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Abstract. The paper introduces and analysizes the convergence of two multi-step
proximal-like algorithms for pseudomonotone and Lipschitz-type continuous equilib-
rium problems in a real Hilbert space. The algorithms are combinations between
the multi-step proximal-like method and Mann or Halpern iterations. The weakly
and strongly convergent theorems are established with the prior knowledge of two
Lipschitz-type continuous constants. Moreover, by choosing two sequences of suit-
able stepsizes, we also show that the multi-step proximal-like algorithm for strongly
pseudomonotone and Lipschitz-type continuous equilibrium problems where the con-
struction of solution approximations and the establishing of its convergence do not
require the prior knowledge of strongly pseudomonotone and Lipschitz-type contin-
uous constants of bifunctions. Finally, several numerical examples are reported to
illustrate the convergence and the performance of the proposed algorithms over clas-
sical extragradient-like algorithms.
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1 Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset
of H. Let f be a bifunction from C × C to the set of real numbers R such
that f(x, x) = 0 for all x ∈ C. The equilibrium problem, shortly EP, for the
bifunction f on C is to find x∗ ∈ C such that

f(x∗, y) ≥ 0, ∀y ∈ C. (1.1)

�
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Let us denote by EP (f, C) the solution set of EP (1.1). Mathematically, EP
(1.1) is a generalization of many previously known mathematical models as
variational inequalities, optimization problems, fixed point problems and Nash
equilibrium problems [19]. In recent years, EP (1.1) has recieved a lot of
attention by many authors because it allows us to unify all these particular
problems in a convenient way. Several methods have been proposed for solving
EP (1.1), for instance, the ergodic iteration method [3], the dual extragradient
method [21], the proximal point method [18], the auxiliary problem principle
method [16] and the gap function method [17], the subgradient method [23],
the proximal-like method (also, called the extragradient method) [7, 24], and
other hybrid methods [1, 2, 4, 8, 9, 10,11,12,25].

A special case of EP (1.1) is variational inequality problem, shortly VIP,
when the bifunction f defined by f(x, y) = 〈Ax, y − x〉, where A : C → H is
an operator, i.e., find x∗ ∈ C such that

〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1.2)

The solution set of VIP (1.2) is denoted by V I(A,C). The projection method
plays an important role in solving VIP. The simplest projection method is the
gradient method, however, the convergence of this method requires a slightly
strong assumption that operators are strongly monotone or inverse strongly
monotone. To overcome this assumption, Korpelevich [14] introduced the ex-
tragradient method for solving saddle point problems, and then, it was extended
to VIPs for the class of monotone (even, pseudomonotone) and Lipschitz con-
tinuous operators. Due to this reason, the extragradient method has recieved
a lot of attention by many authors who have modified it via many ways, for
instance [5, 15] and the references therein.

Recently, Zykina and Melenchuk [27] have introduced a two-step extragra-
dient method with a suitable fixed stepsize β > 0 for VIPs in Euclidean spaces.
In this method, three projections on feasible set needed to be computed per
each iteration. More precisely, the algorithm in [27] is described as follows:

x̄n = PC(xn − βA(xn)),

x̃n = PC(x̄n − βA(x̄n)),

xn+1 = PC(xn − βA(x̃n)).

(1.3)

Inspired of the result of Zykina and Melenchuk, the authors in [20] first intro-
duced a more general version of process (1.3) for solving VIP (1.2) in the real
Euclidean space where two sequences of suitable variant stepsizes {αn} and
{βn} have been used. Precisely, this version is designed as follows:

x̄n = PC(xn − αnA(xn)),

x̃n = PC(x̄n − βnA(x̄n)),

xn+1 = PC(xn − βnA(x̃n)).

(1.4)

It was implied in [20] that process (1.4) contains both the classical extragradient
method [14] and the two-step extragradient method (1.3). The authors in [20]
considered a general version of process (1.4) for EPs and proved its convergence.
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The computational performance of all the two-step algorithms over the classical
extragradient method have been illustrated by several numerical experiments
for solving resource management problems in [26,28] and others in [20].

The motivation and inspriation by the advantage of the mentioned algo-
rithms, in this paper, we develop continuously the algorithms in [20, 27] for
solving EPs in H. We first introduce a weakly convergent algorithm, called
the Mann multi-step proximal-like algorithm, which combines the mul-step
proximal-like method with Mann-like iteration. After that, in order to the
strong convergence, we repalce the Mann-like iteration by the Halpern iter-
ation and obtain the Halpern multi-step proximal-like algorithm. Comparing
with the current algorithms the fundamental difference here is that, two conver-
gent theorems are established only under the hypotheses of pseudomonotonicity
and Lipschitz-type continuity of bifunctions. The construction of iterative se-
quences in the first two algorithms and the proving of their convergence require
that two Lipschitz-type continuous constants need to be known. Next, we use
two sequences of suitable stepsizes and proposed an iteration algorithm for
strongly pseudomonotone and Lipschitz-type continuous bifunctions. In this
algorithm, the prior knowledge of strong pseudomonotonicity and Lipschitz-
type continuous constants is not requried. Finally, we report several numerical
experiments to illustrate the performance of the proposed algorithms over the
classical extragradient - like methods.

This paper is organized as follows: In Section 2, we recall some definitions
and preliminary results used in the paper. Sections 3 and 4 present respec-
tively two Mann and Halpern multi-step proximal-like algorithms, and analy-
size their convergence. In Section 5, we propose and prove the convergence
of the multi-step proximal-like algorithm for solving strongly pseudomonotone
and Lipschitz-type continuous equilibrium problems. Finally, Section 6 reports
numerical experiments to illustrate the convergence and compare them with
several other algorithms.

2 Preliminaries

Let C be a nonempty closed convex subset of H. We begin with some concepts
of monotonicity of a bifunction, see [19] for more details.
A bifunction f : C × C → R is said to be:

(i) strongly monotone on C, if there exists a constant γ > 0 such that

f(x, y) + f(y, x) ≤ −γ||x− y||2, ∀x, y ∈ C;

(ii) monotone on C, if

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

(iii) pseudomonotone on C, if

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0, ∀x, y ∈ C;
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(iv) strongly pseudomonotone on C, if there exists a constant γ > 0 such that

f(x, y) ≥ 0 =⇒ f(y, x) ≤ −γ‖x− y‖2, ∀x, y ∈ C;

(v) Lipschitz-type continuous on C, if there exist two positive constants c1, c2
such that

f(x, y) + f(y, z) ≥ f(x, z)− c1‖x− y‖2 − c2‖y − z‖2, ∀x, y, z ∈ C.

