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Abstract. In this paper a class of nonlocal diffusion equations associated with a
p-Laplace operator, usually referred to as p-Kirchhoff equations, are studied. By
applying Galerkin’s approximation and the modified potential well method, we obtain
a threshold result for the solutions to exist globally or to blow up in finite time for
subcritical and critical initial energy. The decay rate of the L2 norm is also obtained
for global solutions. When the initial energy is supercritical, an abstract criterion
is given for the solutions to exist globally or to blow up in finite time, in terms of
two variational numbers. These generalize some recent results obtained in [Y. Han
and Q. Li, Threshold results for the existence of global and blow-up solutions to
Kirchhoff equations with arbitrary initial energy, Computers and Mathematics with
Applications, 75(9):3283–3297, 2018].
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1 Introduction

In this paper, we study the global existence and finite time blow-up of solutions
to the following parabolic type p-Kirchhoff initial boundary value problem

ut −
(
a+ b

∫
Ω
|∇u|pdx

)
∆pu = |u|q−1u, (x, t) ∈ Ω × (0, T ),

u = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω.
(1.1)

�
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Here a, b are two positive constants, ∆pu = div(|∇u|p−2∇u) is the standard
p-Laplace operator with p > max{2n/(n+ 2), 1}, 2p−1 < q < p∗−1, where p∗

is the Sobolev conjugate of p, i.e. p∗ = +∞ for n ≤ p and p∗ = np/(n− p) for
n > p. Ω ⊂ Rn(n ≥ 1) is a bounded smooth domain with the boundary ∂Ω,
Moreover, u0 ∈W 1,p

0 (Ω).
In the recent years, much effort has been devoted to nonlocal problems

because of their wide applications in both physics and biology. For example,
when the length changes of the string produced by transverse vibrations is
taken into account, the classical D’Alembert wave equation for free vibrations
of elastic strings is replaced by (see [8])

εuεtt + uεt −M
(∫

Ω

|∇uε|pdx
)
∆pu

ε = f(x, t, uε), (1.2)

where M(s) = a + bs, a, b > 0 and p > 1. For p = 2, such nonlocal equations
were first proposed by Kirchhoff [11] in 1883 and therefore were usually re-
ferred to as Kirchhoff equations. The existence, uniqueness and regularities of
solutions to Kirchhoff type equations were well studied since the pioneer work
of Lions [15]. We refer the interested reader to, for example, [4, 5, 17] and the
references therein. By taking ε = 0 formally, (1.2) becomes a Kirchhoff type
parabolic equation

ut −M
(∫

Ω

|∇u|pdx
)
∆pu = f(x, t, u). (1.3)

Problem (1.3) can also be used to describe the motion of a nonstationary fluid
or gas in a nonhomogeneous and anisotropic medium, and the nonlocal term
M appearing in (1.3) can describe a possible change in the global state of the
fluid or gas caused by its motion in the considered medium [6].

When f(x, t, u) ≡ f(x) and 0 < m ≤M(s) ≤M0 for all s ≥ 0, Chipot et al.
investigated the existence, uniqueness and asymptotic behavior of solutions to
(1.3) for both p = 2 and general p > 1 (see [2, 3]). The stationary problem
associated with (1.3) was also investigated in detail by using variational meth-
ods. On the other hand, when the nonlinearity f depends on the unknown u
and grows super-linearly with respect to u as it tends to infinity, the solutions
to (1.3) might blow up in finite time. Recently, Han and Li [10] considered
the global existence and finite time blow-up properties of solutions to (1.3)
with f(x, t, u) replaced by |u|q−1u when p = 2 (under homogeneous Dirichlet
boundary condition). By applying the potential well method first proposed by
Sattinger et al. [19,22] and then improved by Liu and Xu [16,24], they obtained
a threshold result for the solutions to (1.1) to exist globally or to blow up in
finite time when the initial energy is smaller than or equal to the depth of
the potential well. The decay rates of the global solutions were also derived.
Moreover, some sufficient conditions for the existence of global and finite time
blow-up solutions were also given for supercritical initial energy, by using some
variational tricks.

Inspired by some ideas from [6, 10, 13, 21, 24], we shall consider the global
existence and finite time blow-up of solutions to problem (1.1) for general p > 1,
by combining the modified potential well method with the classical Galerkin’s
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approximation and energy estimates. It is noteworthy that the results obtained
here are not trivial generalization of that of the case p = 2 in [10]. The
main difficulty is of course brought by the diffusion term, a combination of
a nonlocal term and a p-Laplacian, which usually prevent us from obtaining
the convergence ‖∇un‖p → ‖∇u‖p by the boundedness of the approximation

solutions {un} in W 1,p
0 (Ω). To overcome this difficulty, we will make full use

of the monotonicity of the nonlocal operator to recover the strong convergence
(see Theorem 1). In addition, by applying the concavity arguments introduced
by Levine [12] together with the properties of potential wells, we obtain the
existence of finite time blow-up solutions under proper initial conditions. When
the initial energy is supercritical, we will give some sufficient conditions for
problem (1.1) to admit solutions that vanish at infinity or solutions that blow
up in finite time, in terms of two variational numbers. As a byproduct we
show that for any M > d, there exists a u0 such that J(u0) > M and that the
solutions to problem (1.1) with u0 as initial datum blow up in finite time.

It is worth pointing out that there are also some important works on Kirch-
hoff type problems involving fractional Laplacian or p-Laplacian, among which
we only mention [18, 20, 23], where local and global well-posedness, long time
behaviors and finite time blow-up of weak solutions are investigated, under
some appropriate conditions.

The rest of this paper is organized as follows. In Section 2, some notations,
definitions, functionals and sets as well as some lemmas concerning their basic
properties are presented. Sections 3 and 4 will be devoted to the cases J(u0) <
d and J(u0) = d, respectively, and in Section 5, we shall consider the case
J(u0) > d, where J(u) is the potential energy functional that will be defined
in Section 2.

2 Preliminaries

In this paper, we denote by ‖u‖r the Lr(Ω) norm of a Lebesgue function
u ∈ Lr(Ω) for 1 ≤ r ≤ ∞, and by (·, ·) the inner product in L2(Ω). We will
equip W 1,p

0 (Ω) with the norm ‖u‖W 1,p
0 (Ω) = ‖∇u‖p, which is equivalent to the

standard one due to Poincaré’s inequality. Before stating the main results, we
first introduce some notations and definitions of some functionals and sets, and
then investigate their basic properties. For u ∈W 1,p

0 (Ω), define

J(u) =
a

p
‖∇u‖pp +

b

2p
‖∇u‖2pp −

1

q + 1
‖u‖q+1

q+1, (the potential energy functional)

I(u) = a‖∇u‖pp + b‖∇u‖2pp − ‖u‖
q+1
q+1, (the Nehari’s functional)

and the Nehari’s manifolds

N = {u ∈W 1,p
0 (Ω)| I(u) = 0, ‖∇u‖p 6= 0},

N+ = {u ∈W 1,p
0 (Ω)| I(u) > 0}, N− = {u ∈W 1,p

0 (Ω)| I(u) < 0}.

Math. Model. Anal., 24(2):195–217, 2019.
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Both J(u) and I(u) are well defined and continuous in W 1,p
0 (Ω) since q+1 < p∗.

The potential well and its corresponding set are defined respectively by

W = {u ∈W 1,p
0 (Ω)| I(u) > 0, J(u) < d} ∪ {0},

V = {u ∈W 1,p
0 (Ω)| I(u) < 0, J(u) < d},

where d is the depth of the potential well that can be characterized by

d = inf
06=u∈W 1,p

0 (Ω)
sup
λ≥0

J(λu) = inf
u∈N

J(u).

The positivity of d is given in Lemma 1.

Lemma 1. The depth d of the potential well W is positive.

Proof. Since q+1 < p∗, W 1,p
0 (Ω) can be embedded into Lq+1(Ω) continuously.

