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Abstract. We present an optimal control approach to the problem of model cali-
bration for Lévy processes based on an non-parametric estimation procedure of the
measure. The optimization problem is related to the maximum likelihood theory of
sieves [25] and is formulated with the Fokker-Planck-Kolmogorov approach [3, 4].

We use a generic spline discretization of the Lévy jump measure and select an
adequate size of the spline basis using the Akaike Information Criterion (AIC) [12].
The first order necessary optimality conditions are derived based on the Lagrange
multiplier technique in a functional space. The resulting Partial Integral-Differential
Equations (PIDE) are discretized, numerically solved using a scheme composed of
Chang-Cooper, BDF2 and direct quadrature methods, jointly to a non-linear conju-
gate gradient method. For the numerical solver of the Kolmogorov’s forward equation
we prove conditions for non-negativity and stability in the L1 norm of the discrete
solution.

Keywords: optimal control of PIDE, Kolmogorov-Fokker-Planck equation, Lévy processes,

non-parametric maximum likelihood method, IMEX numerical method.
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1 Introduction

Lévy processes play a large role in contemporary mathematical finance [15],
but also in many areas of physics, see e.g. [6, 37]. A real valued Lévy process

�
Copyright c© 2018 The Author(s). Published by VGTU Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are credited.

ISSN: 1392-6292
https://doi.org/10.3846/mma.2018.024
mailto:mannunzi@unisa.it
mailto:hanno.gottschalk@uni-wuppertal.de
http://creativecommons.org/licenses/by/4.0/
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is a stochastic process Y (t) that has increments Y (t) − Y (s), t ≥ s, that
are independent of the past. The increments are also stationary in the sense
that the probability distribution of the increment only depends on the time
difference t − s. Furthermore, Y (0) = 0 and a stochastic continuity condition
for t = 0 holds, see e.g. [6]. Under the given conditions, the characteristic
function of Y (t) is given by the Lévy-Khinchine representation

E
[
eiY (t)k

]
= etψ(k),

where E[·] stands for the expected value. ψ(k) is a conditionally positive definite
function [9] that has the following representation in terms of the canonical
triplet (b, σ2, ν):

ψ(k) = ibk − σ2

2
k2 +

∫
R\{0}

(
eisk − 1− isk1{|s|≤1}(s)

)
dν(s), (1.1)

b, σ2 ∈ R are constants, σ2 ≥ 0, and the Lévy measure ν is a positive measure
on R \ {0} such that ∫

R\{0}
min(1, s2)dν(s) <∞.

In (1.1), 1{|s|≤1}(s) is the characteristic function of the set {|s| ≤ 1} which
takes the value 1 on this set and 0 otherwise.

The calibration problem for Lévy processes consists of the estimation of the
canonical triplet (b, σ2, ν) given the observation Y (tj) of the process’ trajectory
Y (t) at some prescribed times tj , j = 1, . . . , L. Y (t) can also be understood
as the solution to the Stochastic Differential Equation (SDE) of jump-diffusion
type

dY (t) = bdt+σdB(t)+

∫
{|y|≤1}

yÑ(dt, dy)+

∫
R\{|y|>1}

yN(dt, dy), Y (0) = 0. (1.2)

Here B(t) is a standard Brownian motion and N((t, t+∆t], A) ∼ Po(ν(A)∆t) is
the random counting measure of jumps of height in the set A ⊆ R in the time
interval (t, t + ∆t]. Po(λ) stands for the Poisson distribution with intensity
λ and Ñ((t, t + ∆t], A) = N((t, t + ∆t], A) − ν(A)∆t is the compensated or
martingale jump measure for small jumps, where we require A ⊂ R \ {|x| ≤ ε}
for some ε > 0, see [6] for further details.