From the definitions above, we see that (i) =⇒ (ii) =⇒ (iii) and (i) =⇒ (iv)
=⇒ (iii). If A : C → H is L - Lipschitz continuous, the bifunction f(x, y) =
〈Ax, y − x〉 satisfies the Lipschitz-type continuous condition with c1 = c2 = L

2 .
Dealing with the convergence of the first proposed algorithms in this paper,

we consider the following conditions imposed on the bifunction f : C×C → R:
(A1) f is pseudomonotone on C and f(x, x) = 0 for all x ∈ C;
(A2) f is Lipschitz-type continuous on C with the constants c1, c2;
(A3) f(x, .) is convex and subdifferentiable on C for every fixed x ∈ C;
(A4) The solution set EP (f, C) is nonempty;
(A5) f(., y) is weakly sequencially upper semicontinuous on C with every fixed
y ∈ C, i.e., lim supn→∞ f(xn, y) ≤ f(x, y) for each sequence {xn} ⊂ C con-
verging weakly to x.

It is easy to show that under assumptions (A1) and (A3), the solution set
EP (f, C) is closed and convex.

Recall that the metric projection PC : H → C is defined by

PCx = arg min {‖y − x‖ : y ∈ C} .

Since C is nonempty, closed and convex, PCx exists and is unique. It is also
known that PC has the following characteristic properties.

Lemma 1. Let PC : H → C be the metric projection from H onto C. Then

i. For all x ∈ C, y ∈ H,

‖x− PCy‖2 + ‖PCy − y‖2 ≤ ‖x− y‖2 .

ii. z = PCx if and only if

〈x− z, z − y〉 ≥ 0, ∀y ∈ C.

Let g : C → R be a function. The subdifferential of g at x is defined by

∂g(x) = {w ∈ H : g(y)− g(x) ≥ 〈w, y − x〉 , ∀y ∈ C} .

A function ϕ : H → R is called weakly lower semicontinuous at x ∈ H if for
any sequence {xn} in H converges weakly to x then ϕ(x) ≤ lim infn→∞ ϕ(xn).
It is well-known that the functional ϕ(x) := ||x||2 is convex and weakly lower
semicontinuous.
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Recall the proximal mapping of a proper, convex and lower semicontinuous
function g : C → R with a parameter λ > 0 as follows:

proxλg(x) = arg min

{
λg(y) +

1

2
||x− y||2 : y ∈ C

}
, x ∈ H.

The following is a property of the proximal mapping, see [6] for more details.

Lemma 2. [6, Proposition 12.26] For all ∀x ∈ H, y ∈ C and λ > 0,

λ {g(y)− g(proxλg(x))} ≥ 〈x− proxλg(x), y − proxλg(x)〉 .

We need the following technical lemmas.

Lemma 3. [22, Theorem 15.5] Let {τn} be a sequence which converges to 0
as n→∞ and 0 ≤ τn < 1 for all n ≥ 1. Then

∞∑
n=1

τn = +∞⇐⇒
∞∏
n=1

(1− τn) = lim
n→∞

n∏
k=1

(1− τk) = 0.

Lemma 4. [13, Remark 4.4] Let {an} be a sequence of non-negative real num-
bers. Suppose that for any integer m, there exists an integer p such that p ≥ m
and ap ≤ ap+1. Let n0 be an integer such that an0

≤ an0+1 and define, for all
integer n ≥ n0,

τ(n) = max {k ∈ N : n0 ≤ k ≤ n, ak ≤ ak+1} .

Then 0 ≤ an ≤ aτ(n)+1 for all n ≥ n0. Furthermore, the sequence {τ(n)}n≥n0

is non-decreasing and tends to +∞ as n→∞.

3 Mann multi-step proximal-like algorithm

In this section, we introduce a weakly convergent algorithm which combines
the mul-step proximal-like method with the Mann type iterative method for
solving EPs, so-called the Mann Multi-step Proximal-like Algorithm (Mann
MPA). The Mann MPA is designed as follows:

Algorithm 1 [Mann MPA].
Initialization. Choose x0 ∈ C and control parameters λn > 0, ρn > 0, αn ∈
(0, 1).
Step 1. Compute yn = proxλnf(xn,.)(xn), zn = proxρnf(yn,.)(yn), tn =
proxρnf(zn,.)(xn).
Step 2. Compute xn+1 = αnxn+ (1−αn)tn. Set n := n+ 1 and go back Step
1.

When αn = 0 and zn = yn, we find again the extragradient method for solving
equilibrium problems proposed by Quoc et al. in [24]. In order to obtain the
estimates in Lemmas 5 and 6 below, we choose two parameter sequences {ρn}
and {λn} satisfing the following conditions:

(B1) 0 < ρn ≤ ρ < min {1/6c1, 1/4c2, 1/2c1 + 3c2}.

Math. Model. Anal., 23(3):453–472, 2018.
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(B2) 0 ≤ λn ≤ ρn.
Throughout this paper, we denote ∆n and Tn by

∆n = min {1− 3ρnc2 − 2ρnc1, 1− 4ρnc2} ,

Tn=(1−6ρnc1)‖yn−xn‖2+(1− 2ρnc1 − 3ρnc2)‖yn − zn‖2 +
∆n

2
‖tn − zn‖2.

Under Condition (B1), there exists a number ∆∗ such that 0 < ∆∗ ≤ ∆n for
all n ≥ 0. We have the following lemma which plays an important role in
establishing the convergence of all the algorithms in this paper.

Lemma 5. Under Conditions (A1)–(A4) and (B1)–(B2), there holds the fol-
lowing estimate for all x∗ ∈ EP (f, C) and n ≥ 0,

||tn − x∗||2 − 2ρnf(zn, x
∗) ≤ ||xn − x∗||2 − Tn.