Denote by S > 0 the best embedding constant, i.e. ‖u‖q+1 ≤ S‖∇u‖p, ∀ u ∈
W 1,p

0 (Ω). Therefore, for any u ∈ N ,

a‖∇u‖pp + b‖∇u‖2pp = ‖u‖q+1
q+1 ≤ Sq+1‖∇u‖q+1

p ,

which implies ‖∇u‖p ≥
( a

Sq+1

)1/(q+1−p)
. Recalling that q + 1 > 2p, we have

J(u) =
a

p
‖∇u‖pp +

b

2p
‖∇u‖2pp −

1

q + 1

(
a‖∇u‖pp + b‖∇u‖2pp

)
=

a(q + 1− p)
p(q + 1)

‖∇u‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇u‖2pp

≥ a(q + 1− p)
p(q + 1)

( a

Sq+1

)p/(q+1−p)
+
b(q + 1− 2p)

2p(q + 1)

( a

Sq+1

)2p/(q+1−p)
.

Therefore,

d ≥ a(q + 1− p)
p(q + 1)

( a

Sq+1

)p/(q+1−p)
+
b(q + 1− 2p)

2p(q + 1)

( a

Sq+1

)2p/(q+1−p)
.

The proof is complete. ut

Next, for any δ > 0, define the modified Nehari’s functional and Nehari’s
manifold as follows:

Iδ(u) = δ(a+ b‖∇u‖pp)‖∇u‖pp − ‖u‖
q+1
q+1,

Nδ = {u ∈W 1,p
0 (Ω)| Iδ(u) = 0, ‖∇u‖p 6= 0}.

The modified potential wells and their corresponding sets are defined respec-
tively by

Wδ = {u ∈W 1,p
0 (Ω)| Iδ(u) > 0, J(u) < d(δ)} ∪ {0},

Vδ = {u ∈W 1,p
0 (Ω)| Iδ(u) < 0, J(u) < d(δ)}.
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Here d(δ) = inf
u∈Nδ

J(u) is the potential depth of Wδ, which is also positive.

For any s > d, define the (closed) sublevels of J by

Js = {u ∈W 1,p
0 (Ω)| J(u) ≤ s}.

By the definition of J(u), N , Js and d, we see that

N s , N ∩ Js =
{
u ∈ N :

a(q + 1− p)
p(q + 1)

‖∇u‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇u‖2pp ≤ s

}
6= ∅. (2.1)

We also define two variational numbers

λs = inf{‖u‖2 | u ∈ N s}, Λs = sup{‖u‖2 | u ∈ N s}. (2.2)

It is clear that λs is nonincreasing in s and Λs is nondecreasing in s.
Finally we introduce the following sets

B = {u0 ∈W 1,p
0 (Ω) | the solution u(t) to (1.1) blows up in finite time},

G0 = {u0 ∈W 1,p
0 (Ω) | the solution u(t) to (1.1) tends to 0 in W 1,p

0 (Ω)

as t→∞}.

When u0 ∈ G0, we say that the solutions to problem (1.1) vanish at infinity.
Since the equation in (1.1) is singular or degenerate when p 6= 2, classical

solutions may not exist in general. Therefore, we give the definition of weak
solutions.

Definition 1. (Weak solution) A function u = u(x, t) ∈ L∞(0, T ;W 1,p
0 (Ω))

with ut ∈ L2(0, T ;L2(Ω)) is called a weak solution of problem (1.1) on Ω ×
[0, T ), if u(x, 0) = u0 ∈W 1,p

0 (Ω) and satisfies

(ut, φ)+
(

(a+b

∫
Ω

|∇u|pdx)|∇u|p−2∇u,∇φ
)

=(|u|q−1u, φ), a.e. t ∈ (0, T ),

(2.3)
for any φ ∈W 1,p

0 (Ω). Moreover, u(x, t) satisfies∫ t

0

‖uτ‖22dτ + J(u(x, t)) = J(u0), a. e. t ∈ (0, T ). (2.4)

The following lemmas show some basic properties of the functionals and
sets defined above, and will play a fundamental role in the proof of the main
results. Most of the proofs are more or less standard and hence are omitted.
Interested readers may refer to [10,24] for the details.

Lemma 2. Let 2p − 1 < q < p∗ − 1. Then for any u ∈ W 1,p
0 (Ω), ‖∇u‖p 6= 0,

we have

(i) limλ→0+ J(λu) = 0, limλ→+∞ J(λu) = −∞.
(ii) there exists a unique λ∗ = λ∗(u) > 0 such that d

dλJ(λu)|λ=λ∗ = 0.
J(λu) is increasing on 0 < λ ≤ λ∗, decreasing on λ∗ ≤ λ < +∞
and takes its maximum at λ = λ∗.

Math. Model. Anal., 24(2):195–217, 2019.



200 J. Li and Y. Han

(iii) I(λu) > 0 on 0 < λ < λ∗, I(λu) < 0 on λ∗ < λ < +∞ and I(λ∗u) = 0.

Lemma 3. Let 2p−1 < q < p∗−1, u ∈W 1,p
0 (Ω) and r(δ) =

( δb

Sq+1

)1/(q+1−2p)

(S is the constant given in Lemma 1). Then we have

(i) If 0 ≤ ‖∇u‖p ≤ r(δ), then Iδ(u) ≥ 0.
(ii) If Iδ(u) < 0, then ‖∇u‖p > r(δ).

(iii) If Iδ(u) = 0, then ‖∇u‖p = 0 or ‖∇u‖p ≥ r(δ).

Lemma 4. The function d(δ) satisfies the following properties:

(i) lim
δ→0+

d(δ) = 0, lim
δ→+∞

d(δ) = −∞.
(ii) d(δ) is increasing on 0 < δ ≤ 1, decreasing on δ ≥ 1, and takes its

maximum d = d(1) at δ = 1.

Lemma 5. Assume u ∈ W 1,p
0 (Ω), 0 < J(u) < d, and δ1 < 1 < δ2 are the two

roots of the equation d(δ) = J(u). Then the sign of Iδ(u) does not change for
δ1 < δ < δ2.

Lemma 6. Assume that u(x, t) is a weak solution to problem (1.1) with 0 <
J(u0) < d and T is the maximal existence time. Let δ1 < 1 < δ2 be the two
roots of the equation d(δ) = J(u0).

(i) If I(u0) > 0, then u(x, t) ∈Wδ for δ1 < δ < δ2 and 0 < t < T .
(ii) If I(u0) < 0, then u(x, t) ∈ Vδ for δ1 < δ < δ2 and 0 < t < T .

Lemma 7. Let 2p < q + 1 < p∗. Then

(i) 0 is away from both N and N−, i.e. dist(0,N ) > 0, dist(0,N−) > 0.
(ii) For any s > 0, the set Js ∩N+ is bounded in W 1,p

0 (Ω).

Proof. (i) For any u ∈ N , by the definition of d we have

d ≤ J(u) =
a

p
‖∇u‖pp +

b

2p
‖∇u‖2pp −

1

q + 1

(
a‖∇u‖pp + b‖∇u‖2pp

)
=

a(q + 1− p)
p(q + 1)

‖∇u‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇u‖2pp .

Noticing that q + 1 > 2p, the above inequality implies that there exists a
constant c0 > 0 such that dist(0,N ) = inf

u∈N
‖∇u‖p ≥ c0.

For any u ∈ N−, we have ‖∇u‖p 6= 0, which implies that

a‖∇u‖pp < a‖∇u‖pp + b‖∇u‖2pp < ‖u‖q+1
q+1 ≤ Sq+1‖∇u‖q+1

p ,

or equivalently

‖∇u‖p ≥
( a

Sq+1

)1/(q+1−p)
.

Here S > 0 is given in Lemma 1. Therefore, dist(0,N−) = inf
u∈N−

‖∇u‖p > 0.
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(ii) For any u ∈ Js ∩N+, we have J(u) ≤ s and I(u) > 0. Therefore,

s ≥ J(u) =
a(q + 1− p)
p(q + 1)

‖∇u‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇u‖2pp +

1

q + 1
I(u)

>
a(q + 1− p)
p(q + 1)

‖∇u‖pp,

which yields

‖∇u‖pp <
p(q + 1)s

a(q + 1− p)
.

