+1]
j

)
=

2∑
k=1

αjkf
(
Y

[n]
k

)
+

j−1∑
k=1

βjkf
(
Y

[n+1]
k

)
, j = 1, 2,

n = 1, 2, . . . , N − 1, which as in Section 4.1 does not depend on f(yn−1) and
f(yn). It can be verified that the order conditions take the form

α11 + α12 = 1, λα11 + c2α12 = 1 + λ,

α21 + α22 + β21 = 1, λα21 + c2α22 + (1 + λ)β21 = 1 + c2. (4.5)

Solving the system (4.5) with respect to α11, α12, α21 and α22 leads to the
coefficient matrices α and β of the form

α =

[
c2−λ−1
c2−λ

1
c2−λ

β21(1−c2+λ)−1
c2−λ

1+c2−β21−λ
c2−λ

]
, β =

[
0 0
β21 0

]
,

where β21 is a free parameter. The stability polynomial p(w, z0, z1) of the
corresponding IMEX SDIRK method takes the form

p(w, z0, z1) = (1− λz1)2
(
w3 − p2(z0, z1)w2 + p1(z0, z1)w − p0(z0, z1)

)
with the coefficients p2(z0, z1), p1(z0, z1), and p0(z0, z1) which are polynomials
of degree less than or equal to two with respect to z0 and z1. These coefficients
depend also on c2, λ, and β21.
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Figure 2. Areas of the stability regions SE = SE(β21) (dashed line) and Sα = Sα(β21)
(solid line) for α = π/2, c2 = 1, λ = (2−

√
2)/2, and β21 ∈ [0, 8].

We will investigate first stability properties of IMEX schemes corresponding
to c2 = 1, where the underlying SDIRK method is L-stable. We will choose
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λ = (2 −
√

2)/2 since this leads to larger regions of SE and Sπ/2 than those

corresponding to λ = (2 +
√

2)/2. We have plotted in Fig. 2 the area of the
stability region SE = SE(β21) of the explicit method (corresponding to z1 = 0)
and the area of the stability region Sπ/2 = Sπ/2(β21) of the IMEX scheme for
β21 ∈ [0, 8]. It can be verified that the explicit formula attains the maximal
area of SE , approximately equal to 8.83, for β21 ≈ 2.54, and the IMEX scheme
attains the maximal area of Sπ/2, approximately equal to 7.20, for β21 ≈ 2.61.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
0

0.5

1

1.5

2

Re(z
0
)

Im
(z

0
)

Figure 3. Stability regions Sπ/2,y , y = −2.0, 1.8, . . . , 2.0 (thin lines), Sπ/2 (shaded

region), and SE (thick line) for λ = (2−
√

2)/2, c2 = 1 and β21 ≈ 2.61.

On Fig. 3 we have plotted stability regions Sπ/2,y for y = −2.0,−1.8, . . . , 2.0
(thin lines), stability region Sπ/2 (shaded region), and stability region SE (thick

line), corresponding to c2 = 1, λ = (2 −
√

2)/2, and β21 ≈ 2.61. We can see
that Sπ/2 contains a significant part of SE .

We have also displayed on Fig. 4 the contour plots of the area of the sta-
bility region Sπ/2 of the IMEX SDIRK schemes corresponding to c2 = 1,
λ ∈ [0.25, 0.35], and β21 ∈ [1, 5]. This area attains its maximum value ap-
proximately equal to 7.55 for λ ≈ 0.30 and β21 ≈ 2.48. This point is marked
by the symbol ‘×’ on Fig. 4. On Fig. 5 we have plotted stability regions Sπ/2,y
for y = −2.0,−1.8, . . . , 2.0 (think lines), stability region Sπ/2 (shaded region),
and stability region SE (thick line), corresponding to c2 = 1, λ ≈ 0.30, and
β21 ≈ 2.48. We can see again that Sπ/2 contains a significant part of SE . We
can see also that the interval of absolute stability is somewhat smaller than
the interval of absolute stability corresponding to c2 = 1, λ = (2−

√
2)/2, and

β21 ≈ 2.61.

