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Abstract. We discuss here the problem of solving the system of two nonlinear alge-
braic equations determining the relative equilibrium positions in the planar circular
restricted four-body problem formulated on the basis of the Euler collinear solution
of the three-body problem. The system contains two parameters µ1, µ2 and all its
solutions coincide with the corresponding solutions in the three-body problem if one
of the parameters equals to zero. For small values of one parameter the solutions
are found in the form of power series in terms of this parameter, and they are used
for separation of different solutions and choosing the starting point in the numerical
procedure for the search of equilibria. Combining symbolic and numerical compu-
tation, we found all the equilibrium positions and proved that there are 18 different
equilibrium configurations of the system for any reasonable values of the two system
parameters µ1, µ2. All relevant symbolic and numerical calculations are performed
with the aid of the computer algebra system Wolfram Mathematica.

Keywords: restricted four-body problem, relative equilibria, symbolic-numerical computa-

tion, Wolfram Mathematica.
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1 Introduction

The many-body problem is a famous model of Celestial Mechanics proposed
first by Newton, many papers were devoted to its investigation and many impor-
tant results were obtained (see, for example, [17,23]). Recall that the problem is
to compute and predict the motion of two or more massive particles attracting
each other according to the Newton law of universal gravitation if their initial
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positions and velocities are given. In case of two interacting particles a general
solution to the problem is known and it enables to specify main types of mo-
tion in the two-body problem (see [17]). However, adding one more particle to
the system complicates the equations of motion substantially and the problem
becomes non-integrable. Note that in 1912 K. Sundman (see [21]) succeeded in
finding a general solution of the three-body problem in the form of power series
in terms of some parameter. But this solution is so complicated and the series
obtained converge so slowly that it is useless for real applications. In case of
four and more interacting particles the problem is even more complicated and
this stimulates development of different approximate analytical and numerical
methods for its investigation (see [4, 5]).

Another approach to the many-body problem is based on the search for
exact particular solutions of the equations of motion and studying their prop-
erties (see [17,23]. The first such solutions in the three-body problem found by
Euler (1767) and Lagrange (1772) describe planar motion of the three particles
on circular orbits around their common center of mass. These solutions are
known as the homographic ones and correspond to the points of equilibria (or
relative equilibria) of the particles in the rotating coordinate system [23]. In
one case the three particles are located at the vertices of an equilateral trian-
gle (triangular configuration); in the other case they are located at the same
straight line and form a collinear configuration. It has been proven that there
exist only three collinear and two triangular equilibrium configurations in the
three-body problem. However, in case of four and more interacting particles of
given masses the number of different equilibrium configurations is not known
and the problem of searching for such configurations continues to be a challenge
to mathematicians and remains open for further research (see [1, 18,20]).

In many particular cases of the many-body problem which are important in
the astronomical respect a mass of one body is negligibly small in comparison
to the masses of the others. A typical example of great interest is the Earth,
the Moon and a spacecraft constituting the three-body system. Due to the
smallness of mass of the spacecraft it is quite reasonable to assume that it
does not affect the motion of the Earth and the Moon. Consequently, one
can formulate a problem of studying the motion of particle P3 of negligible
mass in the gravitational field created by particles P0, P1 of masses m0, m1,
respectively, moving on circular orbits about their common center of mass
according to the corresponding solution of the two-body problem. Such a model
was first proposed by L. Euler and is known as the circular restricted three-body
problem (see [22]). As in case of a general three-body problem, there exist five
exact particular solutions of the differential equations of motion determining
the equilibrium positions of particle P3 in the rotating coordinate system; these
equilibria are called the points of libration Lj (j = 1, 2, ..., 5). The libration
points are of great interest for applications and so their stability was a subject
of many papers during the past two hundred years. As a result it was proven
that three points L1, L2, L3 situated at the line P0P1 (collinear equilibrium
positions) are unstable while the libration points L4, L5 (triangular equilibrium
positions) may be stable if the mass ratio µ1 = m1/m0 is sufficiently small
(see [12,22]).
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The systems of particular interest in Celestial Mechanics and Cosmic Dy-
namics usually contain more than three bodies. So it makes sense to add
the third particle P2 of mass m2 to the system P0P1P3 and to investigate an
influence of its mass on the number and location of equilibrium positions of
the particle P3. Obviously, the particle P2 may be situated in any of the five
equilibrium positions of the corresponding three-body problem which coincide
with the libration points L1, . . . , L5 in case of m2 = 0. In this way we obtain
the restricted four-body problem that has been a subject of many papers (see,
for example, [2, 6, 7, 8, 9, 10, 11, 13, 19]). It should be emphasized that in the
framework of this model, motion of the massive particles P0, P1, P2 is given
and is determined by the corresponding solutions of the three-body problem,
namely, by the Lagrange triangular solutions or by the Euler collinear solutions
(see [17]).

The case when particle P2 is situated in the vertex L4 of the equilateral
triangle P0P1L4 was studied in detail in [3, 6, 9, 19]. It was shown that four
new equilibrium positions of particle P3 arise from the point of libration L4 if
the second mass parameter µ2 = m2/m0 becomes greater than zero. The rest
four libration points L1, L2, L3, L5 only change their positions depending on the
values of parameters µ1, µ2. Besides, one or two new equilibrium positions may
arise inside the triangle P0P1P2. Location and stability of all these equilibrium
positions were investigated in [6, 7, 8, 9, 15].