The proof is complete. ut

Lemma 8. Let 2p < q + 1 < p∗. Then for any s > d, λs and Λs defined in
(2.2) satisfy

0 < λs ≤ Λs < +∞. (2.5)

Proof. The following Gagliardo-Nirenberg’s inequality for u ∈ W 1,p
0 (Ω) is

needed when showing the positivity of λs (see [1] page 241),

‖u‖q+1
q+1 ≤ C‖∇u‖α(q+1)

p ‖u‖(1−α)(q+1)
2 , ∀ u ∈W 1,p

0 (Ω), (2.6)

where α is determined by ( 1
2 + 1

n −
1
p )α = 1

2 −
1
q+1 and C is a positive constant

depending only on n, p and q. Since p > 2n/(n+ 2) and 2 < 2p < q + 1 < p∗,
it is easy to check that α ∈ (0, 1). Therefore, for any s > d and u ∈ N s, it
follows from (2.6) that

a‖∇u‖pp < ‖u‖
q+1
q+1 ≤ C‖∇u‖α(q+1)

p ‖u‖(1−α)(q+1)
2 ,

which then guarantees that

a‖∇u‖p−α(q+1)
p ≤ C‖u‖(1−α)(q+1)

2 . (2.7)

By Lemma 7 (i) and (2.1) we see that the left-hand side of (2.7) is bounded
away from 0 no matter what the sign of p−α(q+1) is. This proves λs > 0. The
fact that Λs <∞ just follows from (2.1) and the Sobolev embedding inequality
‖u‖2 ≤ C∗‖∇u‖p since p > 2n/(n + 2) is equivalent to 2 < p∗. The proof is
complete. ut

In the last part of this section, we investigate some basic properties of the
nonlocal p-Laplacian −(a+ b‖∇u‖pp)∆pu in (1.1), which will be used to prove
the uniqueness of bounded weak solutions and are also of independent interest.

Consider the following functional:

E(u) =
(a
p

+
b

2p

∫
Ω

|∇u|pdx
)∫

Ω

|∇u|pdx, u ∈W 1,p
0 (Ω).

It is easy to see that E ∈ C1(W 1,p
0 (Ω),R), and the nonlocal operator is the

Fréchet derivative operator of E in the weak sense.

Math. Model. Anal., 24(2):195–217, 2019.
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Denote L = E′ : W 1,p
0 (Ω)→W−1,q(Ω), then ∀ u, v ∈W 1,p

0 (Ω) we have

〈L(u), v〉 = (a+ b‖∇u‖pp)
∫
Ω

|∇u|p−2∇u · ∇vdx

= M(‖∇u‖pp)
∫
Ω

|∇u|p−2∇u · ∇vdx.

Here q is the Hölder’s conjugate of p and 〈, 〉 denotes the pairing between
W−1,q(Ω) and W 1,p

0 (Ω).

Lemma 9. The nonlocal p-Laplacian L has the following properties:
(i) L : W 1,p

0 (Ω) → W−1,q(Ω) is a continuous, bounded and satisfies for
any u, v ∈W 1,p

0 (Ω) that

〈L(u)− L(v), u− v〉 ≥
[
M(‖∇u‖pp)‖∇u‖p−1p

−M(‖∇v‖pp)‖∇v‖p−1p

](
‖∇u‖p − ‖∇v‖p

)
. (2.8)

(ii) L is a mapping of type S+, i.e. if un ⇀ u weakly in W 1,p
0 (Ω) and

lim
n→∞

〈L(un), un − u〉 ≤ 0, then un → u strongly in W 1,p
0 (Ω).

Proof. (i) It is obvious that L is continuous and bounded. For any u, v ∈
W 1,p

0 (Ω), by using Hölder’s inequality we have

〈L(u)− L(v), u− v〉 =

∫
Ω

(M(‖∇u‖pp)|∇u|p−2∇u−M(‖∇v‖pp)|∇v|p−2∇v)

× (∇u−∇v)dx = M(‖∇u‖pp)‖∇u‖pp −M(‖∇u‖pp)
∫
Ω

|∇u|p−2∇u∇vdx

+M(‖∇v‖pp)‖∇v‖pp −M(‖∇v‖pp)
∫
Ω

|∇v|p−2∇v∇udx

≥M(‖∇u‖pp)‖∇u‖pp −M(‖∇u‖pp)‖∇u‖p−1p ‖∇v‖p
+M(‖∇v‖pp)‖∇v‖pp −M(‖∇v‖pp)‖∇v‖p−1p ‖∇u‖p
≥
[
M(‖∇u‖pp)‖∇u‖p−1p −M(‖∇v‖pp)‖∇v‖p−1p

](
‖∇u‖p − ‖∇v‖p

)
.

Therefore, (2.8) is true.
(ii) If un ⇀ u weakly in W 1,p

0 (Ω) and lim
n→∞

〈L(un), un − u〉 ≤ 0, then we

have
lim
n→∞

〈L(un)− L(u), un − u〉 ≤ 0. (2.9)

Noticing that M(s) is strictly monotone with respect to s, we obtain from (2.8)
and (2.9) that ‖∇un‖p → ‖∇u‖p as n → ∞, which, together with the weak

convergence un ⇀ u in W 1,p
0 (Ω), implies that un → u strongly in W 1,p

0 (Ω).
Hence L is an S+ operator. The proof is complete. ut

3 J(u0) < d

In this section we consider the behaviors of the solution to problem (1.1) under
the condition J(u0) < d and give the threshold result for the solutions to exist
globally or to blow up in finite time.
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Theorem 1. (Global existence for J(u0) < d.) Assume that a, b > 0, p >

max{ 2n

n+ 2
, 1}, 2p − 1 < q < p∗ − 1 and u0 ∈ W 1,p

0 (Ω). If J(u0) < d and

I(u0) > 0, then problem (1.1) admits a global solution u ∈ L∞(0,∞;W 1,p
0 (Ω))

with ut ∈ L2(0,∞;L2(Ω)) and u(t) ∈ W for 0 ≤ t < ∞. Moreover, ‖u‖22 ≤[
‖u0‖2−2p2 + C∗(p − 1)t

]−1/(p−1)
, where C∗ > 0 will be given in the proof. In

addition, the weak solution is unique when it is bounded.

Proof. We will divide the proof into three steps for the convenience of the
readers.

Step 1. Global existence. Global existence of weak solutions will be
proved by combining Galerkin’s approximation with a priori estimates. Let
{φj(x)} be a system of basis of W 1,p

0 (Ω) which is orthogonal in L2(Ω) and
construct the approximate solutions um(x, t) to problem (1.1)

um(x, t) =

m∑
j=1

amj (t)φj(x), m = 1, 2, · · · ,

satisfying for j = 1, 2, · · · ,m

(umt , φj) +M(‖∇um‖pp)(|∇um|p−2∇um,∇φj) = (|um|q−1um, φj), (3.1)

um(x, 0) =

m∑
j=1

bmj φj(x)→ u0(x) in W 1,p
0 (Ω). (3.2)

Multiplying (3.1) by d
dta

m
j (t), summing for j from 1 to m, and integrating with

respect to t from 0 to t, we obtain∫ t

0

‖umτ ‖22dτ + J(um) = J(um(x, 0)), 0 ≤ t <∞.

Recalling the convergence of um(x, 0)→ u0(x) in W 1,p
0 (Ω), we have

J(um(x, 0))→ J(u0(x)) < d and I(um(x, 0))→ I(u0(x)) > 0.

Thus, for sufficiently large m and for any 0 ≤ t <∞, we obtain∫ t

0

‖umτ ‖22dτ + J(um(x, t)) = J(um(x, 0)) < d and I(um(x, 0)) > 0. (3.3)

We first claim that for sufficiently large m that um(x, t) ∈W for 0 ≤ t <∞.
Otherwise, there exists a t0 ∈ (0, T ) such that um(x, t0) ∈ ∂W . Noticing that
0 is an interior point of W , we thus have

(i) I(um(x, t0)) = 0, ‖∇um(x, t0)‖p 6= 0, or (ii) J(um(x, t0)) = d.