4.3 IMEX SDIRK methods with p = s = 3

SDIRK methods with s = p = 3 have the following coefficients

c A

bT
=

λ λ
c2 c2 − λ λ
c3 a31 a32 λ

−3c3+c2(6c3−3)+2
6(c2−λ)(c3−λ)

−3λ+c3(6λ−3)+2
6(c2−c3)(c2−λ)

c2(3−6λ)+3λ−2
6(c2−c3)(c3−λ)

(4.6)
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Figure 4. Contour plots of the area of stability region Sπ/2 of IMEX SDIRK methods for
s = p = 2 corresponding to c2 = 1, λ ∈ [0.25, 0.35], and β21 ∈ [1, 5].
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Figure 5. Stability regions Sπ/2,y , y = −2.0, 1.8, . . . , 2.0 (thin lines), Sπ/2 (shaded
region), and SE (thick line) for λ ≈ 0.30, , c2 = 1 and β21 ≈ 2.48.

with

a31 =
(c3 − λ)((3− 6λ)c22 + (6λ− 3)c2 + (2− 3λ)λ+ c3(6λ2 − 6λ+ 1))

(3− 6λ)c22 + (6λ2 − 2)c2 + (2− 3λ)λ
,

a32 =
(c2 − c3)(c3 − λ)(6λ2 − 6λ+ 1)

(3− 6λ)c22 + (6λ2 − 2)c2 + (2− 3λ)λ
.

The stability function of methods (4.6) does not depend on the abscissas c2
and c3, and takes the form R(z) = P (z)/Q(z), with

P (z) = 1 + (1− 3λ)z +

(
1

2
− 3λ+ 3λ2

)
z2 +

(
1

6
− 3

2
λ+ 3λ2 − λ3

)
z3,

Q(z) = (1 − λz)3. These methods are A-stable for λ ∈ [ 13 , 1.06790213], and
L-stable for λ ≈ 0.4358665215, which is one of the roots of the polynomial
ϕ(λ) = 6λ3 − 18λ2 + 9λ− 1 [16].

The stability function of IMEX SDIRK methods takes the form

p(w, z0, z1) = (1−λz1)3w4−p3(z0, z1)w3+p2(z0, z1)w2−p1(z0, z1)w+p0(z0, z1),
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where pi(z0, z1), i = 0, 1, 2, 3, are polynomials of degree less than or equal to
three with respect to z0 and z1. These coefficients depend also on λ, c2, c3,
β21, β31, and β32.

Putting λ = 1/2, c2 = 3/4 and c3 = 1, the SDIRK method takes the form

c A

bT
=

1
2

1
2

3
4

1
4

1
2

1 1 − 1
2

1
2

5
3 − 4

3
2
3

.

It can be verified that the conditions for the IMEX SDIRK methods of order
p = 3 take the form:

p = 3, j = 1:

α10 + α11 + α12 + α13 + β10 = 1,
α11

2
+

3α12

4
+ α13 + β10 =

3

2
,

α11

4
+

9α12

16
+ α13 + β10 =

9

4
,

α11

4
+
α12

2
+

5α13

8
+
β10
2

=
9

8
,

p = 3, j = 2:

α20 + α21 + α22 + α23 + β20 + β21 = 1,

α21

2
+

3α22

4
+ α23 + β20 +

3β21
2

=
7

4
,

α21

4
+

9α22

16
+ α23 + β20 +

9β21
4

=
49

16
,

α21

4
+
α22

2
+

5α23

8
+
β20
2

+
5β21

4
=

49

32
,

p = 3, j = 3:

α30 + α31 + α32 + α33 + β30 + β31 + β32 = 1,

α31

2
+

3α32

4
+ α33 + β30 +

3β31
2

+
7β32

4
= 2,

α31

4
+

9α32

16
+ α33 + β30 +

9β31
4

+
49β32

16
= 4,

α31

4
+
α32

2
+

5α33

8
+
β30
2

+
5β31

4
+

7β32
4

= 2.

Solving these order conditions with respect to αi,0, i = 1, 2, 3, and αij , i, j =
1, 2, 3, leads to a six parameter family of IMEX SDIRK methods with respect
to the parameters β10, β20, β30, β21, β31, and β32, for which the vector α0 and
the matrix α are given by

α0 =

[
β10 + 5

5

4β20 − 24β21 + 41

20

β30 − 6β31 − 12β32 + 17

5

]T
,
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Figure 6. Stability regions Sπ/2,y , y = −2.0, 1.8, . . . , 2.0 (thin lines), Sπ/2 (shaded
region), and SE (thick line) for β10 = 3.088176567590889, β20 = 3.144648727948133,
β30 = 4.411911013354342, β21 = 0.727840859205079, β31 = 0.837957009491469 and

β32 = 0.443641071336429.

α =


−5 + 2β10

5

8β10
5

15− 8β10
5

−3(21 + 4β20 − 14β21)

10

7 + 8β20 − 8β21
5

77− 32β20 − 48β21
20

α31 α32 α33


with

α31 = −52 + 6β30 − 21β31 − 42β32
5

, α32 =
16 + 8β30 − 8β31 − 21β32

5
,

α33 =
2(12− 4β30 − 6β31 − 7β32

5
.