The calibration problem for Lévy processes, i.e. the solution of (1.2), un-
fortunately is ill posed: The collection of all Lévy measures ν is infinite di-
mensional, while only L observations are available. Direct application of the
maximum likelihood principle [21] in this situation leads to severe over-fitting
issues [25]. In many applications, one chooses families of Lévy measures ν(ᾱ)
that depend only on a finite dimensional parameter vector ᾱ, see e.g. [29]. This
assumption might however not be justified and give rise to modelling errors.
Notice that in this paper we do not deal with the option pricing problems, as
this is mostly done with the public quotes of option prices, e.g. using butterfly
spreads or second order derivatives of the European Calls with respect to the
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strike [1,15]. Anyway, if one would like to calculate option prices based on his-
torical quotes of the underlying stock, our method can be adapted as described
in Remark 2.

As a non-parametric alternative, one can use generic parametrizations for
the density of the Lévy measure ν that can be refined depending on the amount
of data available. This gives rise to a hierarchy – or sieve [25] – of maximum
likelihood (ML) problems with a finite number of parameters. The solution of
the ML-problem then gives rise to high dimensional optimization problems.

Non parametric estimation of the Lévy measure has been studied previously,
see e.g. [14,30]. These works rely on fits of expressions involving the (empirical)
Fourier transform and directly estimate the Lévy characteristics. Important
features like consistency and rate optimality of these estimators are proven
as well. Spectral methods have been studied in [7]. There also rate optimal
convergence of the estimators has been proven. Also, these methods postulate
the global solution of a non-convex optimization problem, as it is also the case
for the ML-estimate. Rate optimality is however less strong than optimality
in the Cramér-Rao sense [21, 31], that is reached by the maximum likelihood
method, if the true law is with in the parametrization scheme. Also, the scope
of this work is different, as we focus on computational aspects which have the
potential for generalization to SDE with non constant coefficients (although
this is not realized in the present paper), while the spectral method is limited
to pure Lévy distributions.

The maximum likelihood method requires representation of the probability
density functions (PDF). The PDF can be obtained as a solution to the Kol-
mogorov forward equation (Fokker-Planck equation). The parameters ᾱ then
enter in this equation via coefficients in the generator of the semigroup [6].
The Kolmogorov equation for Lévy processes involves an integral operator of
convolution type. This places the model calibration problem in the framework
of optimal control problems with partial integral differential equations (PIDE)
constraints.

This problem can be framed as a constrained PDE optimization problem,
where the PDE is the Fokker-Planck, i.e. Kolmogorov forward equation [3, 4,
5, 24]. Following this framework, the solution of the ML-problem is found by
solving the first order optimality conditions in a functional space, that is the
optimality system consisting of two PIDEs, named forward and backward (or
adjoint) equations, plus an optimality condition.

The first difficulty to numerically solve this optimality system is the integral
operator. In fact, in the case of using a fully implicit method, it would lead
to solve a dense system of equation, for this reason implicit-explicit (IMEX)
or operator splitting methods can be applied to bypass this problem (see
[11, 16, 20, 23]). The solution of the Kolmogorov forward equation is a prob-
ability density function that is non negative with constant integral over the
domain. Such properties must be owned from the discrete solution too. The
Chang-Cooper (CC) is a non-negative and conservative numerical method that
has been used to solve the classical Fokker-Planck equation [4, 13, 33]. For
alternative numerical scheme, such a based on multiresolution and discontinu-
ous Galerkin see, e.g., [32] and [36] respectively. We use the CC method with
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an implicit time difference scheme for the differential operators of our PIDE,
and evaluate the integral operator at the previous time step solution, i.e. in
an explicit way. We prove for the resulting numerical solver: conservativeness,
non-negative preserving and stability in the L1-norm. The solver for the adjoint
equation is obtained from the solver for the forward equation by the “discretize
then optimize” approach. The second problem, the infinite computational do-
main in the spatial direction, is resolved by periodic boundary conditions. On
stochastic process side, this corresponds to a mapping of sampled values from
R to a large but finite torus.