From (3.3) it follows that J(um(x, t0)) < d. Therefore, case (ii) is impossible.
On the other hand, if I(um(x, t0)) = 0 and ‖∇um(x, t0)‖p 6= 0, then by the
definition of d we obtain J(um(x, t0)) ≥ d, again contradictive with (3.3).
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Since um(x, t) ∈ W for sufficiently large m and 0 ≤ t < ∞, we have
I(um(x, t)) > 0 for all t ≥ 0. Then it follows from the following equality

J(um) =
a(q + 1− p)
p(q + 1)

‖∇um‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇um‖2pp +

1

q + 1
I(um)

and (3.3) that∫ t

0

‖umτ ‖22dτ +
a(q + 1− p)
p(q + 1)

‖∇um‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇um‖2pp < d,

for sufficiently large m and for any 0 ≤ t <∞, which then implies

‖um‖p
W 1,p

0 (Ω)
≤ dp(q + 1)

a(q + 1− p)
, 0 ≤ t <∞, (3.4)∫ t

0

‖umτ ‖22dτ < d, 0 ≤ t <∞, (3.5)

‖|um|q−1um‖(q+1)/q = ‖um‖qq+1 ≤ Sq‖um‖
q

W 1,p
0 (Ω)

≤ Sq
( dp(q + 1)

a(q + 1− p)

)q/p
, 0 ≤ t <∞. (3.6)

By (3.4) we also see that there exists a constant C > 0, independent of m and
t such that

‖M(‖∇um‖pp)|∇um|p−2∇um‖p/(p−1)
= ‖(a+ b‖∇um‖pp)|∇um|p−2∇um‖p/(p−1) ≤ C. (3.7)

Therefore, by (3.4)–(3.7), the standard diagonal method and Aubin-Lions’ com-
pactness embedding theorem [14](since p > 2n/(n+ 2)), we get a subsequence
of {um} (still denoted by {um}) such that for each T > 0, as m→∞,

umt ⇀ ut, weakly in L
2(0, T ;L2(Ω)),

um ⇀ u, weakly∗ in L∞(0, T ;W 1,p
0 (Ω)),

um → u, strongly in L2(Ω × (0, T )) and a.e. in Ω × (0, T ),

|um|q−1um ⇀ |u|q−1u, weakly in L(q+1)/q(Ω × (0, T )),

M(‖∇um‖pp)|∇um|p−2∇um ⇀ ξ, weakly∗ in L∞(0, T ;L
p

(p−1) (Ω)).

(3.8)

We will show that u is a weak solution to problem (1.1) for any T > 0. For
this, fix T > 0 and denote QT = Ω× (0, T ). First, since p > 2n/(n+ 2), we see
from (3.4) that

∫
Ω
|um(x, T )|2dx ≤ C. Therefore, there exists a subsequence

of {um(x, T )} (which we still denote by {um(x, T )}) and a function v ∈ L2(Ω)
such that um(x, T ) ⇀ v weakly in L2(Ω). Then for any ϕ(x) ∈ C∞0 (Ω) and
η(t) ∈ C1[0, T ], it holds that∫∫

QT

umt ϕηdxdt =

∫
Ω

[
um(x, T )η(T )− um(x, 0)η(0)

]
ϕdx−

∫∫
QT

umϕηtdxdt.
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By letting m→∞ in the above inequality, we obtain∫
Ω

(v − u(x, T ))η(T )ϕdx−
∫
Ω

(u0(x)− u(x, 0))η(0)ϕdx = 0.

Setting η(T ) = 1, η(0) = 0 or η(T ) = 0, η(0) = 1, and by the density of C∞0 (Ω)
in L2(Ω), we have v = u(x, T ) and u(x, 0) = u0(x) for almost every x ∈ Ω. By
the weakly lower semi-continuity of the L2(Ω) norm we get∫

Ω

u2(x, T )dx ≤ lim inf
m→∞

∫
Ω

|um(x, T )|2dx. (3.9)

Next we will show that

lim
m→∞

∫∫
QT

|um|q+1dxdt =

∫∫
QT

|u|q+1dxdt. (3.10)

Recalling (3.4) and the fact that q+1 < p∗, we have for any measurable subset
E ⊂ QT that∫∫

E

|um|q+1dxdt ≤
(∫∫

E

|um|p
∗
dxdt

)(q+1)/p∗

|E|(p
∗−q−1)/p∗

≤
(∫∫

QT

|um|p
∗
dxdt

)(q+1)/p∗

|E|(p
∗−q−1)/p∗

≤ Sq+1
1

[ ∫ T

0

(∫
Ω

|∇um|pdx
)p∗/p

dt
](q+1)/p∗

|E|(p
∗−q−1)/p∗≤C|E|(p

∗−q−1)/p∗ ,

which shows that {|um|q+1}∞m=1 is equi-integrable in L1(QT ). Here S1 > 0
is the embedding constant from W 1,p

0 (Ω) to Lp
∗
(Ω) and |E| is the Lebesgue’s

measure of E. Since um(x, t)→ u(x, t) a.e. in QT , the Vitali’s Theorem implies
that (3.10) is true.

Set Vk = span{φ1, φ2, · · · , φk}. Then for any w ∈ C(0, T ;Vk)(k ≤ m), it
follows from (3.1) that∫∫

QT

[
umt w+M(‖∇um‖pp)|∇um|p−2∇um∇w

]
dxdt=

∫∫
QT

|um|q−1umwdxdt.

(3.11)
In particular, we have∫∫

QT

[
umt u

m +M(‖∇um‖pp)|∇um|p
]
dxdt =

∫∫
QT

|um|q+1dxdt. (3.12)

Letting m→∞ in (3.11) and noticing (3.8) we obtain∫∫
QT

[
utw + ξ∇w

]
dxdt =

∫∫
QT

|u|q−1uwdxdt. (3.13)

Choosing w = um in (3.13), letting m→∞ and making use of (3.8) again we
arrive at

1

2

∫
Ω

(u2(x, T )− u20(x))dx+

∫∫
QT

ξ∇udxdt =

∫∫
QT

|u|q+1dxdt. (3.14)
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Our next goal is to show that ξ = M(‖∇u‖pp)|∇u|p−2∇u. For this, set

Tm =

∫∫
QT

M(‖∇um‖pp)(|∇um|p−2∇um − |∇u|p−2∇u)(∇um −∇u)dxdt.

Then Tm ≥ 0. We aim to show that Tm → 0 as m → ∞, which in turn
implies that ∇um → ∇u strongly in (Lp(QT ))n. Indeed, it is easily seen by the
definition of Tm that

a

∫∫
QT

(|∇um|p−2∇um − |∇u|p−2∇u)(∇um −∇u)dxdt ≤ Tm.

If p ≥ 2, then∫∫
QT

(|∇um−∇u|pdxdt≤C
∫∫

QT

(|∇um|p−2∇um−|∇u|p−2∇u)(∇um−∇u)dxdt.

If 2n/(n+ 2) < p < 2, then∫∫
QT

(|∇um −∇u|pdxdt ≤ C‖[(|∇um|p−2∇um − |∇u|p−2∇u)

× (∇um −∇u)]p/2‖L2/p(QT )‖(|∇u
m|p + |∇u|p)(2−p)/2‖L2/(2−p)(QT ).

Here the positive constant C depends only on p. Noticing that ‖(|∇um|p +
|∇u|p)(2−p)/2‖L2/(2−p)(QT ) is uniformly bounded in m, we obtain the strong
convergence ∇um → ∇u in (Lp(QT ))n from Tm → 0 for both p ≥ 2 and
2n/(n+ 2) < p < 2.

By (3.12) we can rewrite Tm as follows

Tm =

∫∫
QT

|um|q+1dxdt− 1

2

∫
Ω

(|um(x, T )|2 − |um(x, 0)|2)dx

−
∫∫

QT

M(‖∇um‖pp)|∇um|p−2∇um∇udxdt

−
∫∫

QT

M(‖∇um‖pp)|∇u|p−2∇u(∇um −∇u)dxdt.

It can be concluded from (3.4) that {M(‖∇um‖pp)}∞m=1 in equi-integrable and
uniformly bounded in L1(0, T ). Thus, there exists a subsequence of {um} (still
denoted by {um}) and a measurable function m(t) such that M(‖∇um‖pp) →
m(t) for almost a.e. t ∈ (0, T ). Since

|M(‖∇um‖pp)|∇u|p−2∇u|p/(p−1) ≤ C|∇u|p ∈ L1(QT ),

it can be deduced by Lebesgue’s dominated convergence theorem that

M(‖∇um‖pp)|∇u|p−2∇u→ m(t)|∇u|p−2∇u strongly in (Lp/(p−1)(QT ))n.