To complete the study of the equilibrium positions in the restricted four-
body problem one needs to consider the case when particle P2 is situated in one
of the collinear libration points L1, L2, L3 and, therefore, the massive particles
P0, P1, P2 are located on the same straight line. It should be emphasized that
this problem differs essentially from the case of triangular configuration of the
particles P0, P1, P2. Actually, in the latter case the particles P0, P1, P2 are
fixed in the vertices of the equilateral triangle for any values of parameters µ1,
µ2, while in the collinear case mutual distances between particles depend on
these parameters. Therefore, given the values of µ1, µ2 we have to look for both
equilibrium configuration of the massive particles P0, P1, P2 and equilibrium
positions of the particle P3 as solutions of the corresponding nonlinear algebraic
equations. Only afterwards we can analyze the Hamiltonian function in the
neighborhood of each equilibrium configuration and investigate the stability of
equilibrium positions (see [14,15,16]).

In the present paper we focus on the search of the equilibrium positions of
particle P3 in the case when three massive particles P0, P1, P2 form a collinear
configuration. As the algebraic equations determining such positions are non-
linear we cannot find their general solutions in symbolic form. However, for
small values of parameter µ2 we can obtain the corresponding solutions in the
form of power series in terms of µ2. Then we use these solutions to separate
different equilibrium solutions and to investigate their dependence on param-
eter µ2, using numerical methods. We also estimate possible perturbations of
the equilibrium configurations in case of non-zero mass of particle P3. Realiza-
tion of this task involves very advanced symbolic and numerical calculations
which are performed here with the aid of the computer algebra system Wolfram
Mathematica [24].

Math. Model. Anal., 23(3):507–525, 2018.



510 A.N. Prokopenya

2 General analysis of equilibrium configurations

Let us consider the rotating coordinate system with an origin located at the
point P0. In such a system the particles P1, P2 are immovable and located
on the same straight line which may be considered as the Ox axis. Without
loss of generality, one can consider also that the dimensionless x-coordinates
of particles P1, P2 are equal to 1 and a, respectively, where the variable a is
defined by the equation (see [10,17,22])

1 + µ1 + µ2

(
a

|a|3
− a− 1

|a− 1|3

)
=
µ1

a

(
1 +

a− 1

|a− 1|3

)
+

1 + µ2

|a|3
= κ, (2.1)

and parameter κ > 0 determines an angular velocity of rotation of the coor-
dinate system. We assume also that parameters µ1, µ2 belong to the intervals
0 < µ1 ≤ 1, 0 ≤ µ2 ≤ 1 which realize all physically different configurations of
the massive particles.

In case of µ1 > 0, µ2 = 0, the roots of equation (2.1) correspond to
the collinear libration points L1, L2, L3 in the restricted three-body problem
(see [12, 22]). Increasing parameter µ2 results in changing the equilibrium po-
sition of the particle P2 on the Ox axis but the number of real-valued roots
of equation (2.1) remains the same and it has exactly one root on the each
interval a < 0, 0 < a < 1, a > 1, for any values of parameters µ1 > 0 and
µ2 ≥ 0. Given µ1 > 0 and µ2 ≥ 0, one can easily find each of these roots
numerically with the aid of the built-in Mathematica function FindRoot, for
example (see [24]).

Equilibrium position of the particle P3 of negligible mass corresponding to
some given configuration of the particles P0, P1, P2 is determined by the system
of two equations (see [16])

κx− x

(x2+y2)3/2
−µ1

(
1+

x− 1

((x−1)2+y2)3/2

)
=µ2

(
a

|a|3
+

x− a
((x−a)2+y2)3/2

)
,

y

(
κ− 1

(x2 + y2)3/2
− µ1

((x− 1)2 + y2)3/2
− µ2

((x− a)2 + y2)3/2

)
= 0. (2.2)

Besides of two parameters µ1, µ2, the system (2.2) contains the equilibrium
position a of the particle P2 which also depends on parameters µ1, µ2 (see
(2.1)). Therefore, a general solution of the system (2.2) cannot be found in
analytical form and numerical methods should be utilized for its investigation.

2.1 Collinear configurations

One can readily see that the second equation of system (2.2) is satisfied for any
x if y = 0. In this case all the particles are located on the Ox axis and form a
collinear configuration. The corresponding equilibrium positions of the particle
P3 are defined by the first equation of system (2.2) which takes the form

f(x) = κx− x

|x|3
− µ1

(
1 +

x− 1

|x− 1|3

)
− µ2

(
a

|a|3
+

x− a
|x− a|3

)
= 0. (2.3)
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The function f(x) is continuous and finite for x ∈ R, except for the points
0, 1, a, where the particles P0, P1, P2 are located. Note that for given values
of parameters µ1, µ2 there exist three solutions of equation (2.1) and for the
each solution the points 0, 1, a divide the real axis Ox into four intervals, for
example, (−∞, 0), (0, a), (a, 1), and (1,+∞) in case of a ∈ (0, 1). The function
f(x) takes values of different signs at the ends of each interval and increases
monotonically from −∞ to +∞ inside of the interval. Indeed, for a ∈ (0, 1)
and x ∈ (−∞, 0) the function f(x) takes the form

f(x) = κx+
1

x2
− µ1

(
1− 1

(x− 1)2

)
− µ2

(
1

a2
− 1

(x− a)2

)
. (2.4)

Obviously,

lim
x→−∞

f(x) = −∞, lim
x→0−

f(x) =∞

and the derivative of function (2.4) is

f ′(x) = κ− 2

x3
− 2µ1

(x− 1)3
− 2µ2

(x− a)3
> 0.

For a ∈ (0, 1) and x ∈ (0, a) we obtain

f(x) = κx− 1

x2
− µ1

(
1− 1

(x− 1)2

)
− µ2

(
1

a2
− 1

(x− a)2

)
, (2.5)

lim
x→0+

f(x) = −∞, lim
x→a−

f(x) =∞

and the derivative of function (2.5) is

f ′(x) = κ+
2

x3
− 2µ1

(x− 1)3
− 2µ2

(x− a)3
> 0.