Finally, for related work with vanishing Lévy measure we quote [4, 10],
and for estimation procedures based on non parametric approximations of the
empirical characteristic function [7, 8]. An approach based on the method of
moments and asymptotic expansions of Lévy densities can be found in [27] and
one using multiple curve interest rate models in [28].

The article is organised as follows: In Section 2, we set up the maxi-
mum likelihood estimation problem for a given parametrization and derive
Kolmogorov’s forward (Fokker-Planck) equation and its adjoint (Kolmogorov
backward) equation with terminal conditions set by the log-likelihood objective
functional. In Section 3 the discretization for Kolmogorov’s equations and the
optimal control scheme is derived following a Chang-Cooper and IMEX ap-
proach and structural properties are proven. Section 4 gives numerical tests of
the proposed procedure based on simulated data. We propose to use Akaike’s
information criterion (AIC) [12] to choose an adequate parametrization from
the hierarchy of parametrizations for density of the Lévy measure. As a final
application, we fit a Lévy process to financial data from the German stock
exchange DAX in a period between April 1998 and March 2002.

2 Kolmogorov equations and optimality for the
log-likelihood

Let the L independent sample random values X1, . . . , XL be given and Xl ∈
Ω, l = 1, . . . , L, where Ω = [Ωa, Ωb]. These values can e.g. be obtained as
Xl = φ(Yl), where φ(·) is the group homomorphism from R to Ω = [Ωa, Ωb]
with periodic boundary conditions, from the Lévy process Y (t) on R. We
restrict our analysis to the bounded domain Ω. This is a numerical necessity
and is not motivated by the application. For practical purposes the size of
Ω can be determined using the Čebyšev’s inequality, e.g. P (|X(t)| > Ωa) ≤
P (|X(t) − E[X(t)]| > Ωa − E[X(t)]) ≤ Var(X(t))/(Ωa − E[X(t)])2 in order
to determine Ωa (Ωb can be estimated analogously). In such a way is possible
to calculate the size of the domain so large such that the probability of X(t)
“being wrapped” by the cyclic conditions is sufficiently small. Expected value
and variance can be efficiently estimated from the historical data.

We deal with the problem to find the PDF of X(T ) such that it best fits
with the sample values. For this purpose we consider the maximum likelihood
problem in the framework of PIDE-constrained optimization: we have to find
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the maximum likelihood estimator

max
ᾱ

J(f, ᾱ)

with respect to the parametrization of the measure given by ᾱ, where

J(f, ᾱ) =
1

L

L∑
l=1

log(f(Xl, T, ᾱ)) (2.1)

is the (normalized) log-likelihood with the constraint given by the following
Kolmogorov forward (Fokker-Planck) equation for the Lévy process X(t). In
the present case we define the process on the torus Ω with Lévy data (b, σ2, νᾱ)

and use the parametrization dνᾱ(s) =
∑NΘ
j=1 αjΘj(s)ds, hence the Kolmogorov

equation reads as:
∂tf(x, t) + b∂xf(x, t)− σ2

2 ∂
2
xf(x, t)

−
∫
Ω

∑NΘ
j=1 αj(f(x+ s, t)− f(x, t))Θj(s)ds = 0,

f(x, 0) = f0(x),

f(Ωa, t) = f(Ωb, t), ∂xf(Ωa, t) = ∂xf(Ωb, t),

(2.2)

where f(x, t) represents the PDF of the process at time t and f0(x) that one
initial. This PIDE is defined in the interval of time t ∈ [0, T ] and with periodic
boundary conditions on Ωa and Ωb. Here Θj(s) is a set of triangular shaped
basis for the set of continuous functions that are linear on (θj−1, θj)