Proof. It follows from tn = proxρnf(zn,.)(xn) and Lemma 2 with y = x∗ that

ρn {f(zn, x
∗)− f(zn, tn)} ≥ 〈xn − tn, x∗ − tn〉 , ∀n ≥ 0.

Multiplying both of two sides of the last inequality by 2, we obtain

2ρn {f(zn, x
∗)− f(zn, tn)} ≥ 2 〈xn − tn, x∗ − tn〉

= ||xn − tn||2 + ||x∗ − tn||2 − ||xn − x∗||2,

or

||tn − x∗||2 − 2ρnf(zn, x
∗) ≤ ||xn − x∗||2 − ||xn − tn||2 − 2ρnf(zn, tn). (3.1)

Using the Lipschitz-type continuous condition of f , we have

f(zn, tn) ≥ f(yn, tn)− f(yn, zn)− c1||yn − zn||2 − c2||zn − tn||2

relation (3.1), we obtain

||tn − x∗||2 ≤ 2ρnf(zn, x
∗) + ||xn − x∗||2 − ||xn − tn||2

− 2ρn {f(yn, tn)− f(yn, zn)}+ 2ρnc1||yn − zn||2 + 2ρnc2||zn − tn||2. (3.2)

From the definition of zn = proxρnf(yn,.)(yn) and Lemma 2 with y = tn, we
have

2ρn {f(yn, tn)− f(yn, zn)} ≥ 2 〈yn − zn, tn − zn〉 = 2 〈yn − xn, tn − zn〉
+ 2 〈xn − zn, tn − zn〉 = 2 〈yn − xn, tn − yn〉+ 2 〈yn − xn, yn − zn〉
+ 2 〈xn − zn, tn − zn〉 = 2 〈yn − xn, tn − yn〉+ ||yn − xn||2 + ||yn − zn||2

− ||xn − zn||2 + ||xn − zn||2 + ||tn − zn||2 − ||xn − tn||2

= 2 〈yn−xn, tn−yn〉+||yn − xn||2 + ||yn − zn||2 + ||tn − zn||2 − ||xn − tn||2.

This together with relation (3.2) implies that

||tn − x∗||2 ≤ 2ρnf(zn, x
∗) + ||xn − x∗||2 − ||yn − xn||2 − (1− 2ρnc1)

× ||yn − zn||2 − (1− 2ρnc2)||zn − tn||2 + 2 〈xn − yn, tn − yn〉 . (3.3)
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It follows from the definition of yn = proxλnf(xn,.)(xn) and Lemma 2 with
y = tn that

λn {f(xn, tn)− f(xn, yn)} ≥ 〈xn − yn, tn − yn〉 . (3.4)

Thus, from relation (3.3), we obtain

||tn − x∗||2 ≤ 2ρnf(zn, x
∗) + ||xn − x∗||2 − ||yn − xn||2 − (1− 2ρnc1)

× ||yn − zn||2 − (1− 2ρnc2)||zn − tn||2 + 2λn(f(xn, tn)− f(xn, yn))

≤ ||xn − x∗||2 − (1− 6ρnc1)||yn − xn||2 − (1− 2ρnc1 − 3ρnc2)||yn − zn||2

− ∆n

2
||zn − tn||2 + 2λn(f(xn, tn)− f(xn, yn))

= ||xn − x∗||2 − Tn + 2λn(f(xn, tn)− f(xn, yn)), (3.5)

where, in the second inequality, we have added two non-negative terms
6ρnc1||yn− xn||2, 3ρnc2||yn− zn||2 and used the fact from the definition of ∆n

that ∆n
2 ≤ ∆n ≤ 1− 2ρnc2.

Now, if f(xn, tn)−f(xn, yn) ≤ 0, from relation (3.5) and λn ≥ 0, we obtain
the desired conclusion. Otherwise, assume that f(xn, tn)−f(xn, yn) > 0. Thus,
from relation (3.4) and ρn ≥ λn ≥ 0, we get

〈xn−yn, tn−yn〉≤λn {f(xn, tn)−f(xn, yn)}≤ρn {f(xn, tn)−f(xn, yn)} . (3.6)

Next, using relation (3.1), and after that, combining with relation (3.6), we
have

||tn − x∗||2 − 2ρnf(zn, x
∗) ≤ ||xn − x∗||2 − ||xn − tn||2 − 2ρnf(zn, tn)

≤ ||xn − x∗||2 − ||(xn − yn)− (tn − yn)||2 − 2ρnf(zn, tn)

≤ ||xn−x∗||2−||xn−yn||2−||tn − yn||2 + 2 〈xn − yn, tn − yn〉 − 2ρnf(zn, tn)

≤ ||xn − x∗||2 − ||xn − yn||2 − ||tn − yn||2

+ 2ρn {f(xn, tn)− f(xn, yn)} − 2ρnf(zn, tn). (3.7)

From zn = proxρnf(yn,.)(yn) and Lemma 2 with y = yn, we get

−ρnf(yn, zn) = ρn(f(yn, yn)− f(yn, zn)) ≥ 〈yn − zn, yn − zn〉 = ||yn − zn||2,

in which the first equality is followed from the fact that f(yn, yn) = 0. Thus

−2ρnf(yn, zn)− 2||yn − zn||2 ≥ 0.