(3.15)
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Therefore, by (3.9), (3.10), (3.14) and (3.15) we have

0 ≤ lim sup
m→∞

Tm

≤
∫∫

QT

(|u|q+1 − ξ∇u)dxdt+
1

2

∫
Ω

u20(x)dx− 1

2

∫
Ω

u2(x, T )dx = 0,

which implies that lim
m→∞

Tm = 0.

To complete the proof of Step 1, it remains to show m(t) = M(‖∇u‖pp)
and ξ = M(‖∇u‖pp)|∇u|p−2∇u. The strong convergence of ∇um → ∇u in

(Lp/(p−1)(QT ))n implies∫
Ω

|∇um −∇u|pdx→ 0,

∫
Ω

|∇um|pdx→
∫
Ω

|∇u|pdx a.e. in (0, T ), (3.16)

∇um → ∇u a.e. in QT . (3.17)

The fact that m(t) = M(‖∇u‖pp) follows from (3.16). By (3.17) we have

M(‖∇um‖pp)|∇um|p−2∇um →M(‖∇u‖pp)|∇u|p−2∇u a.e. in QT ,

which, together with (3.8) implies that ξ = M(‖∇u‖pp)|∇u|p−2∇u.
By (3.13) we obtain, for all w ∈ C1(0, T ;C∞0 (Ω)) that∫∫

QT

[
utw +M(‖∇u‖pp)|∇u|p−2∇u∇w

]
dxdt =

∫∫
QT

|u|q−1uwdxdt.

By the arbitrariness of w ∈ C1(0, T ;C∞0 (Ω)) and the density of C∞0 (Ω) in
W 1,p

0 (Ω), we see that

(ut, φ)+
(

(a+b

∫
Ω

|∇u|pdx)|∇u|p−2∇u,∇φ
)

= (|u|q−1u, φ), a.e. t ∈ (0, T ),

for any φ ∈W 1,p
0 (Ω).

To prove (2.4) we first assume that u(x, t) is smooth enough such that
ut ∈ L2(0, T ;W 1,p

0 (Ω)). Choosing φ = ut as a test function and integrating
(2.3) over [0, t] one sees that (2.4) is true. By the density of L2(0, T ;W 1,p

0 (Ω))
in L2(Ω × (0, T )) it is known that (2.4) also holds for weak solutions of (1.1).
Therefore u is a global weak solution of problem (1.1).

Step 2. Decay rate. Taking φ = u in (2.1), we get

1

2

d

dt
‖u‖22 = (ut, u) = −a‖∇u‖pp − b‖∇u‖2pp + ‖u‖q+1

q+1 = −I(u).

From Lemma 6 it follows that u(x, t) ∈ Wδ for δ1 < δ < δ2 and 0 < t < ∞
under the condition J(u0) < d and I(u0) > 0. Thus we have Iδ1(u) ≥ 0 for
0 < t <∞. Therefore,

1

2

d

dt
‖u‖22 = −I(u) = a(δ1 − 1)‖∇u‖pp + b(δ1 − 1)‖∇u‖2pp − Iδ1(u)

≤ b(δ1 − 1)

S2p
2

‖u‖2p2 ,
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where S2 > 0 is the best embedding constant from W 1,p
0 (Ω) to L2(Ω). Inte-

grating the above inequality over [0, t] we see that

‖u‖22 ≤
[
‖u0‖2−2p2 + C∗(p− 1)t

]−1/(p−1)
,

where C∗ = 2b(1− δ1)/S2p
2 > 0.

Step 3. Uniqueness of bounded solution. To prove the uniqueness
of bounded weak solution, we assume that both u and v are bounded weak
solutions of problem (1.1). Then, for any ϕ ∈W 1,p

0 (Ω), we have

(ut, ϕ) +M(‖∇u‖pp)(|∇u|p−2∇u,∇ϕ) = (|u|q−1u, ϕ),

(vt, ϕ) +M(‖∇v‖pp)(|∇v|p−2∇v,∇ϕ) = (|v|q−1v, ϕ).

Subtracting the above two equalities, taking ϕ = u− v ∈W 1,p
0 (Ω), integrating

over (0, t) for any t > 0 and recalling (2.8), we obtain∫∫
Qt

(u− v)2τdxdτ +

∫ t

0

[
M(‖∇u‖pp)‖∇u‖p−1p −M(‖∇v‖pp)‖∇v‖p−1p

]
×
(
‖∇u‖p − ‖∇v‖p

)
dτ ≤

∫∫
Qt

(|u|q−1u− |v|q−1v)(u− v)dxdτ. (3.18)

Since (u − v)(x, 0) = 0 and the second part of the left hand side of (3.18) is
nonnegative, we obtain, with the help of the boundedness of u and v, that∫

Ω

(u− v)2(x, t)dx ≤ C
∫∫

Qt

(u− v)2(x, t)dxdt,

where C > 0 is a constant depending only on q and the bound of u, v. It then
follows from Gronwall’s inequality that∫

Ω

(u− v)2(x, t)dx = 0.

Thus u = v a.e. in Ω × (0,∞) and the whole proof is complete. ut

Theorem 2. (Blow-up for J(u0) < d.) Assume a, b > 0, p > max{2n/(n +
2), 1}, 2p − 1 < q < p∗ − 1 and u0 ∈ W 1,p

0 (Ω). Let u be a weak solution of
problem (1.1) with u0 ∈ W 1,p

0 (Ω). If J(u0) < d and I(u0) < 0, then there
exists a finite time T such that u blows up at T in the sense that

lim
t→T

∫ t

0

‖u‖22dτ = +∞.

Proof. Suppose that u is a global weak solution of problem (1.1) with J(u0) <
d, I(u0) < 0 and define

M(t) =

∫ t

0

‖u‖22dτ,
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then

M ′(t) = ‖u‖22, (3.19)

M ′′(t) = 2(ut, u) = −2(a‖∇u‖pp + b‖∇u‖2pp − ‖u‖
q+1
q+1) = −2I(u). (3.20)

Notice that

J(u) =
a(q + 1− p)
p(q + 1)

‖∇u‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇u‖2pp +

1

q + 1
I(u). (3.21)

By (2.2), (3.20) and (3.21), we can get

M ′′(t) =
2a(q + 1− p)

p
‖∇u‖pp +

b(q + 1− 2p)

p
‖∇u‖2pp − 2(q + 1)J(u)

=
2a(q + 1− p)

p
‖∇u‖pp +

b(q + 1− 2p)

p
‖∇u‖2pp

+2(q + 1)

∫ t

0

‖uτ‖22dτ − 2(q + 1)J(u0)

≥ b(q + 1− 2p)

p
‖∇u‖2pp + 2(q + 1)

∫ t

0

‖uτ‖22dτ − 2(q + 1)J(u0).

Applying the basic inequality s ≤ sα + 1 for any s > 0 and α > 1, we further
have

M ′′(t)

2(q + 1)
≥ b(q + 1− 2p)

2(q + 1)p
(‖∇u‖2p − 1) +

∫ t

0

‖uτ‖22dτ − J(u0)

≥ b(q + 1− 2p)

2(q + 1)pS2
2

‖u‖22 +

∫ t

0

‖uτ‖22dτ −
[
J(u0) +

b(q + 1− 2p)

2(q + 1)p

]
=

b(q + 1− 2p)

2(q + 1)pS2
2

M ′(t) +

∫ t

0

‖uτ‖22dτ −
[
J(u0) +

b(q + 1− 2p)

2(q + 1)p

]
.

On the other hand,

(M ′(t))2 = 4

(∫ t

0

∫
Ω

uτudxdτ

)2

+ 2‖u0‖22M ′(t)− ‖u0‖42.