Θj(s) = 1 + (s− θj)/∆, s ∈ [θj −∆, θj ],
Θj(s) = 1− (s− θj)/∆, s ∈ [θj , θj +∆],

where θj = Ωa + ∆(j − 1) for j = 1, . . . NΘ + 1 are the points of a discrete
uniform mesh of step size ∆ = (Ωb − Ωa)/NΘ defined on the domain. The
periodicity Θ1(s) ≡ ΘNΘ+1(s) is assumed. We notice that the spline approxi-
mation can approximate also the case of Lévy singular measure. In fact, this
choice corresponds in Equation (2.2) to a compound Poisson measure, whose
set of distribution is dense in the set of all Lévy distributions w.r. to weak
convergence in law [9], hence providing a pointwise convergence of the char-
acteristic functions. Further, the triangular shaped base function gives a very
simple positivity constraint αj ≥ 0 and continuity of the density for the Lévy
measure such those from application in finance.

The existence and uniqueness of the solution of the Fokker-Planck-Kolmo-
gorov equation (2.2) is well established, also for initial conditions belonging to
the class of measures [9].

If we write the mapping ᾱ → f(ᾱ) between the maximization parameters
and the PDF, then we introduce the so-called reduced cost functional Ĵ(ᾱ) =
J(f(ᾱ), ᾱ), so that the maximization problem becomes

max
ᾱ

Ĵ(ᾱ) = max
ᾱ

J(f(ᾱ), ᾱ). (2.3)
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A local maxima ᾱ∗ for Ĵ can be found by solving the optimality system obtained
by vanishing the variations of the following Lagrangian functional

L(f, p, ᾱ, π̄) =
1

L

L∑
l=1

log(f(Xl, T, ᾱ)) +

∫ T

0

∫
Ω

[
∂tf(x, t) + b∂xf(x, t)

− σ2

2
∂2
xf(x, t)−

NΘ∑
j=1

αj

∫
Ω

(f(x+ s, t)−f(x, t))Θj(s)ds
]
p(x, t)dxdt−

NΘ∑
j=1

πjαj ,

(2.4)

where π̄ = (π1, . . . , πNΘ ) and ᾱ fulfil the usual Karush-Kuhn-Tucker (KKT)
conditions πjαj = 0 and πj ≥ 0. These are important to include the non-
negativity constraints for the control variables. Note that if the condition
αj ≥ 0 is violated for some j ∈ {1, . . . , NΘ}, the density of the measure dνᾱ(s)
is negative in a neighbourhood of θj and thus is not a Lévy measure any more.

The sum
∑NΘ
j=1 πjαj should be extended only on the active constraints, i.e.

when α∗j′ = 0. For those values of j on the maximum where α∗j > 0 we have
π∗j = 0.

First we calculate the variation L(f + δf)− L(f) for the adjoint equation.
In the following the variations are calculated separately for each addend of the
r.h.s. We get

−
NΘ∑
j=1

αj

∫ T

0

∫
Ω

∫
Ω

(−δf(x, t))Θj(s)p(x, t)ds dx dt

=

NΘ∑
j=1

αj

∫ T

0

∫
Ω

(∫
Ω

Θj(s)ds
)
δf(x, t)p(x, t) dx dt.

For the term −
∑
j αj

∫ T
0

∫
Ω

( ∫
Ω
δf(x+ s, t)Θj(s)ds

)
p(x, t) dx dt we apply the

substitution y = x + s, then exchange x ↔ y, so that it recasts to

−
∑
j αj

∫ T
0

∫
Ω

( ∫
Ω
p(y, t)Θj(x − y)dy

)
δf(x, t)dx dt. Then, again, we substi-

tute s = x− y and, by inserting also the former term, we get

−
∫ T

0

∫
Ω

[ NΘ∑
j=1

αj

∫
Ω

(p(x− s, t)− p(x))Θj(s)ds
]
δf(x, t)dx dt.

For the variation of the time derivative, integrating by parts, one obtains∫
Ω

δf(x, t) p(x, t)|T0 dx−
∫ T

0

∂tp(x, t) δf(x, t)dxdt.