Adding this non-negative term to the right-hand side of inequality (3.7), we
obtain

||tn − x∗||2 − 2ρnf(zn, x
∗) ≤ ||xn − x∗||2 − ||xn − yn||2 − ||tn − yn||2

− 2||yn − zn||2 + 2ρn [f(xn, tn)− f(zn, tn)− f(xn, yn)− f(yn, zn)] . (3.8)

Math. Model. Anal., 23(3):453–472, 2018.
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Using the Lipschitz-type continuous condition of f , we obtain

f(xn, tn)− f(zn, tn)− f(xn, yn)− f(yn, zn)

≤ f(xn, zn) + c1||xn − zn||2 + c2||zn − tn||2 − f(xn, yn)− f(yn, zn)

≤ c1||xn − zn||2 + c2||zn − tn||2 + [f(xn, zn)− f(xn, yn)− f(yn, zn)]

≤ c1||xn − zn||2 + c2||zn − tn||2 + c1||xn − yn||2 + c2||yn − zn||2. (3.9)

Combining relations (3.8) and (3.9), we obtain

||tn − x∗||2 − 2ρnf(zn, x
∗) ≤ ||xn − x∗||2 − ||xn − yn||2 − ||tn − yn||2

− 2||yn − zn||2 + 2ρn
[
c1||xn − zn||2 + c2||zn − tn||2 + c1||xn − yn||2

+ c2||yn − zn||2
]
=||xn − x∗||2 − (1− 2ρnc1)||xn − yn||2 − (2− 2ρnc2)

× ||yn − zn||2 + 2ρnc1||xn − zn||2 + 2ρnc2||zn − tn||2 − ||tn − yn||2. (3.10)

Using the triangle inequality and the inequality (a + b)2 ≤ 2(a2 + b2) for all
a, b ∈ R, we obtain

||xn − zn||2 ≤ (||xn − yn||+ ||yn − zn||)2 ≤ 2(||xn − yn||2 + ||yn − zn||2),

||zn − tn||2 ≤ (||zn − yn||+ ||yn − tn||)2 ≤ 2(||zn − yn||2 + ||yn − tn||2).

Combining relation (3.10) and the last inequalities, we obtain

||tn − x∗||2 − 2ρnf(zn, x
∗) ≤ ||xn − x∗||2 − (1− 6ρnc1)||xn − yn||2

− 2(1− 3ρnc2 − 2ρnc1)||yn − zn||2 − (1− 4ρnc2)||tn − yn||2

= ||xn − x∗||2 − (1− 6ρnc1)||xn − yn||2 − (1− 3ρnc2 − 2ρnc1)||yn − zn||2

−
[
(1− 3ρnc2 − 2ρnc1)||yn − zn||2 + (1− 4ρnc2)||tn − yn||2

]
≤ ||xn − x∗||2 − (1− 6ρnc1)||xn − yn||2 − (1− 3ρnc2 − 2ρnc1)||yn − zn||2

−∆n

[
||yn − zn||2 + ||tn − yn||2

]
,

in which the last inequality is followed from the definiton of ∆n. Moreover, we
have

||tn − zn||2 ≤ (||tn − yn||+ ||yn − zn||)2 ≤ 2
(
||tn − yn||2 + ||yn − zn||2

)
.

Combining the last inequalities and the definition of Tn, we obtain the desired
conclusion. This completes the proof of Lemma 5. ut

Lemma 6. Under Conditions (A1)–(A4) and (B1)–(B2), there hold the fol-
lowing estimates for all x∗ ∈ EP (f, C) and n ≥ 0,

(i) ||tn − x∗||2 ≤ ||xn − x∗||2 − Tn,
(ii) ||xn+1 − x∗||2 ≤ ||xn − x∗||2 − (1− αn)Tn.

Proof. (i) Since x∗ ∈ EP (f, C), f(x∗, zn) ≥ 0. It follows from the pseu-
domonotonicity of f that f(zn, x

∗) ≤ 0. This together with Lemma 5 and
ρn > 0 implies conclusion (i).
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(ii) It follows from the definition of xn+1, the convexity of ||.||2 and (i) that

||xn+1 − x∗||2 = ||αn(xn − x∗) + (1− αn)(tn − x∗)||2 ≤ αn||xn − x∗||2

+ (1− αn)||tn − x∗||2 ≤ αn||xn − x∗||2 + (1− αn)(||xn − x∗||2 − Tn)

= ||xn − x∗||2 − (1− αn)Tn.

This completes the proof of Lemma 6. ut

Next, we will prove the weak convergence of Algorithm 1. For obtaining this
weak convergence, we need condition (A5) and two additional hypotheses on
ρn and αn. Precisely, we have the following result.

Theorem 1 [Weakly convergent theorem]. Suppose that Conditions (A1)–
(A5) and (B1)–(B2) hold. In addition, suppose that limn→∞ inf ρn > 0 and
limn→∞ supαn < 1. Then, the sequence {xn} generated by Algorithm 1 con-
verges weakly to a point p ∈ EP (f, C). Moreover, p = limn→∞ PEP (f,C)(xn).

Proof. Put an = ||xn − x∗||2 and bn = (1 − αn)Tn. From Lemma 6 (ii), we
have

an+1 ≤ an − bn. (3.11)

Thus, there exists the limit of {an} and
∑∞
n=0 bn < +∞. This implies that

{an}, and therefore {xn}, are bounded, and bn → 0 when n → ∞. Thus, it
follows from the definition of bn and limn→∞ supαn < 1 that Tn → 0. This
together with the definitions of Tn, ∆n and Condition (B1) implies that

lim
n→∞

||yn − xn|| = lim
n→∞

||yn − zn|| = lim
n→∞

||zn − tn|| = 0. (3.12)

Now, assume that p is some weak cluster points of {xn}. Without loss of gener-
ality, we can write xn ⇀ p as n→∞. Since C is convex and closed, C is weakly
closed. Hence p ∈ C. Moreover, from (3.12), we also obtain yn, zn, tn ⇀ p
when n→∞. It follows from Lemma 2 and tn = proxρnf(zn,.)(xn) that

ρnf(zn, y) ≥ ρnf(zn, tn) + 〈xn − tn, y − tn〉 , ∀y ∈ C. (3.13)

Using the Lipschitz-type continuous condition of f , we get

f(zn, tn) ≥ f(yn, tn)− f(yn, zn)− c1||yn − zn||2 − c2||zn − tn||2. (3.14)

Also, from zn = proxρnf(yn,.)(yn) and Lemma 2 with y = tn, we have

ρn(f(yn, tn)− f(yn, zn)) ≥ 〈yn − zn, tn − zn〉 . (3.15)

Combining relations (3.13), (3.14) and (3.15), and after that, dividing both of
two sides of the obtained inequatily by ρn > 0, we get, for all y ∈ C and n ≥ 0,

f(zn, y) ≥ 1

ρn
〈xn − tn, y − tn〉+

1

ρn
〈yn − zn, tn − zn〉

− c1||yn − zn||2 − c2||zn − tn||2. (3.16)
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Thus, passing to the limit in (3.16) and using relation (3.12), limn→∞ inf ρn >
0, (A5) and zn ⇀ p, we get f(p, y) ≥ 0 for all y ∈ C or p ∈ EP (f, C). Now,
using again relation (3.11) with x∗ = p, we obtain

||xn+1 − p||2 ≤ ||xn − p||2 − bn ≤ ||xn − p||2.