We performed a numerical search in the parameter space β10, β20, β30, β21, β31,
and β32, trying to maximize the area of the stability region SE of the explicit
method. This corresponds to

β0 =
[
3.088176567590889 3.144648727948133 4.411911013354342

]T
,

β =

 0 0 0
0.727840859205079 0 0
0.837957009491469 0.443641071336429 0

 ,
α0 =

[
1.617635313518178 1.805520714543532 2.212095220073677

]T
,

α =

−6.705811881109066 4.941082508145422 −1.941082508145423
−7.016646864876432 5.266892589988879 −2.928256026809203
−8.448288776935042 7.055033906567607 −5.512349443888470

 ,
for which the area of SE is approximately equal to 14.19. The area of the
corresponding IMEX SDIRK scheme is approximately equal to 5.00. We have
plotted in Fig. 6 regions Sπ/2,y for y = −2.0,−1.8, . . . , 2.0 (thin lines), the
stability region Sπ/2 (shaded region) and SE (thick line).

We have also performed a similar search trying to maximize directly the area
of the stability region Sπ/2 of the IMEX scheme assuming that the implicit part

Math. Model. Anal., 19(1):18–43, 2014.
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Figure 7. Stability regions Sπ/2,y , y = −2.0, 1.8, . . . , 2.0 (thin lines), Sπ/2 (shaded
region), and SE (thick line) for β10 = 6.679846861853708, β20 = 6.776533083751429,
β30 = 8.549694721430665, β21 = 0.726731199717484, β31 = 0.052947612675072, and

β32 = 0.934356862537509.

of the method is A-stable. This corresponds to

β0 =

6.679846861853708
6.776533083751429
8.549694721430665

T , α0 =

2.335969372370742
2.533229177089304
2.803945338986028

T ,
β =

 0 0 0
0.726731199717484 0 0
0.052947612675072 0.934356862537509 0

 ,
α =

−11.015816234224447 10.687754978965932 −7.687754978965934
−11.379568661688278 11.079683014454300 −8.736607813324252
−12.588656047166431 12.870496551351414 −11.622785039814261

 ,
for which the area of Sπ/2 is approximately equal to 10.65. The area of the
corresponding explicit method is approximately equal to 13.42. As before we
have plotted in Fig. 7 regions Sπ/2,y for y = −2.0,−1.8, . . . , 2.0 (thin lines),
the stability region Sπ/2 (shaded region) and SE (thick line).

4.4 IMEX SDIRK methods with s = 5 and p = 4

It can be verified that the IMEX schemes of order p = 4 with four stages do
not exist and we examine methods with s = 5.
Consider SDIRK method with s = 5 with coefficients

1
2

1
2

5
8

1
8

1
2

3
4

17
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97

1
2

7
8

12347
4850 − 27313

9700
129
200

1
2

1 71131
59752 − 56193

59752
1
8

1
8

1
2

139
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13
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39 − 77

78

.
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Figure 8. Stability regions Sπ/2,y , y = −2.0, 1.8, . . . , 2.0 (thin lines), Sπ/2 (shaded
region), and SE (thick line) for β32 = −0.187138232278862, β42 = −0.949874624336551,
β43 = 0.143116001991357, β52 = 1.048854330707973, β53 = 1.729639735631708, and

β54 = 0.785190812828783.

This method has order p = 4. The stability polynomial of this method takes
the form R(z) = P (z)/Q(z) with

P (z) = 1− 3

2
z +

1

2
z2 +

1

6
z3 − 1

16
z4 − 60373

4842240
z5, Q(z) =

(
1− 1

2
z

)5

,

and it can be verified that this method is A-stable.

The stability function of IMEX SDIRK methods takes the form

p(w, z0, z1) = (1− λz1)5w7 − p6(z0, z1)w6 + p5(z0, z1)w5 − p4(z0, z1)w4

+ p3(z0, z1)w3 − p2(z0, z1)w2 + p1(z0, z1)w − p0(z0, z1),

where pi(z0, z1), i = 0, 1, 2, 3, 4, 5, 6, are polynomials of degree less than or
equal to three with respect to z0 and less than or equal to five with respect
to z1. These coefficients depend on the free parameters of the method.

Solving the conditions for IMEX SDIRK methods of order p = 4 with
respect to α0, α, β0, and the first column of β we obtain a six parameter family
of IMEX SDIRK methods depending on β32, β42, β43, β52, β53, and β54.

We performed next a numerical search in this six dimensional parameter
space trying to maximize first the area of the stability region SE of the un-
derlying explicit method. This leads to IMEX scheme with coefficients given
in [10], for which the area of SE is approximately equal to 2.82. The area
of the corresponding IMEX SDIRK method is approximately equal 1.06. We
have plotted in Fig. 8 regions Sπ/2,y for y = −2.0,−1.8, . . . , 2.0 (thin lines),
the stability region Sπ/2 (shaded region) and SE (thick line).