Similarly, for a ∈ (0, 1) and x ∈ (a, 1) we have

f(x) = κx− 1

x2
− µ1

(
1− 1

(x− 1)2

)
− µ2

(
1

a2
+

1

(x− a)2

)
, (2.6)

lim
x→a+

f(x) = −∞, lim
x→1−

f(x) =∞

and the derivative of function (2.6) is

f ′(x) = κ+
2

x3
− 2µ1

(x− 1)3
+

2µ2

(x− a)3
> 0.

At last, for a ∈ (0, 1) and x ∈ (1,+∞) we obtain

f(x) = κx− 1

x2
− µ1

(
1 +

1

(x− 1)2

)
− µ2

(
1

a2
+

1

(x− a)2

)
, (2.7)

lim
x→1+

f(x) = −∞, lim
x→+∞

f(x) =∞

Math. Model. Anal., 23(3):507–525, 2018.
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and the derivative of function (2.7) is

f ′(x) = κ+
2

x3
+

2µ1

(x− 1)3
+

2µ2

(x− a)3
> 0.

Therefore, for any a ∈ (0, 1) there exist only one root of equation (2.3) on
the each interval (−∞, 0), (0, a), (a, 1), (1,+∞) and totally there are four
different equilibrium positions S1, S2, S3, S4 of the particle P3 on the Ox axis
(see Figure 1).
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-20
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20

f(x)

P0 P1P2S1

S3S2

S4

Figure 1. Collinear equilibrium positions S1, S2, S3, S4, µ1 = 0.1, µ2 = 0.04, 0 < a < 1.

Doing similar calculations, we show that in the cases a < 0 and a > 1
equation (2.3) also has four different roots on the intervals (−∞, a), (a, 0),
(0, 1), (1,+∞) and (−∞, 0), (0, 1), (1, a), (a,+∞), respectively. This proves
the following theorem.

Theorem 1. Equations (2.1), (2.2) determine exactly twelve different collinear
equilibrium configurations in the circular restricted four-body problem for any
values of parameters 0 < µ1 ≤ 1, 0 < µ2 ≤ 1.

2.2 Triangular configurations

Three massive particles P0, P1, P2 are located on the Ox axis and form a se-
quence P0, P1, P2 in case of a > 1, P0, P2, P1 for 0 < a < 1, and P2, P0, P1 in
case of a < 0. Connecting the outer particles P0 and P2 for a > 1, for example,
with P3 in case of y 6= 0 gives a triangle P0P2P3 with particle P1 located on its
side P0P2. In the other two cases we obtain the triangles P0P1P3 and P2P1P3

with particles P2 and P0 located on the sides P0P1 and P1P2, respectively.
Therefore, the corresponding configurations of the particles may be called the
triangular ones.

Given parameters µ1, µ2, one can find equilibrium positions of particle P3 as
solutions of the system (2.2), where a multiplier y 6= 0 in the second equation is
eliminated and parameter a is determined by equation (2.1). The system does
not change if we subtract the second equation of (2.8) multiplied by x from the
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first one. As a result we rewrite the system (2.2) in the form

f1(x, y) = µ1

(
1− 1

((x− 1)2 + y2)3/2

)
+µ2

(
a

|a|3
− a

((x− a)2 + y2)3/2

)
= 0, (2.8)

f2(x, y) = κ− 1

(x2 + y2)3/2
− µ1

((x− 1)2 + y2)3/2

− µ2

((x− a)2 + y2)3/2
= 0. (2.9)

In case of µ2 = 0 which corresponds to the restricted three-body problem it
follows immediately from equation (2.8) that (x− 1)2 + y2 = 1. As κ = 1 + µ1

in this case (see (2.1)), equation (2.9) gives x2 + y2 = 1. As a result, we obtain
the well-known Lagrange solutions x = 1/2, y = ±

√
3/2 to the restricted three-

body problem. For µ2 > 0 these equilibrium points can change their positions
in the plane Oxy or some other equilibrium positions can arise. To answer a
question on the number of triangular equilibrium positions of particle P3 for
µ2 > 0 we need to analyze the functions f1(x, y), f2(x, y) more carefully.

Note that the functions f1(x, y), f2(x, y) are continuous and finite in the
plane Oxy, except for the points (0, 0), (1, 0), (a, 0), where the particles P0,
P1, P2 are located. As these functions depend on the square of variable y
then solutions to the system (2.8), (2.9) form pairs (x, y) and (x,−y) situated
symmetrically with respect to the axis Ox in the plane Oxy. Therefore, it is
sufficient to analyze the case y > 0 to conclude on the number of triangular
equilibrium configurations.

One can readily see that a multiplier of µ1 in (2.8) takes negative and
positive values inside and outside the circle (x − 1)2 + y2 = 1, respectively.
Similarly, in case of a > 0 a multiplier of µ2 in (2.8) takes negative and positive
values inside and outside the circle (x−a)2 +y2 = a2. These two circles have a
joint point x = y = 0, where f1(0, 0) = 0, and their centers are located on the
Ox axis. The function f1(x, y) is negative in the domain (x− 1)2 + y2 ≤ 1 and
is positive for a > 1 in the domain (x−a)2 + y2 ≥ a2. Therefore, the condition
f1(x, y) = 0 may be fulfilled for a > 1 only in the domain between the circles
(x− 1)2 + y2 = 1 and (x− a)2 + y2 = a2. Moreover, the condition f1(x, y) = 0
determines only one continuous curve in this domain that is symmetrical with
respect to the axis Ox, it is shown as a bold solid curve in Figure 2.