Thus, since p is a weak cluster point of {xn}, the whole sequence {xn} converges
weakly to p when n→∞. Moreover p = limn→∞ PEP (f,C)(xn). Theorem 1 is
proved. ut

4 Halpern multi-step proximal-like algorithm

In this section, we propose a strongly convergent Algorithm which is called the
Halpern Multi-step Proximal-like Algorithm (Halpern MPA).

Algorithm 2 [Halpern MPA].
Initialization. Choose x0 ∈ C and parameters λn > 0, ρn > 0, αn ∈ (0, 1).
Step 1. Compute

yn = proxλnf(xn,.)(xn), zn = proxρnf(yn,.)(yn), tn = proxρnf(zn,.)(xn).

Step 2. Compute
xn+1 = αnx0 + (1− αn)tn.

Set n := n+ 1 and go back Step 1.

Before proving the strongly convergent theorem, we need the following lemma.

Lemma 7. Suppose that Conditions (A1)–(A4) and (B1)–(B2) hold. Then
(i) The sequences {xn} , {yn} , {zn} , {tn} generated by Algorithm 2 are

bounded.
(ii) There holds the following estimate for all n ≥ 0 and x∗ ∈ EP (f, C),

||xn+1 − x∗||2 ≤ ||xn − x∗||2 − Tn − 2αn 〈xn+1 − x∗, tn − x0〉 − α2
n||tn − x0||2.

Proof. (i) It follows from Lemma 6 (i) and (B1) that ||tn − x∗|| ≤ ||xn − x∗||.
Thus, from the definition of xn+1 and the triangle inequality, we obtain

||xn+1 − x∗|| = ||αnx0 + (1− αn)tn − x∗||
= ||(1− αn)(tn − x∗) + αn(x0 − x∗)|| ≤ (1− αn)||tn − x∗||

+ αn||x0 − x∗|| ≤ (1− αn)||xn − x∗||+ αn||x0 − x∗||
≤ max {||xn − x∗||, ||x0 − x∗||} .

Therefore, by induction, we obtain

||xn − x∗|| ≤ ||x0 − x∗||, ∀n ≥ 0.

This implies that the sequence {xn}, and so {tn}, are bounded. Thus, from
Lemma 6 (i), we obtain that {Tn} is bounded. Hence, two sequences {yn}, {zn}
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are also bounded which is followed from the definition of Tn and Condition (B1).
(ii) From the definition of xn+1, we have

tn − x∗ = xn+1 − x∗ + αn(tn − x0).

Thus

||tn − x∗||2 = ||(xn+1 − x∗) + αn(tn − x0)||2

= ||xn+1 − x∗||2 + 2αn 〈xn+1 − x∗, tn − x0〉+ α2
n||tn − x0||2,

which follows from Lemma 6 (i) that

||xn+1 − x∗||2 = ||tn − x∗||2 − 2αn 〈xn+1 − x∗, tn − x0〉 − α2
n||tn − x0||2

≤ ||xn − x∗||2 − Tn − 2αn 〈xn+1 − x∗, tn − x0〉 − α2
n||tn − x0||2.

This completes the proof of Lemma 7. ut

In order to establish the strong convergence of Algorithm 2, we consider con-
dition (A5), an additional hypothesis on ρn that limn→∞ inf ρn > 0, and the
following assumptions on parameter sequence {αn}.

(B3) αn → 0 and
∑∞
n=1 αn = +∞.

Theorem 2. Suppose that Conditions (A1)–(A5) and (B1)–(B3) hold. In ad-
dition, suppose that limn→∞ inf ρn > 0. Then, the sequence {xn} generated by
Algorithm 2 converges strongly to x† = PEP (f,C)(x0).

Proof. It follows from the boundedness of two sequences {xn} and {tn} that
there exists M > 0 such that 2

∣∣〈xn+1−x†, tn−x0
〉∣∣ ≤M. Thus, from Lemma 7

(ii) with x∗ = x†, we obtain

an+1 − an + Tn + α2
n||tn − x0||2 ≤ αnM, (4.1)

where an = ||xn − x†||2. We consider two cases.
Case 1. There exists n0 such that {an} is decreasing for all n ≥ n0. Thus,

there exists the limit of {an}, i.e., limn→∞ ||xn−x†||2 = a and an+1− an → 0.
It follows from (4.1) and αn → 0 that Tn → 0. Since Condition (B1) and the
definition of Tn, we get

||xn − yn|| → 0, ||yn − zn|| → 0, ||tn − zn||2 → 0, α2
n||tn − x0||2 → 0. (4.2)

Therefore, it follows from the triangle inequality that ||xn− tn|| → 0, and then,
||tn − x†||2 → a because limn→∞ ||xn − x†||2 = a. From relation (4.2) and the
definition of xn+1,

||xn+1 − tn||2 = α2
n||zn − x0||2 → 0. (4.3)

Note that {tn} is bounded. Without loss of generality, we can assume that
there exists a subsequence {tm} of {tn} converging weakly to p such that

lim
n→∞

inf
〈
tn − x†, x† − x0

〉
= lim
m→∞

〈
tm − x†, x† − x0

〉
. (4.4)
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Since C is closed and convex, C is weakly closed. Thus, from tm ⇀ p and
{tm} ⊂ C, we obtain p ∈ C. Moreover, from (4.2), we also obtain zm ⇀ p. By
arguing similarly to (3.13)–(3.16), we obtain

f(zm, y) ≥ 1

ρm
〈xm − tm, y − tm〉+

1

ρm
〈ym − zm, tm − zm〉

−c1||ym − zm||2 − c2||zm − tm||2.