We performed a similar numerical search trying to maximize the area of the
stability region Sπ/2 of the IMEX SDIRK method. This leads to the IMEX
scheme with coefficients given in [10], for which the area of Sπ/2 is approxi-
mately equal to 1.50. The area of the stability region SE of the corresponding
explicit method is approximately equal to 2.47. We have plotted in Fig. 9 re-
gions Sπ/2,y for y = −2.0,−1.8, . . . , 2.0 (thin lines), the stability region Sπ/2
(shaded region) and SE (thick line).
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Figure 9. Stability regions Sπ/2,y , y = −2.0, 1.8, . . . , 2.0 (thin lines), Sπ/2 (shaded
region), and SE (thick line) for β32 = −0.103241056324758, β42 = −1.642317211614867,
β43 = 0.371951766360894, β52 = −2.912021006631820, β53 = 3.197905476549485, and

β54 = 0.896467288791007.

5 Numerical Experiments

To verify the order of convergence, we have applied the IMEX SDIRK schemes
to a standard nonlinear oscillatory test problem, van der Pol equation [15] (in
a vector form)[

y′

z′

]
= f(y, z) + g(y, z) =

[
z
0

]
+

[
0(

(1− y2)z − y
)
/ε

]
(5.1)

over the integration interval [0, 0.55139]. Initial conditions are chosen to be

y(0) = 2, z(0) = −2

3
+

10

81
ε− 292

2187
ε2 − 1814

19683
ε3 +O(ε4) (5.2)

and ε = 0.1. Since our objective here is the verification of order, all methods are
implemented with fixed step sizes. f(y, z) is treated explicitly while g(y, z) is
handled implicitly. We compare the results at the final step against a reference
solution, obtained using MATLAB’s ode15s routine with very small tolerances
rtol = 2.22045× 10−14 and atol = 1× 10−14. Starting values are also obtained
using ode15s with the same tolerance settings.

In Figure 10 we have plotted the absolute error for the algebraic variable z,
against step size h. For notational convenience, we use ‘(a)’ or ‘(b)’ to indicate
that the corresponding IMEX SDIRK method has maximal stability region of
the explicit part or maximal stability region of the IMEX method respectively.
The observed orders match with the theoretical orders of accuracy. Further-
more, methods with maximal stability region of SE give almost the same re-
sults with methods with maximal stability region of Sπ/2. Table 3 gives the
errors and order of accuracy for each IMEX SDIRK(a) method computed by
log2(eN/2/eN ) where eN denotes the error in solution when N number of steps
is used.

6 Conclusions

We have proposed a new family of IMEX methods, based on SDIRK methods
and on an explicit extrapolation formula. We proved that the order of the
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Figure 10. Absolute error vs. step size for the van der Pol equation with ε = 10−1 using
IMEX SDIRK methods. ‘a’ or ‘b’ indicate that the corresponding IMEX SDIRK method
has maximal stability region of the explicit part or maximal stability region of the IMEX

method respectively.

Table 3. Accuracy test with the van der Pol equation for the IMEX SDIRK(a) methods.
The first column displays the number of steps (N).

N
2nd-order IMEX SDRIK 3rd-order IMEX SDRIK 4th-order IMEX SDRIK

error order error order error order

20 1.90× 10−4 4.23× 10−5 5.50× 10−6

40 5.02× 10−5 1.92 6.73× 10−6 2.65 6.49× 10−7 3.08
80 1.29× 10−5 1.96 9.62× 10−7 2.81 5.53× 10−8 3.55

160 3.26× 10−6 1.98 1.29× 10−7 2.90 4.04× 10−9 3.78
320 8.20× 10−7 1.99 1.68× 10−8 2.95 2.72× 10−10 3.89
640 2.06× 10−7 2.00 2.14× 10−9 2.97 1.68× 10−11 4.02

SDIRK method is preserved, if the extrapolation formula has the same order.
We examined the linear stability properties of these methods. We carried out
an extensive search for IMEX SDIRK methods with strong stability properties
and gave examples of optimal methods of order p = 1, 2, 3 and 4.

Future developments of this work include the implementation of these meth-
ods in a variable stepsize environment and a comparison with other IMEX
schemes. Another issue is the development of parallel IMEX methods to solve
large dimension problems, and some algorithmic strategies used in [7,12,13] for
integral equations, can be suitably adapted for an efficient implementation on
a distributed-memory architecture.
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[4] M. Braś and A. Cardone. Construction of efficient general linear methods for
non-stiff differential systems. Math. Model. Anal., 17(2):171–189, 2012.
http://dx.doi.org/10.3846/13926292.2012.655789.
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