Actually, partial derivatives of the function f1(x, y) are given by

∂f1
∂x

=
3µ1(x− 1)

((x− 1)2 + y2)5/2
+

3µ2a(x− a)

((x− a)2 + y2)5/2
, (2.10)

∂f1
∂y

=
3µ1y

((x− 1)2 + y2)5/2
+

3µ2ay

((x− a)2 + y2)5/2
. (2.11)

Equation (2.11) shows that ∂f1/∂y > 0 for y > 0, a > 0 and so for any fixed x
the function f1(x, y) increases monotonically if variable y grows up. As f1(x, y)
takes values of different signs at the circles (x−1)2+y2 = 1 and (x−a)2+y2 = a2

Math. Model. Anal., 23(3):507–525, 2018.



514 A.N. Prokopenya

-1 0 1 2 3

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

P0 P1 P2

S5

S6

x

y

1 a

x0x1

x2

Figure 2. Points of intersections of the curves f1(x, y) = 0 and f2(x, y) = 0 define the
triangular equilibrium positions S5 and S6, µ1 = 0.1, µ2 = 0.04, a > 1.

for any x ∈ [0, 2] there exists only one value of y inside of the interval bounded
by the circles for which f1(x, y) = 0. For the points on the axis Ox, where
y = 0 and x increases from x = 2 to x = 2a, equation (2.10) gives ∂f1/∂x > 0.
So function f1(x, 0) increases monotonically and takes values of different signs
at the boundary points x = 2 and x = 2a. Therefore, there exists only one
point x0 ∈ (2, 2a) for which f1(x0, 0) = 0, and f1(x, 0) > 0 if x ∈ (x0, 2a]. As
f1(x, 0) < 0 for x ∈ [2, x0), f1(x, y) > 0 on the circle (x − a)2 + y2 = a2 and
∂f1/∂y > 0 for each value of x ∈ [2, x0] there exists only one value y > 0 in
the domain between the Ox axis and the circle (x − a)2 + y2 = a2 for which
f1(x, y) = 0. Thus, the condition f1(x, y) = 0 defines a unique continuous curve
in the domain between the circles (x − 1)2 + y2 = 1 and (x − a)2 + y2 = a2.
Although we consider above only positive values of y the function f1(x, y)
depends on y2 and so the second branch of the curve in the domain y < 0 is
obtained by means of mirror reflection of the upper branch with respect to the
axis Ox (see Figure 2).

Note that condition f2(x, y) = 0 also defines a unique continuous curve in
the plane Oxy (bold dashed curve in Figure 2) and there are only two points
of intersection of the curves for a > 1 which correspond to solutions of the
system (2.8)–(2.9). To prove this let us use expressions (2.1) for parameter κ
and rewrite the function f2(x, y) in the two forms

f2(x, y)=1− 1

(x2 + y2)3/2
+ µ1

(
1− 1

((x−1)2+y2)3/2

)
+ µ2

( a

|a|3
− a− 1

|a− 1|3

− 1

((x− a)2 + y2)3/2

)
=

1

|a|3
− 1

(x2 + y2)3/2
+
µ1

a

(
1 +

a− 1

|a− 1|3

− a

((x− 1)2 + y2)3/2

)
+ µ2

(
1

|a|3
− 1

((x− a)2 + y2)3/2

)
. (2.12)

Partial derivatives of the function f2(x, y) are given by

∂f2
∂x

=
3x

(x2 + y2)5/2
+

3µ1(x− 1)

((x− 1)2 + y2)5/2
+

3µ2(x− a)

((x− a)2 + y2)5/2
, (2.13)
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∂f2
∂y

= 3y

(
1

(x2 + y2)5/2
+

µ1

((x− 1)2 + y2)5/2
+

µ2

((x− a)2 + y2)5/2

)
. (2.14)

Analyzing equation (2.12), we conclude that f2(x, 0) < 0 for x ∈ [0, a] and
a > 1. As partial derivative (2.13) is positive for x > a the function f2(x, 0)
increases monotonically and becomes positive for some large value of x. It
means that there exists only one value x1 > a such that f2(x1, 0) = 0. To
prove that x1 < x0 let us compute the function f2(x, y) at the points belonging
to the curve f1(x, y) = 0. Rewriting equation (2.8) in the form

µ2

((x− a)2 + y2)3/2
=
µ1

a

(
1− 1

((x− 1)2 + y2)3/2

)
+

µ2

|a|3
(2.15)

and substituting (2.15) into (2.12), we obtain

f2(x, y)=
1

|a|3
− 1

(x2+y2)3/2
+
µ1(a−1)

a

(
1

|a−1|3
− 1

((x−1)2+y2)3/2

)
. (2.16)

Now it is clear that

f2(x0, 0) =
1

a3
− 1

x30
+
µ1(a− 1)

a

(
1

|a− 1|3
− 1

(|x0 − 1|3

)
> 0

and, therefore, x1 < x0. Moreover, it follows from (2.16) that the condition
f2(x, y) > 0 is fulfilled for any point (x, y) belonging to the curve f1(x, y) = 0
and x ∈ (x2, x1), where coordinate x2 corresponds to the point of intersection
of the curve f1(x, y) = 0 and the circle x2 + y2 = a2. Besides, f2(x, y) > 0
for the points (x, y) belonging to the circle x2 + y2 = a2 for x ∈ [0, x2]. As
f2(x, 0) < 0 for x ∈ [0, x1) and partial derivative (2.14) is positive for y > 0,
the function f2(x, y) increases monotonically if variable y grows up and takes
positive values on the circle x2 + y2 = a2 for x ∈ [0, x2) and on the curve
f1(x, y) = 0 for x ∈ [x2, x1). Therefore, for any x ∈ [0, x1] there is only one
value of y for which f2(x, y) = 0 and so the condition f2(x, y) = 0 defines a
unique continuous curve in the domain x ≥ 0. Note that existence of a unique
continuous curve f2(x, y) = 0 for x < 0 is quite obvious because function
f2(x, y) is negative at the origin and takes positive values for x2 + y2 → ∞
while its derivatives (2.13), (2.14) are negative and positive, respectively, for
x < 0, y > 0. Thus, the condition f2(x, y) = 0 defines a unique continuous
curve in the plane Oxy.