Thus, passing to the limit in the last inequality and using relation (4.2),
limn→∞ inf ρn > 0 and (A5), we get f(p, y) ≥ 0 for all y ∈ C or p ∈ EP (f, C).
From (4.4), x† = PEP (f,C)(x0) and Lemma 1 (ii), one has

lim
n→∞

inf
〈
tn − x†, x† − x0

〉
= lim
m→∞

〈
tm − x†, x† − x0

〉
=
〈
p− x†, x† − x0

〉
≥ 0.

(4.5)
We have the following fact〈

xn+1 − x†, tn − x0
〉

= 〈xn+1 − tn, tn − x0〉+
〈
tn − x†, tn − x0

〉
= 〈xn+1 − tn, tn − x0〉+

〈
tn − x†, tn − x†

〉
+
〈
tn − x†, x† − x0

〉
= 〈xn+1 − tn, tn − x0〉+ ||tn − x†||2 +

〈
tn − x†, x† − x0

〉
.

Combining this equality with relations (4.3), (4.5) and limn→∞ ||tn−x†||2 = a,
we obtain

lim
n→∞

inf
〈
xn+1 − x†, zn − x0

〉
≥ a.

Assume that a > 0 then, from the last inequality, there exists n0 ≥ 0 such that〈
xn+1 − x†, tn − x0

〉
≥ a/2, ∀n ≥ n0.

Therefore, from Lemma 7 (ii),

an+1 ≤ an − aαn, ∀n ≥ n0.

Thus, for all ∀n ≥ n0,

an+1 ≤ an0
− a

n∑
i=n0

αi.

The last inequality together with the hypothesis
∑∞
i=1 αi = +∞ and a > 0

implies that an+1 → −∞. This is contrary. So, a = 0 and ||xn − x†|| → 0.
Case 2. There exists a subsequence

{
anj
}

of {an} such that anj ≤ anj+1

for all j ≥ 0. From Lemma 4,

aτ(n) ≤ aτ(n)+1, an ≤ aτ(n)+1, ∀n ≥ n0, (4.6)

where τ(n)= max {k ∈ N : n0 ≤ k ≤ n, ak ≤ ak+1}. Thus, from relation (4.1),
aτ(n) ≤ aτ(n)+1 and αn → 0, we obtain Tτ(n) → 0 and α2

τ(n)||tτ(n) − x0||
2 → 0.

Thus, from the definition of Tτ(n) and Condition (B1), we get

||yτ(n) − xτ(n)||2 → 0, ||zτ(n) − yτ(n)||2 → 0,

||tτ(n) − zτ(n)||2 → 0, α2
τ(n)||tτ(n) − x0||

2 → 0. (4.7)
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From the definition of xn, we obtain

||xτ(n)+1 − tτ(n)||2 = α2
τ(n)||tτ(n) − x0||

2 → 0. (4.8)

Note that
{
xτ(n)

}
is bounded, without loss of generality, we can assume that

there exists a subsequence
{
xτ(nj)

}
of xτ(n) converging weakly to p ∈ C as

j →∞ such that

lim
n→∞

sup
〈
xτ(n)+1 − x†, x0 − x†

〉
= lim
j→∞

〈
xτ(nj)+1 − x†, x0 − x†

〉
=
〈
p− x†, x0 − x†

〉
. (4.9)

From (4.7), we also have zτ(n) ⇀ p. By arguing similarly to Case 1, we also

obtain p ∈ EP (f, C). This together with Lemma 1 (ii) and x† = PEP (f,C)

implies that
〈
p− x†, x0 − x†

〉
≤ 0. Thus, from (4.9) we obtain

lim
n→∞

sup
〈
xτ(n)+1 − x†, x0 − x†

〉
≤ 0.

Now, we will show that tτ(n) → x† = PEP (f,C)(x0). From Lemma 7 (ii) and
aτ(n) ≤ aτ(n)+1,

2ατ(n)
〈
xτ(n)+1 − x†, tτ(n) − x0

〉
≤ 0.

Thus,
〈
xτ(n)+1 − x†, tτ(n) − x0

〉
≤ 0, which implies that

||tτ(n) − x†||2 =
〈
tτ(n) − x†, tτ(n) − x†

〉
=
〈
xτ(n)+1 − x†, tτ(n) − x†

〉
−
〈
xτ(n)+1 − tτ(n), tτ(n) − x†

〉
=
〈
xτ(n)+1 − x†, tτ(n) − x0

〉
+
〈
xτ(n)+1 − x†, x0 − x†

〉
−
〈
xτ(n)+1 − tτ(n), tτ(n) − x†

〉
≤
〈
xτ(n)+1 − x†, x0 − x†

〉
−
〈
xτ(n)+1 − tτ(n), tτ(n) − x†

〉
.

Thus

lim
n→∞

sup ||tτ(n) − x†||2 ≤ lim
n→∞

sup
〈
xτ(n)+1 − x†, x0 − x†

〉
≤ 0,

where we have used relation (4.8). Thus, limn→∞ sup ||tτ(n) − x†||2 = 0, and

so limn→∞ ||tτ(n) − x†||2 = 0. Therefore, it follows from relation (4.8) that

limn→∞ ||xτ(n)+1 − x†||2 = 0 or aτ(n)+1 → 0. Thus, from (4.6), we obtain

an ≤ aτ(n)+1 → 0. Hence, xn → x† as n→∞. ut

5 MPA for strongly pseudomonotone EPs

In this section, we consider a special class of strongly pseudomonotone and
Lipschitz-type continuous bifunctions. Algorithms 1 and 2 can be used to
solve EPs for this class of bifunctions. However, in order to construct solution
approximation sequences, we need to know the information of two Lipschitz-
type continuous constants c1 and c2. In some cases, these constants can be
not easy to approximate. The presented algorithm below is for this purpose.
The construction of iterative sequences and the proof of their convergence do
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not require the prior knowledge of the modulus of strong pseudomonotonicity
and two Lipschitz-type continuous constants of bifunctions. Instead of that,
we consider two control parameter sequences {λn} and {ρn} satisfying the
following conditions:

(C1) 0 ≤ λn ≤ ρn, (C2) ρn → 0,
∑∞
n=1 ρn = +∞.

Now, we are in a position to describe the algorithm in details.