Hence, by combining the above two inequalities and applying Cauchy-Schwartz
inequality we have

M ′′(t)M(t)− q + 1

2
M ′(t)2 ≥ 2(q + 1)

∫ t

0

‖uτ‖22dτ
∫ t

0

‖u‖22dτ

−
(

2(q + 1)J(u0) +
b(q + 1− 2p)

p

)
M(t) +

b(q + 1− 2p)

pS2
2

M ′(t)M(t)

− 2(q + 1)

(∫ t

0

∫
Ω

uτudxdτ

)2

− (q + 1)‖u0‖22M ′(t) +
q + 1

2
‖u0‖42

≥ b(q + 1− 2p)

pS2
2

M ′(t)M(t)−
[
2(q + 1)J(u0) +

b(q + 1− 2p)

p

]
M(t)

− (q + 1)‖u0‖22M ′(t). (3.22)
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The rest of the proof will be divided into two cases.
(i) 0 < J(u0) < d. By Lemma 5 we know that u(t) ∈ Vδ for t ≥ 0 and

δ1 < δ < δ2, where δ1 < 1 < δ2 are the two roots of d(δ) = J(u0). Hence
Iδ2(u) ≤ 0 and ‖∇u‖p ≥ r(δ2) for t ≥ 0. Then it follows from (3.20) that for
t ≥ 0

M ′′(t) = −2I(u) = 2a(δ2 − 1)‖∇u‖pp + 2b(δ2 − 1)‖∇u‖2pp − 2Iδ2(u)

≥ 2a(δ2 − 1)rp(δ2),

which guarantees that

M ′(t) ≥ 2a(δ2 − 1)rp(δ2)t, M(t) ≥ a(δ2 − 1)rp(δ2)t2.

Therefore, there exists a t∗ > 0 such that for t ≥ t∗, we have

b(q + 1− 2p)

2pS2
2

M(t) > (q + 1)‖u0‖22,

b(q + 1− 2p)

2pS2
2

M ′(t) > 2(q + 1)J(u0) +
b(q + 1− 2p)

p
.

Consequently, from (3.22), we obtain

M ′′(t)M(t)− q + 1

2
M ′(t)2 > 0, t ≥ t∗. (3.23)

(ii) J(u0) ≤ 0. We will first show that if J(u0) < 0 or J(u0) = 0 with
‖∇u0‖p 6= 0, then every solution u(x, t) to problem (1.1) belongs to Vδ for any

0 < δ <
q + 1

2p
and 0 ≤ t < T , where T > 0 is the maximum existence time.

Indeed, from

‖∇u‖pp
q + 1

{a(q + 1− pδ)
p

+
b(q + 1− 2pδ)

2p
‖∇u‖pp

}
+
Iδ(u)

q + 1
= J(u) ≤ J(u0)

we see that if J(u0) < 0, then J(u(x, t)) < 0 < d(δ) and I(u(x, t)) < 0 for all
0 ≤ t < T , which implies that u(x, t) ∈ Vδ. If J(u0) = 0 and ‖∇u0‖p 6= 0, then
J(u(x, t)) ≤ 0 for all 0 ≤ t < T , which also implies that there exists a constant
c > 0 such that ‖∇u(·, t)‖p ≥ c. From (3.23) we again see that I(u(x, t)) < 0
and J(u(x, t)) ≤ 0 < d(δ), i.e. u(x, t) ∈ Vδ. Therefore, with δ2 replaced by δ,
we can proceed similarly to case (i) to show that (3.23) still holds for sufficiently
large t.

From (3.23) it follows by Levine’s concavity argument (see [12]) that M(t)
can not remain finite for all t > t∗, and therefore reaches a contradiction. The
proof is complete. ut

Remark 1. (Sharp condition for J(u0) < d.) Let a, b > 0, p > max{2n/(n +
2), 1}, 2p − 1 < q < p∗ − 1 and u0 ∈ W 1,p

0 (Ω). Assume that J(u0) < d.
If I(u0) > 0, problem (1.1) admits a global weak solution; if I(u0) < 0, all
solutions to problem (1.1) blow up in finite time.
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4 J(u0) = d

The invariance of W under the semi-flow of problem (1.1) can not be proved
in general for the critical case J(u0) = d. However, by using the method of
approximation, we can still obtain the global existence of weak solutions.

Theorem 3. (Global existence for J(u0) = d.) Assume that a, b > 0, p >
max{2n/(n+ 2), 1}, 2p− 1 < q < p∗ − 1 and u0 ∈W 1,p

0 (Ω). If J(u0) = d and
I(u0) ≥ 0, then problem (1.1) admits a global solution u ∈ L∞(0,∞;W 1,p

0 (Ω))
with ut ∈ L2(0,∞;L2(Ω)) and u(t) ∈W = W ∪∂W for 0 ≤ t <∞. Moreover,
if I(u(x, t)) > 0 for all t > 0, then there exists a t0 > 0 such that ‖u‖22 ≤[
‖u(t0)‖2−2p2 + C∗(p− 1)(t− t0)

]−1/(p−1)
, where C∗ > 0 is the same constant

as that is Theorem 1. If not, then there exists a solution that vanishes in finite
time. In addition, the weak solution is unique if it is bounded.

Proof. Let λk = 1 − 1
k , k = 1, 2, . . .. Consider the following initial boundary

value problem
ut −M

( ∫
Ω
|∇u|pdx

)
∆pu = |u|q−1u, (x, t) ∈ Ω × (0, T ),

u = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = λku0(x) , uk0 , x ∈ Ω.

Since I(u0) ≥ 0, it can be deduced from Lemma 2 (iii) that there exists a
unique λ∗ = λ∗(u0) ≥ 1 such that I(λ∗u0) = 0. Noticing that λk < 1 ≤ λ∗,
we get I(uk0) = I(λku0) > 0 and J(uk0) = J(λku0) < J(u0) = d. In view
of Theorem 1, it follows that for each k problem (1.1) admits a global weak
solution uk ∈ L∞(0,∞;W 1,p

0 (Ω)) with ukt ∈ L2(0,∞;L2(Ω)) and uk ∈ W for
0 ≤ t <∞ satisfying∫ t

0

‖ukτ‖22dτ + J(uk) = J(uk0) < d.

Applying similar arguments to those in Theorem 1 we see that there exist a
subsequence of {uk} and a function u, such that u is a weak solution of problem
(1.1) with I(u) ≥ 0 and J(u) ≤ d for 0 ≤ t <∞. The proof of the uniqueness
is the same as that in Theorem 1.

Let us derive the decay rate of ‖u‖22. First, suppose that I(u) > 0 for
0 < t < ∞, then u(x, t) does not vanish in finite time. Taking ϕ = u in (2.1),
we have

1

2

d

dt
‖u‖22 =

∫
Ω

utudx = −I(u) < 0,

which implies that ut 6≡ 0. Therefore, for t0 > 0 suitably small we obtain by
(2.2) that

0 < J(u(t0)) = d−
∫ t0

0

‖uτ‖22dτ = d1 < d.
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Taking t = t0 as the initial time and by Lemma 6 (i), we see that u ∈ Wδ for
δ1 < δ < δ2 and t > t0, where δ1 < 1 < δ2 are the two roots of d(δ) = d1.
Hence, Iδ1(u) ≥ 0 for t > t0 and

1

2

d

dt
‖u‖22 = −I(u) = a(δ1 − 1)‖∇u‖pp + b(δ1 − 1)‖∇u‖2pp − Iδ1(u)

≤ b(δ1 − 1)

S2p
2

‖u‖2p2 .

Integrating the above inequality over [t0, t] for any t > t0 yields

‖u‖22 ≤
[
‖u(t0)‖2−2p2 + C∗(p− 1)(t− t0)

]−1/(p−1)
.

Next, suppose that I(u) > 0 for 0 < t < t∗ and I(u(x, t∗)) = 0. Obviously,

ut 6≡ 0 for 0 < t < t∗ and
∫ t∗
0
‖uτ‖22dτ > 0. Applying (2.2) again, we have

J(u(t∗)) = d−
∫ t∗

0

‖uτ‖22dτ = d1 < d.

By the variational formula of d, we know ‖∇u(t∗)‖p = 0, which implies u(t∗) =
0. Define u(x, t) ≡ 0 for all t ≥ t∗. Then it is seen that such a u(x, t) is a weak
solution of (1.1) that vanishes in finite time. The proof is complete. ut

Theorem 4. (Blow-up for J(u0) = d.) Assume a, b > 0, p > max{2n/(n +
2), 1}, 2p − 1 < q < p∗ − 1 and u0 ∈ W 1,p

0 (Ω). If J(u0) = d and I(u0) < 0,
then there exists a finite time T such that u blows up at T in the sense that
lim
t→T

∫ t
0
‖u‖22dτ = +∞.