Note that coefficient of µ1 in (2.16) is positive in the domain (x−1)2+y2 > 1
while a sum of the first two terms is negative for x2 + y2 < a2 and it tends
to −∞ at the origin. And if variable x decreases from x = x2 to x = 0 the
function f2(x, y) on the curve f1(x, y) = 0 (see (2.16)) decreases to zero at the
point S5 and becomes negative for smaller values of x. It means that the curve
f2(x, y) = 0 crosses the curve f1(x, y) = 0 only at the point S5 and for smaller
values of x it is situated above the curve f1(x, y) = 0. Thus, we can conclude
that the curves f1(x, y) = 0 and f2(x, y) = 0 have only one point of intersection
S5 for y > 0, a > 1 (another point S6 is situated in the domain y < 0) and there
are only two triangular equilibrium configurations of the particles for a > 1.

Math. Model. Anal., 23(3):507–525, 2018.
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Similar analysis is easily repeated in the case 0 < a < 1 when particle P2 is
located between particles P0, P1 and the circle (x − a)2 + y2 = a2 is situated
inside of the circle (x − 1)2 + y2 = 1. Again the functions f1(x, y) = 0 and
f2(x, y) = 0 define two different continuous curves which have only two points
of intersection S5 and S6 (see Figure 3).
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Figure 3. Triangular equilibrium positions S5 and S6, µ1 = 0.1, µ2 = 0.04, 0 < a < 1.

In case of a < 0, the curve f1(x, y) = 0 is situated in the domain x ≥ 0 if
µ1 > µ2, or in the domain x ≤ 0 if µ1 < µ2. Actually, analysis of equation (2.1)
shows that equilibrium position of particle P2 is located inside of the interval
−1 < a < 0 if µ1 > µ2 and a < −1 if µ1 < µ2. In case of µ1 = µ2 particle P2

is located at the point a = −1 and the curve f1(x, y) = 0 degenerates into the
Oy axis (see (2.8)). The circles (x − a)2 + y2 = a2 and (x − 1)2 + y2 = 1 are
situated in the domains x < 0 and x > 0, respectively, and have a joint point
(0, 0), where f1(0, 0) = 0. Function f1(x, y) takes positive values on the circle
(x− a)2 + y2 = a2 and is negative on the circle (x− 1)2 + y2 = 1. Asymptotic
value of f1(x, y) for x2 + y2 → ∞ is obtained from (2.1), (2.8) and in case of
µ1 > µ2 it is positive:

µ1 + µ2
a

|a|3
=

a

a− 1

(
−1 +

1

|a|3

)
+

a

|a− 1|3
(
µ2 +

µ1

a

)
> 0. (2.17)

As partial derivative (2.11) is positive in the domain x > 0, y > 0, function
f1(x, y) increases monotonically if variable y grows up and for any x ∈ (0, 2]
there exists only one value of y > 0 for which f1(x, y) = 0. For x > 2, y = 0,
partial derivative (2.10) is also positive and so there exists only one value of
x = x0 > 2 for which f1(x0, 0) = 0 and f1(x, 0) < 0 for x ∈ [2, x0). As
partial derivative (2.11) is positive in the domain x > 2, y > 0, there exists
only one value of y > 0 for which f1(x, y) = 0 for any x ∈ (2, x0]. Thus,
condition f1(x, y) = 0 defines a unique continuous curve situated outside the
circle (x−1)2 +y2 = 1 in the domain 0 ≤ x ≤ x0 in case of µ1 > µ2 (bold solid
curve in Figure 4) while in the domain x < 0 function f1(x, y) takes positive
values.

In case of µ1 < µ2, asymptotic value (2.17) of f1(x, y) is negative while it
takes positive values on the circle (x − a)2 + y2 = a2. Repeating the anal-
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Figure 4. Triangular equilibrium positions S5 and S6, µ1 = 0.1, µ2 = 0.04, a < 0.

ysis above we show that in this case condition f1(x, y) = 0 defines a unique
continuous curve situated outside the circle (x − a)2 + y2 = a2 in the domain
x ≤ 0.

Analysis of the function f2(x, y) for a < 0 is done similarly to the case a > 1
and shows that the condition f2(x, y) = 0 defines a unique continuous curve in
the plane Oxy (bold dashed curve in Figure 4) which has only two points of
intersection with the curve f1(x, y) = 0. In case of µ1 > µ2, these points S5,
S6 are located in the domain x > 0 while for µ1 < µ2 they are located in the
domain x < 0. In case of µ1 = µ2, when the curve f1(x, y) = 0 degenerates
into the axis Oy the points S5, S6 are located at this axis and equilibrium
configuration of the particles becomes symmetrical with respect to the Ox and
Oy axes.

Summarizing analysis of the functions f1(x, y), f2(x, y), we can formulate
the following theorem.

Theorem 2. Equations (2.1), (2.8), (2.9) determine exactly six different tri-
angular equilibrium configurations in the circular restricted four-body problem
for any values of parameters 0 < µ1 ≤ 1, 0 < µ2 ≤ 1.