Algorithm 3 [MPA for strongly pseudomonotone EPs].
Initialization. Choose x0 ∈ C and parameters λn, ρn such that Conditions
(C1) and (C2) above hold.
Iterative step. Compute

yn = proxλnf(xn,.)(xn), zn = proxρnf(yn,.)(yn), xn+1 = proxρnf(zn,.)(xn).

Set n := n+ 1 and go back to Iterative step.

For proving the convergence of Algorithm 3, we assume that bifunction f sat-
isfies the following conditions:

(D1) f(x, x) = 0 for all x ∈ C and f is strongly pseudomonotone on C;

(D2) f satisfies Lipschitz-type continuous condition on C;

(D3) f(x, .) is convex and subdifferentiable on C for every fixed x ∈ C.

Note that, if f(x, .) is lower semicontinuous, convex (not necessarily subdif-
ferentiable), and f(., y) is hemicontinuous on C, then under assumption (D1),
EP (1.1) has an unique solution. We obtain the following strongly convergent
theorem.

Theorem 3. Suppose that Conditions (C1), (C2), (D1)–(D3) hold, and EP
(1.1) has a unique solution x∗. Then {xn} generated by Algorithm 3 converges
strongly to x∗. Moreover, if γ > 0 is the modulus of strong pseudomononicity
of f , there exists a number n0 > 0 such that γρn < 1 for all n ≥ n0 and

||xn+1 − x∗|| ≤ e−
γ
3

∑n
k=n0

ρk ||xn0
− x∗||.

In addition, limn→∞
∏n
k=n0

(1− 2γρk
3 ) = 0.

Proof. Suppose that c1, c2 are two Lipschitz-type continuous constants of f .
Since ρn → 0, there exists n0 such that, for all n ≥ n0,

ρn < min {1/6c1, 1/4c2, 1/(2c1 + 3c2)} , (5.1)

1− 6ρnc1 ≥ 2ρnγ, (5.2)

1− 2ρnc1 − 3ρnc2 ≥ 2ρnγ. (5.3)

From relation (5.1), using Lemma 5, the definition of Tn, and the definition of
xn+1 in Algorithm 3, we obtain, for all n ≥ n0,

||xn+1 − x∗||2 − 2ρnf(zn, x
∗) ≤ ||xn − x∗||2 − (1− 6ρnc1)||yn − xn||2

− (1− 2ρnc1 − 3ρnc2)||yn − zn||2. (5.4)
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Since x∗ ∈ EP (f, C), f(x∗, zn) ≥ 0. It follows from the strong pseudomono-
tonicity of f that f(zn, x

∗) ≤ −γ||zn − x∗||2. This together with inequality
(5.4) implies that, for all n ≥ n0,

||xn+1 − x∗||2 + 2γρn||zn − x∗||2 ≤ ||xn − x∗||2 − (1− 6ρnc1)||yn − xn||2

− (1− 2ρnc1 − 3ρnc2)||yn − zn||2.

Thus, from relations (5.2) and (5.3), we obtain

||xn+1 − x∗||2 ≤ ||xn − x∗||2 − (1− 6ρnc1)||yn − xn||2 − (1− 2ρnc1 − 3ρnc2)

× ||yn − zn||2 − 2γρn||zn − x∗||2 ≤ ||xn − x∗||2

− 2γρn
[
||xn − yn||2 + ||yn − zn||2 + ||zn − x∗||2

]
. (5.5)

Using the inequality 3(a2 + b2 + c2) ≥ (a+ b+ c)2 for all a, b, c ∈ <, we obtain

||xn − x∗||2 ≤ (||xn − yn||+ ||yn − zn||+ ||zn − x∗||)2

≤ 3(||xn − yn||2 + ||yn − zn||2 + ||zn − x∗||2).

This together with relation (5.5) implies that

||xn+1−x∗||2≤||xn−x∗||2 −
2ρnγ

3
||xn−x∗||2 =

(
1−2ρnγ

3

)
||xn−x∗||2, ∀n ≥ n0.

Note that from relation (5.2) and (C1), we obtain 2ρnγ < 1, and so 2ρnγ
3 ∈

(0, 1). Thus, from the last inequality and the induction, we obtain, for all
n ≥ n0,

||xn+1 − x∗||2 ≤
n∏

k=n0

(
1− 2ρkγ

3

)
||xn0

− x∗||2. (5.6)

Using the inequality 1− x < e−x for all x > 0, we have 1− 2ρkγ
3 < e

−2γ
3 ρk and

hence (3) is proved. From hypothesis (C2), we also have 2ρnγ
3 → 0 as n → ∞

and
∑∞
n=n0

2ρnγ
3 = +∞. Thus, from relation (5.6) and Lemma 3, we obtain∏n

k=n0

(
1− 2ρkγ

3

)
→ 0, and so xn → x∗ when n→∞. ut

Remark 1. Although the construction of solution approximation sequences and
obtaining their convergence do not require the prior knowledge of the modulus
of strong pseudomonotonicity and two Lipschitz-type continuous constants of
f , but the rate of the convergence of Algorithm 3 depends completely on these
constants.

6 Computational experiments

In this section, we consider several numerical experiments to illustrate the con-
vergence of the proposed algorithms and compare them with others. Through-
out this section, we consider the following test problem introduced in [24] and
later [1, 4].
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Problem. Let C ⊂ <m and f : C × C → < be a bifunction. Find x∗ ∈ C such
that

f(x∗, y) ≥ 0, ∀y ∈ C, (6.1)

where f(x, y) = 〈Px+Qy + q, y − x〉,

C = {x = (x1, . . . , xm) ∈ <m : xi ≥ 0, i = 1, . . . ,m} ,

q is a vector in <m and P, Q ∈ <m×m are two matrices of order m.
All the proximal mappings (optimization subproblems) can be solved effec-

tively by the function quadprog in Matlab 7.0 Optimization Toolbox. All the
programs are performed on a PC Desktop Intel(R) Core(TM) i5-3210M CPU @
2.50GHz 2.50 GHz, RAM 2.00 GB. We will compare execution time in second
(CPU(s)) and number of iterations (Iter.) for mentioned algorithms.