Proof. Similarly to the proof of Theorem 2, we can get

M ′′(t)M(t)− q + 1

2
M ′(t)2 ≥

{b(q + 1− 2p)

2pS2
2

M ′(t)

−
(

2(q + 1)d+
b(q + 1− 2p)

p

)}
M(t)

+
{b(q + 1− 2p)

2pS2
2

M(t)− (q + 1)‖u0‖22
}
M ′(t). (4.1)

Since J(u0) = d, I(u0) < 0, by the continuity of J(u) and I(u) with respect
to t, there exists a t0 > 0 such that J(u(x, t)) > 0 and I(u(x, t)) < 0 for
0 < t ≤ t0. From (ut, u) = −I(u), it is known that ut 6≡ 0 for 0 < t ≤ t0.
Furthermore, we have

J(u(t0)) = d−
∫ t0

0

‖uτ‖22dτ = d1 < d.

Taking t = t0 as the initial time and by Lemma 6 (ii), we know that u(x, t) ∈ Vδ
for δ1 < δ < δ2 and t > t0, where δ1 < 1 < δ2 are the two roots of the equation
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d(δ) = d1. Therefore, we have Iδ(u) < 0 and ‖∇u‖p > r(δ) for δ1 < δ < δ2 and
t > t0. Thus, Iδ2(u) ≤ 0 and ‖∇u‖p ≥ r(δ2) for t > t0. Then for t > t0 we get
the following estimates

M ′′(t) = −2I(u) = 2a(δ2 − 1)‖∇u‖pp + 2b(δ2 − 1)‖∇u‖2pp − 2Iδ2(u)

≥ 2a(δ2 − 1)rp(δ2),

M ′(t) ≥ 2a(δ2 − 1)rp(δ2)(t− t0), M(t) ≥ a(δ2 − 1)rp(δ2)(t− t0)2.

Consequently, for sufficiently large t, we get from (4.1) that

M ′′(t)M(t)− q + 1

2
M ′(t)2 > 0.

The rest of the proof is the same as that of Theorem 2 and hence is omitted.
ut

Remark 2. (Sharp condition for J(u0) = d.) Let a, b > 0, p > max{2n/(n +
2), 1}, 2p − 1 < q < p∗ − 1 and u0 ∈ W 1,p

0 (Ω). Assume that J(u0) = d.
If I(u0) ≥ 0, problem (1.1) admits a global weak solution; if I(u0) < 0, all
solutions to problem (1.1) blow up in finite time.

5 J(u0) > d

Inspired by some ideas from [7, 10, 24], we can give, in terms of λs and Λs, an
abstract criterion for the existence of global solutions that vanish at infinity or
solutions that blow up in finite time, when the initial energy is lager than the
depth of the potential well, i.e. J(u0) > d. To do this, we denote by T (u0) the
maximal existence time of the solutions to problem (1.1) with initial datum
u0. For fixed time t ∈ [0, T (u0)), we think of the function u(x, t) of the space
variable x as an element of W 1,p

0 (Ω), and briefly denote the element of W 1,p
0 (Ω)

that arises this way by u(t); therefore u(t) ∈W 1,p
0 (Ω). If now we vary the time

t in the interval [0, T (u0)), then we obtain a function t→ u(t). If the solution
is global, i.e. T (u0) =∞, we denote by

ω(u0) =
⋂
t≥0

{u(s) : s ≥ t}
W 1,p

0 (Ω)

the ω-limit set of u0.

Theorem 5. Assume 2p < q + 1 < p∗. If J(u0) > d, then the following
statements hold

(i) If u0 ∈ N+ and ‖u0‖2 ≤ λJ(u0), then u0 ∈ G0;
(ii) If u0 ∈ N− and ‖u0‖2 ≥ ΛJ(u0), then u0 ∈ B.

Proof. (i) Suppose that u0 ∈ N+ satisfying ‖u0‖2 ≤ λJ(u0). We first claim
that u(t) ∈ N+ for all t ∈ [0, T (u0)). If not, there would exist a t0 ∈ (0, T (u0))
such that u(t) ∈ N+ for 0 ≤ t < t0 and u(t0) ∈ N . On the other hand, it
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follows from (2.4) that J(u(t0)) ≤ J(u0), which means that u(t0) ∈ JJ(u0).
Therefore, u(t0) ∈ N J(u0). According to the definition of λJ(u0), we have

‖u(t0)‖2 ≥ λJ(u0). (5.1)

Taking φ = u in (2.3), we get

1

2

d

dt
‖u‖22 = (ut, u) = −a‖∇u‖pp − b‖∇u‖2pp + ‖u‖q+1

q+1 = −I(u). (5.2)

Since I(u(t)) > 0 for t ∈ [0, t0), (5.2) ensures that

‖u(t0)‖2 < ‖u0‖2 ≤ λJ(u0),

which is contradictive with (5.1). So u(t) ∈ N+, as claimed.
Recalling Lemma 7 (ii), one can see that the orbit {u(t)} is bounded in

W 1,p
0 (Ω) for t ∈ [0, T (u0)) so that T (u0) = ∞. Let ω be an arbitrary element

in ω(u0), then by (2.4) and (5.2) we have

‖ω‖2 < λJ(u0), J(ω) ≤ J(u0).

The above inequality, together with the definition of λJ(u0), implies ω(u0)∩N =
∅. Therefore, ω(u0) = {0}, i.e. u0 ∈ G0.

(ii) Assume that u0 ∈ N− with ‖u0‖2 ≥ ΛJ(u0). By applying similar argu-
ment as above we see that u(t) ∈ N− for all t ∈ [0, T (u0)). Now if T (u0) =∞,
then for every ω ∈ ω(u0), it follows again from (2.4) and (5.2) that

‖ω‖2 > ΛJ(u0), J(ω) ≤ J(u0). (5.3)

Combining (5.3) with the definition of ΛJ(u0), we see that ω(u0) ∩ N = ∅.
Thus, it must hold that ω(u0) = {0}, which is contradictive with Lemma 7 (i).
Therefore, T (u0) <∞ and u0 ∈ B. The proof is complete. ut

Theorem 5 (ii) implies that for any M > d, there exists a u0 such that
J(u0) > M and that the solutions to problem (1.1) with u0 as initial datum
blow up in finite time. This is illustrated in the following two corollaries.

Corollary 1. Let 2p < q + 1 < p∗ and u0 ∈ W 1,p
0 (Ω) such that J(u0) > d. If

2p(q + 1)

q + 1− 2p
|Ω|(q−1)/2J(u0) ≤ ‖u0‖q+1

2 , then u0 ∈ N− ∩ B.

Proof. It follows from

2p(q + 1)

q + 1− 2p
|Ω|(q−1)/2J(u0) ≤ ‖u0‖q+1

2

and Hölder’s inequality that

2p(q + 1)

q + 1− 2p
|Ω|(q−1)/2J(u0) ≤ ‖u0‖q+1

2 < ‖u0‖q+1
q+1|Ω|(q−1)/2. (5.4)
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The last inequality is strict because u0 is not a constant in Ω. By combining
the expression of J(u0), I(u0) with (5.4) we have

J(u0) =
a

p
‖∇u0‖pp +

b

2p
‖∇u0‖2pp −

1

q + 1
‖u0‖q+1

q+1,

=
a

2p
‖∇u0‖pp + (

1

2p
− 1

q + 1
)‖u0‖q+1

q+1 +
1

2p
I(u0)

>
q + 1− 2p

2p(q + 1)
‖u0‖q+1

q+1 +
1

2p
I(u0) > J(u0) +

1

2p
I(u0),

which shows that I(u0) < 0, i.e. u0 ∈ N−.