3 Computation of equilibrium positions

Equilibrium positions of particle P3 are defined by the system (2.2), where
parameter a is a root of equation (2.1). So computing the equilibria for given
values of parameters µ1, µ2 includes two steps. First, one has to solve equation
(2.1) and to find equilibrium position of particle P2. Then the found value of
a is substituted into system (2.2) and some numerical procedure is applied for
searching its solution. Note that numerical algorithms for solving non-linear
equations are well known and are implemented in modern software such as the
computer algebra system Mathematica [24], for example. However, utilizing the
corresponding procedure requires to specify a starting point for the search and
in general it is difficult to predict which solution will be found if equation has
several roots. Computation shows only that correct result is usually obtained
if the starting point is located sufficiently close to the solution.

Math. Model. Anal., 23(3):507–525, 2018.
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Recall that equation (2.1) has three roots for any reasonable values of pa-
rameters µ1, µ2 but exactly one root is located within each of the fixed intervals
a < 0, 0 < a < 1, a > 1. Choosing the starting point within any of these in-
tervals and utilizing the built-in Mathematica function FindRoot (see [24]), we
obtain correct equilibrium point located inside of the same interval. These
three intervals exist also in case of µ2 = 0 when both equations (2.1) and (2.3)
take the same form given by

1 + µ1 −
1

|a0|3
− µ1

a0

(
1 +

a0 − 1

|a0 − 1|3

)
= 0. (3.1)

Note that equation (3.1) defines three libration points L1, L2, L3 in the re-
stricted three-body problem (see [22]) which are easily computed for any µ1.
In the problem under consideration for µ2 = 0 two particles P2 and P3 are
situated either at the same or at different libration points. If locations of
these particles are different and mass of particle P2 becomes greater than zero
(µ2 > 0) then both particles P2 and P3 change their positions continuously
according to equations (2.1) and (2.3), respectively. But if they are located
at the same point and mass of particle P2 increases then two new equilibrium
positions of particle P3 arise for µ2 > 0 while particle P2 only changes its posi-
tion according to equation (2.1). In both cases for µ2 > 0, three points 0, 1, a
divide the axis Ox into four intervals, where different collinear equilibrium po-
sitions S1, S2, S3, S4 are located (see subsection 2.1), and the boundaries of
these intervals are not fixed but are determined by parameter a. It complicates
a choice of the starting point when equilibrium positions of particle P3 are
computed for different values of parameters µ1, µ2. To select and investigate
some equilibrium point it is very helpful to find first an approximate solution
to equation (2.3) which may be used for specifying the starting point.

For small values of parameter µ2 one can look for solutions of equations
(2.1) and (2.3) in the form of power series

a = a20 + a1µ2 + a2µ
2
2 + . . . , x = a30 + x1µ2 + x2µ

2
2 + . . . , (3.2)

where a20 and a30 are different roots of equation (3.1). To find unknown coef-
ficients ak, k = 1, 2, ..., we substitute expression (3.2) for a into equation (2.1)
and expand both its sides into power series in terms of µ2. Equating coefficients
of µk

2 in the left- and the right-hand sides of equation we obtain a system of
linear equations determining coefficients ak, k = 1, 2, .... Solution of this system
can be found in a general symbolic form but the corresponding expressions for
coefficients ak are quite bulky and so we write out only coefficient a1 as an
example

a1 =
(
−(a0 − 1)4(a0|a0| − 1) + a0|a0|(a0 − 1)|a0 − 1|

+ µ1a0(a30 + (a0 − 1)|a0 − 1|(a30 − |a0|)
)
/(

(1+µ1)|a0−1|
(
3|a0||a0−1|3+µ1a

3
0(−1 + 3a0 + |a0 − 1|(a0 − 1)2

))
. (3.3)

This algorithm can be easily realized for any given value of parameter µ1 and
particle P2 situated for µ2 = 0 in one of the points L1, L2 or L3. For example,
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if µ1 = 0.1 and for µ2 = 0, particle P2 is located at the point of libration
L1 the solution of equation (3.1) is a0 = 0.717513 and expression (3.3) gives
a1 = −0.548713. Doing calculations up to the third order, we obtain

a = 0.717513− 0.548713µ2 + 2.14053µ2
2 − 11.1868µ3

2 + . . . . (3.4)

To find collinear equilibrium solutions arising from the points of libration L2

and L3 we substitute (3.4) and expression (3.2) for x into equation (2.3) and
expand both its sides into power series in terms of µ2. Equating coefficients of
µk
2 in the left- and the right-hand sides of equation we obtain a system of linear

equations determining coefficients xk, k = 1, 2, .... Computing the coefficients
xk, we obtain two solutions of equation (2.3) in the form

xL2 = 1.34699− 2.24148µ2 + 32.6766µ2
2 − 517.312µ3

2 + . . . , (3.5)

xL3
= −0.946927 + 4.38959µ2 − 51.1946µ2

2 + 716.21µ3
2 + . . . . (3.6)

If particle P2 is located at the point of libration L1 for µ2 = 0, we cannot
use expression (3.2) for representing the collinear solutions arising from this
point, because the function f(x) has singularity at the point x = a20 = a30
(see (2.3)). However, we can use the power series of the form

x = a30 + x1µ
1/3
2 + x2µ

2/3
2 + x3µ2 + x4µ

4/3
2 + . . . . (3.7)

On substituting (3.4) and (3.7) into equation (2.3) and expanding both its sides

into power series in terms of µ2, we equate coefficients of µ
k/3
2 , k = 1, 2, ... in

the left- and the right-hand sides of equation. Solving the obtained system of
linear equations, we find the coefficients xk and the corresponding solutions of
equation (2.3)

xL11 = 0.717513− 0.402056µ
1/3
2 − 0.125344µ

2/3
2 − 0.323243µ2 − 0.146578µ

4/3
2

+ . . . , xL12 = 0.717513 + 0.402056µ
1/3
2 − 0.125344µ

2/3
2

− 0.774183µ2 + 0.285542µ
4/3
2 + . . . . (3.8)