Experiment 1. In this experiment, we compare Algorithm 1 with the ex-
tragradient method (EGM) in [24, Algorithm 1]. The vector q is generated
randomly and uniformly with its entries in [−m,m]. Two matrices P and Q
are generated randomly1 such that Q is symmetric positive semidefinite and
Q − P is negative semidefinite. Thus, f is pseudomonotone and satisfies the
Lipschitz-type continuous condition with c1 = c2 = ||P − Q||/2. We chose
ρn = ρ := 1/8c1, λn = 0.4ρn, αn = 1

n+1 for the mentioned algorihms, two

starting points x0 = (1) := (1, . . . , 1)T and x0 = (0) := (0, . . . , 0)T . The stop-
ping criterion is ||xn+1 − xn|| ≤ TOL. The numerical results are reported in
Table 1.

Table 1. The results for Algorithm 1 and EGM in Experiment 1
x0 = (1) x0 = (0)

Algorithm 1 EGM Algorithm 1 EGM

m TOL CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter.

2 10−4 0.76 19 0.72 27 0.76 17 0.64 25
10−6 1.21 29 1.22 45 1.23 27 1.28 43

5 10−4 1.09 27 1.31 44 1.02 24 1.18 38
10−6 1.76 40 1.95 72 1.73 37 1.87 66

10 10−4 2.01 44 2.32 80 1.99 42 2.59 76
10−6 3.14 68 4.01 132 3.15 66 3.82 128

15 10−4 2.63 53 3.46 97 2.97 56 3.48 103
10−6 4.55 88 5.66 176 4.49 89 6.34 177

Experiment 2. In this experiment, we compare Algorithm 2 with the strongly
convergent viscosity extragradient method (VEGM) in [25, Algorithm 1] (for
F = x − x0 and S = I). The vector q and two matrices P, Q are generated
as in Experiment 1. We chose ρn = 1/6.01c1, λn = 0.8ρn for Algorithm 2 and

1 We chose two diagonal matrices Q1, Q2 with their diagonal elements generated randomly
in [1,m] and [−m, 0], respectively. Next, we made the symmetric positive semidefinite
matrix Q by using Q1 and a random orthogonal matrix. Finally, we made a negative
semidefinite T from Q2 and another random orthogonal matrix, and set P = Q− T.
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λn = 1/2.01c1 for VEGM. Two parameter sequences {αn} are αn = 1
n+1 and

αn = 1
(n+1)0.5 . The stopping criterion is ||xn+1 − xn|| ≤ 10−4. Table 2 shows

the results in this case.

Table 2. The results for Algorithm 2 and VEGM in Experiment 2
αn = 1

n+1
αn = 1

(n+1)0.5

Algorithm 2 VEGM Algorithm 2 VEGM

m x0 CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter.

2 (0) 1.59 17 3.19 54 1.79 21 6.92 121
(1) 1.63 19 7.47 124 2.10 25 22.32 382

5 (0) 2.41 29 5.67 115 2.90 36 16.72 329
(1) 2.40 30 9.17 173 3.01 37 30.87 579

10 (0) 1.77 22 8.62 80 2.29 28 19.87 204
(1) 2.09 26 18.84 191 2.69 32 67.03 680

15 (0) 3.77 37 14.85 128 4.72 44 45.34 375
(1) 4.33 42 25.47 227 5.21 50 93.33 847

From Experiments 1 and 2, we see that Algorithms 1 and 2 are respectively
better than the classical extragradient-like algorithms in both execution time
and number of iterations. In the next experiment, we study the numerical
behavior of Algorithm 3 on test problem (6.1) for different choice of λn and ρn.

Experiment 3. All the entries of q, P, Q are generated randomly as Ex-
periment 1 in <20. However, unlike in Experiment 1, two matrices P, Q are
generated such that the matrix Q − P is symmetric negative definite. In this
case, f also stisfies the Lipschitz-type continuous condition. Moreover, by the
property of Q− P and f(x, y) ≥ 0, we have

f(y, x) ≤ f(y, x) + f(x, y) = 〈Py +Qx+ q, x− y〉+ 〈Px+Qy + q, y − x〉
= 〈(P −Q)y + (Q− P )x, x− y〉 = (x− y)T (Q− P )(x− y)

≤ −γ||x− y||2,

where some γ > 0. Thus, f is strongly pseudomonotone. We study here the
numerical behavior of Algorithm 3 for different choice of ρn and λn. We have
chosen λn = 0.5ρn, ρn = (n + 1)−p with p ∈ {1; 0.75; 0.5; 0.1; 0.01} and
the starting point x0 = (1, . . . , 1)T ∈ <20. Figure 1 describes the behavior of
Dn = ||xn+1−xn||2 in the first 100 iterations. From this figure, we see that the
convergence of Dn with ρn = 1

(n+1)p , p ∈ {1; 0.75; 0.5} is better than others.

7 Conclusions

The paper has proposed and analyzed the convergence of three mul-step prox-
imal-like algorithms (MPA) for solving pseudomonotone and Lipschitz-type
continuous equilibrium problems in H. The first algorithm which combines
the MPA with Mann-like iteration, so-called Mann MPA, is weakly conver-
gent while the second one, called Halpern MPA, is strongly convergent thanks
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Figure 1. The numerical behavior of Dn = ||xn+1 − xn||2 for Algorithm 3 with different
choice of ρn and λn.

to Halpern iteration. The last algorithm is designed for the special class of
strongly pseudomonotone and Lipschitz-type continuous bifunctions. The main
advantage of this algorithm is that the construction of solution approximation
sequences and the establishing of their convergence do not requrire the prior
knowledge of the modulus of strong pseudomononicity and two Lipschitz-type
continuous constants of bifuntions. Finally, several preliminary numerical ex-
periments have been performed on a test problem to illustrate the convergence
of the proposed algorithms and compare them with others. The proposed algo-
rithms have a greater number of calculations at the one iteration in comparison
with classical algorithms, and this affects the computation time of one iteration
(this is clearly seen in Table 1 when m=2, TOL=0.0001). But the proposed
algorithms benefit significantly by the number of iterations, this affects the gain
results on time.
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