In order to show that u0 ∈ B, it remains to prove ‖u0‖2 ≥ ΛJ(u0) by

Theorem 5 (ii). For this, ∀ u ∈ N J(u0), we have

‖u‖q+1
2 ≤ |Ω|(q−1)/2‖u‖q+1

q+1 = |Ω|(q−1)/2(a‖∇u‖pp + b‖∇u‖2pp )

= |Ω|(q−1)/2 2p(q + 1)

q + 1− 2p

{
(

1

2p
− 1

q + 1
)a‖∇u‖pp + (

1

2p
− 1

q + 1
)b‖∇u‖2pp

}
< |Ω|(q−1)/2 2p(q + 1)

q + 1− 2p

{
(
1

p
− 1

q + 1
)a‖∇u‖pp + (

1

2p
− 1

q + 1
)b‖∇u‖2pp

}
= |Ω|(q−1)/2 2p(q + 1)

q + 1− 2p
J(u0) ≤ ‖u0‖q+1

2 .

Taking supremum over N J(u0) we obtain

Λq+1
J(u0)

≤ |Ω|(q−1)/2 2p(q + 1)

q + 1− 2p
J(u0) ≤ ‖u0‖q+1

2 ,

i.e. ‖u0‖2 ≥ ΛJ(u0). Therefore, u0 ∈ N− ∩ B. The proof is complete. ut

Corollary 2. For any M > d, there exists a uM ∈ N− such that J(uM ) ≥ M
and uM ∈ B.

Proof. Similar treatments have been used in [7, 9, 24] to deal with semilinear
parabolic problem and pseudo-parabolic problem, respectively. We repeat the
proof here for the convenience of the readers. For any M > d, let Ω1 and Ω2 be
two arbitrary disjoint open subdomains of Ω, and assume that v ∈ W 1,p

0 (Ω1)
is an arbitrary nontrivial function. Since q+ 1 > 2p, we can choose α > 0 large

enough such that J(αv) ≤ 0 and ‖αv‖q+1
2 ≥ |Ω|(q−1)/2 2p(q+1)

q+1−2pM.

Fix such an α and then choose a function w ∈W 1,p
0 (Ω2) such that J(w) +

J(αv) = M . Extend v and w to be 0 in Ω \ Ω1 and Ω \ Ω2, respectively, and
set uM = αv + w. Then J(uM ) = J(αv) + J(w) = M and

‖uM‖q+1
2 ≥ ‖αv‖q+1

2 ≥ |Ω|(q−1)/2 2p(q + 1)

q + 1− 2p
J(uM ).

By Corollary 1 it is seen that uM ∈ N− ∩ B. The proof is complete. ut

Math. Model. Anal., 24(2):195–217, 2019.



216 J. Li and Y. Han

Acknowledgements

The authors would like to thank the referees for their valuable comments and
suggestions which improve the original manuscript. Jian Li is supported by
NSFC (No. 41601454). Yuzhu Han is supported by NSFC (No. 11401252),
by The Education Department of Jilin Province (JJKH20190018KJ) and by
Science and Technology Development Plan Project of Jilin Province
(20160520103JH). The authors would also like to express their sincere gratitude
to Professor Wenjie Gao for his enthusiastic guidance and constant encourage-
ment.

References

[1] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equa-
tions. Springer, New York, 2010.

[2] M. Chipot and T. Savitska. Nonlocal p-Laplace equations depending on the Lp

norm of the gradient. Adv. Differential Equations, 19(11–12):997–1020, 2014.

[3] M. Chipot, V. Valente and G. V. Caffarelli. Remarks on a nonlocal problems
involving the Dirichlet energy. Rend. Sem. Math. Univ. Padova, 110(4):199–220,
2003.

[4] P. D’Ancona and Y. Shibata. On global solvability of non-linear viscoelastic
equation in the analytic category. Math. Methods Appl. Sci., 17(6):477–489,
1994. https://doi.org/10.1002/mma.1670170605.

[5] P. D’Ancona and S. Spagnolo. Global solvability for the degenerate Kirch-
hoff equation with real analytic data. Invent. Math., 108(1):247–262, 1992.
https://doi.org/10.1007/BF02100605.

[6] Y.Q. Fu and M.Q. Xiang. Existence of solutions for parabolic equations of
Kirchhoff type involving variable exponent. Appl. Anal., 95(3):524–544, 2016.
https://doi.org/10.1080/00036811.2015.1022153.

[7] F. Gazzola and T. Weth. Finite time blow up and global solutions for semilinear
parabolic equations with initial data at high energy level. Differential Integral
Equations, 18(9):961–990, 2005.

[8] M. Ghisi and M. Gobbino. Hyperbolic-parabolic singular perturbation for mildly
degenerate Kirchhoff equations: time-decay estimates. J. Differential Equations,
245(10):2979–3007, 2008. https://doi.org/10.1016/j.jde.2008.04.017.

[9] Y.Z. Han. A class of fourth-order parabolic equation with arbitrary
initial energy. Nonlinear Anal. Real World Appl., 43:451–466, 2018.
https://doi.org/10.1016/j.nonrwa.2018.03.009.

[10] Y.Z. Han and Q.W. Li. Threshold results for the existence of global and blow-up
solutions to Kirchhoff equations with arbitrary initial energy. Computers Math.
Appl., 75(9):3283–3297, 2018. https://doi.org/10.1016/j.camwa.2018.01.047.

[11] G. Kirchhoff. Mechanik. Teubner, Leipzig, 1883.

[12] H.A. Levine. Some nonexistence and instability theorems for solutions of formally
parabolic equation of the form put = −au + Fu. Arch. Rati. Mech. Anal.,
51(5):371–386, 1973. https://doi.org/10.1007/BF00263041.

https://doi.org/10.1002/mma.1670170605
https://doi.org/10.1007/BF02100605
https://doi.org/10.1080/00036811.2015.1022153
https://doi.org/10.1016/j.jde.2008.04.017
https://doi.org/10.1016/j.nonrwa.2018.03.009
https://doi.org/10.1016/j.camwa.2018.01.047
https://doi.org/10.1007/BF00263041


A Nonlocal p-Laplace Equation 217

[13] Q.W. Li, W.J. Gao and Y.Z. Han. Global existence blow up and extinc-
tion for a class of thin-film equation. Nonlinear Anal., 147:96–109, 2016.
https://doi.org/10.1016/j.na.2016.08.021.

[14] J.L. Lions. Quelques methods de resolution des problem aux limits nonlinears.
Dunod, Paris, 1969.

[15] J.L. Lions. On some questions in boundary value problems of mathe-
matical physics. North-Holland Mathematical Studies, 30:284–346, 1978.
https://doi.org/10.1016/S0304-0208(08)70870-3.

[16] Y.C. Liu. On potential wells and vacuum isolating of solutions for semi-
linear wave equations. J. Differential Equations, 192(1):155–169, 2003.
https://doi.org/10.1016/S0022-0396(02)00020-7.

[17] K. Nishihara. On a global solution of some quasilinear hyperbolic equation.
Tokyo J. Math., 7(2):437–459, 1984. https://doi.org/10.3836/tjm/1270151737.

[18] N. Pan, B. L. Zhang and J. Cao. Degenerate Kirchhoff-type diffusion problems
involving the fractional p-Laplacian. Nonlinear Anal. Real World Appl., 37:56–
70, 2017. https://doi.org/10.1016/j.nonrwa.2017.02.004.

[19] L.E. Payne and D.H. Sattinger. Saddle points and instability of non-
linear hyperbolic equtions. Israel J. Math., 22(3-4):273–303, 1975.
https://doi.org/10.1007/BF02761595.

[20] P. Pucci, M. Q. Xiang and B. L. Zhang. A diffusion problem of Kirchhoff
type involving the nonlocal fractional p-Laplacian. Discrete Contin. Dyn. Syst.,
37:4035–4051, 2017. https://doi.org/10.3934/dcds.2017171.

[21] C.Y. Qu and W.S. Zhou. Blow-up and extinction for a thin-film equation with
initial-boundary value conditions. J. Math. Anal. Appl., 436(2):796–809, 2016.
https://doi.org/10.1016/j.jmaa.2015.11.075.

[22] D.H. Sattinger. On global solution of nonlinear hyperbolic equations. Arch. Rati.
Mech. Anal., 30(2):148–172, 1968. https://doi.org/10.1007/BF00250942.
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