Choosing some small value of µ2 and expressions (3.5), (3.6), (3.8), we
compute collinear equilibrium positions of particle P3 which are used then as
starting points by the Mathematica function FindRoot applied for numerical
solving equation (2.3). The obtained results are again used as the starting
points by the function FindRoot, which solves equation (2.3) for larger value
of parameter µ2. Increasing µ2 with sufficiently small step and repeating the
calculations, we obtain four numerical solutions of equation (2.3) determining
the collinear equilibrium positions S1, S2, S3, S4 of particle P3 for different 0 ≤
µ2 ≤ 1 and µ1 = 0.1, they are depicted in Figure 5 by bold solid curves. The
corresponding approximate solutions (3.5), (3.6), (3.8) are depicted in Figure 5
by bold dashed curves together with numerical solution of equation (2.1) shown
by longer dashes. One can readily see that for 0 ≤ µ2 < 0.04 the approximate
solutions agree quite good with the numerical ones. Repeating the calculations
in the case when particle P2 is located near the point of libration L2, we obtain
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Figure 6. Collinear equilibrium positions for 0 ≤ µ2 ≤ 1, particle P2 is located near the
point L2, a > 1, µ1 = 0.1.

numerical solutions of equation (2.3) shown in Figure 6. Obviously, all the
calculations can be easily performed for other values of parameter µ1.

Using the method described above we can also compute approximate solu-
tions of the system (2.2) in case of the triangular equilibrium configurations.
If particle P2 is located near the point L1 and µ1 = 0.1, for example, the
corresponding solution of (2.2) is given by

xL41 = 0.5− 0.929625µ2 + 3.13156µ2
2 + 0.686352µ3

2 + . . . ,

yL41 =
√

3/2− 4.13392µ2 + 56.1015µ2
2 − 799.954µ3

2 + . . . . (3.9)

If particle P2 is located near the points L2 and L3, the corresponding triangular
solutions are

xL42 = 0.5 + 2.01463µ2 − 9.63542µ2
2 + 58.1803µ3

2 + . . . ,

yL42 =
√

3/2 + 1.95847µ2 − 8.2562µ2
2 + 59.5226µ3

2 + . . . , (3.10)

xL43 = 0.5− 3.0118µ2 − 16.9078µ2
2 − 84.6118µ3

2 + . . . ,

yL43 =
√

3/2 + 1.7936µ2 + 3.10634µ2
2 − 12.7895µ3

2 + . . . . (3.11)

Computing approximate solutions (3.9)–(3.11) for some small value of µ2

and using the obtained coordinates x, y as starting points for the function
FindRoot, we can find solution of the system (2.2) with any required precision.
Then we repeat the calculation for larger value of µ2, using the results from
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the previous step as the starting point for the function FindRoot and so on.
Finally, we obtain numerical solutions of the system (2.2) showing triangular
equilibrium positions for different values of 0 < µ2 < 1 and µ1 = 0.1 and
three possible locations of particle P2 near the libration points L1, L2, L3 (see
Figure 7).

P0 P1

L1 L2L3

P2P2 P2

P3

P3

P3

P3

P3

P3

L4

L5

x

y

Figure 7. Triangular equilibrium configurations for three possible positions of particle
P2, µ1 = 0.1, 0 ≤ µ2 ≤ 1.

Figure 7 demonstrates how triangular configuration of the particles varies
when parameter µ2 grows up from 0 to 1. In case of µ2 = µ1 and particle P2

situated near the point L3, it is an isosceles triangle P1P2P3 with the axis of
symmetry Oy. An isosceles triangle P0P2P3 is obtained also in case of µ2 = 1
and particle P2 situated near the point L2. In the last case the straight line
P1P3 is an axis of symmetry for any value of µ1. These results correspond to
our intuitive expectation and confirm correctness of the calculations.

4 The case of non-zero mass of P3

In the framework of the restricted three-body problem it is assumed that neg-
ligibly small mass of particle P3 (µ3 = m3/m0 = 0) does not affect the motion
of massive particles P0, P1, P2, and so equations (2.1) and (2.2) determining
equilibrium positions of particles P2 and P3 are solved separately. However, if
mass of particle P3 is taken into account (µ3 > 0) the system of equations deter-
mining equilibrium configurations of the particles becomes more complicated
and may be written in the form (see [10])

− κ+ 1 + µ1 = µ2

(
a− 1

r312
− a

r32

)
+ µ3

(
x− 1

r313
− x

r33

)
, (4.1)

0 = µ2

(
b/r312 − b/r32

)
+ µ3

(
y/r313 − y/r33

)
, (4.2)

− κa+
(1 + µ2)a

r32
= −µ1

(
a− 1

r312
+ 1

)
+ µ3

(
x− a
r323

− x

r33

)
, (4.3)

− κb+
(1 + µ2)b

r32
= −µ1

b

r312
+ µ3

(
y − b
r323

− y

r33

)
, (4.4)
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− κx+
(1 + µ3)x

r33
= −µ1

(
x− 1

r313
+ 1

)
− µ2

(
x− a
r323

+
a

r32

)
, (4.5)

− κy +
(1 + µ3)y

r33
= −µ1

y

r313
− µ2

(
y − b
r323

+
b

r32

)
, (4.6)

where

r2 =
√
a2 + b2, r3 =

√
x2 + y2, r12 =

√
(a− 1)2 + b2,

r13 =
√

(x− 1)2 + y2, r23 =
√

(x− a)2 + (y − b)2.

Here two pairs of variables (a, b) and (x, y) correspond to equilibrium coor-
dinates of particles P2 and P3, respectively. It is assumed also that particles
P0 and P1 are located at the origin and at the point (1, 0) on the axis Ox,
respectively, and parameter κ takes only positive values.

One can readily see that in case of µ3 = 0, the system (4.1)–(4.6) splits
into two independent sub-systems. The first sub-system (4.1)–(4.4) determines
three well-known collinear (b = 0) and two triangular (a = 1/2, b = ±

√
3/2)

equilibrium configurations in the three-body problem. The second sub-system
(4.5)–(4.6) reduces to the system (2.2) if b = 0 and the particles P0, P1, P2 form
collinear equilibrium configuration; this case is analyzed in detail in Section 2.
Recall that for each of the three collinear equilibrium positions of particle P2

there are four equilibrium positions S1, S2, S3, S4 of particle P3 at the axis
Ox if µ3 = 0 (see Theorem 1). These collinear equilibrium configurations exist
in case of µ3 > 0, as well. Indeed, for b = y = 0, equations (4.2), (4.4),
(4.6) are satisfied identically. Solving the rest three equations (4.1), (4.3), (4.5)
numerically for given parameters µ1, µ2, µ3, we obtain equilibrium positions a,
x of particles P2, P3 and parameter κ, the corresponding solutions are shown in
Figure 8. Each of the four pairs of curves depicted in the same style in Figure 8
shows the equilibrium coordinates a, x for different values of µ3 when particle
P2 is located in the neighborhood of the point of libration L1 and particle P3

of non-zero mass is located in one of the collinear equilibrium points S1, S2,
S3, S4. As P3 is assumed to be the lightest particle of the system, we consider
only small enough values of parameter 0 ≤ µ3 ≤ 0.01. This simulation shows
that maximum deviations |∆a| ≈ 0.0537 and |∆a| ≈ 0.0325 of particle P2 from
its initial position corresponding to the case µ3 = 0 take place for µ3 = 0.01 if
massive particle P3 is located at the points S2 and S1, respectively. Position of
particle P3 also changes if parameter µ3 grows up, but its deviation from the
initial position does not exceed |∆x| ≈ 0.03. If massive particle P3 is located
at the point S3 or S4, the deviations |∆a| and |∆x| do not exceed 0.01. Similar
results are obtained if particle P2 is located in the neighborhood of the points
L2 and L3. Thus, in case of small mass of the particle P3, we observe only
small deviations of particles P2, P3 of the order of µ3 from their positions in
case of µ3 = 0; the number and structure of the collinear configurations of
four massive particles remain the same as in case of the restricted four-body
problem.

Recall that in case of µ3 = 0 there exist two triangular equilibrium configu-
rations when three massive particles are located at the axis Ox and particle P3

is located in the neighborhood of the point of libration L4 or L5 (see Figure 7).
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Figure 8. Collinear equilibrium configurations for 0 ≤ µ3 ≤ 0.01, particle P2 is located
near the point L1, 0 < a < 1, µ1 = 0.1, µ2 = 0.02.

Direct calculation shows that in case of µ3 > 0 and y 6= 0, equations (4.2), (4.4),
(4.6) are not satisfied if b = 0. It means that three massive particles P0, P1, P2

cannot be located at the straight line even for small values of mass of particle
P3 (or µ3 > 0) and triangle configuration is transformed into 4-gon. For given
µ1, µ2 and small values of µ3, one can find solution of the system (4.1)–(4.6)
in the form of power series in terms of µ3. For example, in case of µ1 = 0.1,
µ2 = 0.02 and particle P2 located near the point L1, the corresponding solution
in linear approximation is

a = 0.707315 + 0.008724µ3, b = 0.074969µ3,

x = 0.482648− 0.012279µ3, y = 0.800825 + 0.014733µ3. (4.7)

Using solution (4.7) as starting point for the function FindRoot, we have
computed equilibrium coordinates of particles P2, P3 for different 0 ≤ µ3 ≤ 0.01
and found that their deviations from the initial triangular configuration satisfy
the following inequalities

|∆a| < 0.000089, |∆b| < 0.00075, |∆x| < 0.00013, |∆y| < 0.00015.

Similar calculation in the case when particle P2 is located near the point
L3, gives

|∆a| < 0.0060, |∆b| < 0.0756, |∆x| < 0.00127, |∆y| < 0.00081.

The simulations above show that the mass of particle P3 disturbs equilib-
rium configuration of the particles computed in the framework of the restricted
four-body problem. However, deviations of the particles from their positions
corresponding to the case of µ3 = 0 are of the order of µ3 or less. Therefore, the
restricted four-body problem may be applicable to modelling such systems as
the Sun, the Jupiter (µ1 ≈ 0.001) and binary asteroids or the artificial satellites
of comets and asteroids (µ2,3 � µ1).

5 Conclusions

In the present paper we study the equilibrium configurations in the planar cir-
cular restricted four-body problem formulated on the basis of the Euler collinear

Math. Model. Anal., 23(3):507–525, 2018.
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solutions of the three-body problem. Equilibrium positions of particle P3 are
defined by the system of two non-linear equations (2.2) which contains two
mass parameters µ1, µ2 and parameter a describing equilibrium configuration
of the massive particles. We have performed a general analysis of the system
(2.2) and proved that it defines 12 different collinear configurations and 6 trian-
gular configurations for any reasonable values of the system parameters µ1, µ2.
For small values of parameter µ2 we find the equilibrium solutions in the form
of power series in terms of µ2 (see (3.5), (3.6), (3.8)–(3.11)). These solutions
are used later for computing the starting point in the numerical procedure for
computing the equilibria with required precision. Such combination of symbolic
and numerical computations enables to separate different equilibrium solutions
and investigate their dependence on parameters, the corresponding results are
demonstrated in Figures 5–7.

Note that all relevant numerical and symbolic calculations and visualization
of the obtained results are performed with the aid of the computer algebra
system Wolfram Mathematica.
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