The variation δf(x, 0) = 0 holds because of the Cauchy initial condition,
while the variation in T can be defined in some points Xl. Next, we in-
tegrate by parts the term with the first order derivative in x and obtain

b
∫ T

0
(δf(x, t)p(x, t))|ΩbΩadt−b

∫
Ω
∂xp δfdx dt. Due to periodicity in the first term,

δf(Ωa, t)(p(Ωb, t)− p(Ωa, t)) has to be zero, hence p(Ωb, t) = p(Ωa, t).

Math. Model. Anal., 23(3):390–413, 2018.
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From the diffusive term we get

−σ
2

2

∫ T

0

∫
Ω

∂2
xδfp(x, t)dxdt=−

σ2

2

∫ T

0

[∂xδfp−δf∂xp]ΩbΩadt+
∫
Ω

∂2
xp(x, t)dxdt.

The first boundary term is zero because of the periodic condition of the vari-
ation of the derivative of f at the boundaries, and because of the previous
periodic condition on p. The second is analogous and has to vanish, we there-
fore get the continuity condition ∂xp(Ωa, t) = ∂xp(Ωb, t).

By collecting all the terms under double integral, we get the adjoint equa-
tion. The remaining boundary term

∫
Ω
δf(x, T )p(x, T )dx will be considered

below.
To calculate the variation on f in the functional J we perform an additional

integration in space, so that

1

L

L∑
l=1

∫
Ω

log(f(x, T ))δ(x−Xl)dx, (2.5)

where δ(.) is the δ−Dirac measure, then variate f(x, T ) + δf(x, T ), hence∫
Ω

log(f(x, T ) + δf(x, T ))δ(x−Xl)dx

=

∫
Ω

(log(f(x, T )) + δf(x, T )/f(x, T ))δ(x−Xl)dx,

so that the first order terms plus the remaining boundary, give

1

L

L∑
l=1

∫
Ω

δf(x, T )

f(x, T )
δ(x−Xl)dx+

∫
Ω

p(x, T )δf(x, T )dx.

This expression have to be zero for each δf(x, T ). It represents the terminal
condition for the adjoint equation: that is p(Xl, T ) = −1/(Lf(xl, T )), and
p(x, T ) = 0, if x 6= {X1, . . . , XL}. In case of multiplicity of Xl the condition
becomes p(Xl, T ) = −1/(L

∑
l′ f(Xl′ , T )), with l′ running on the multiplicity

value.
Summarizing, the adjoint equation (Kolmogorov’s backward equation) is

defined as follows:
−∂tp(x, t)− b ∂xp(x, t)−

σ2

2
∂2
xp(x, t)

−
∫
Ω

∑NΘ
j=1 αj(p(x− s, t)− p(x, t))Θj(s)ds = 0,

p(x, T ) = − 1
L

∑L
l=1 δ(x−Xl)/f(Xl, T ),

p(Ωa, t) = p(Ωb, t), ∂xp(Ωa, t) = ∂xp(Ωb, t).

(2.6)

We note that by reverting the sign of the time we get the same PIDE as the
forward equation (up to a reflection of the drift and jump direction), hence this
equation has a unique solution, also for the non regular final value problem [9].
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Second, we variate in (2.4) the fitting parameters L(αj+δαj)−L(αj), from
which we found the optimality equations (i.e. a vanishing gradient condition)

−πj′−
∫ T

0

∫
Ω

∫
Ω

(f(x+s, t)−f(x, t))p(x, t)Θj(s) ds dx dt = 0, j = 1, . . . , NΘ,

(2.7)
where j′ runs on the set of values where α∗j′ = 0. Note that the active πj′ do
not change the gradient, but simply balance non-zero gradient components that
point to the directions where the inequality constraint αj′ ≥ 0 is violated. As
in our case we deal with simple box-constraints on the αj themselves, we can
set those components of the negative gradient equal to zero that correspond to
an active index j′ and are negative, when determining the update. This then
accounts for the effect of the πj′ , see e.g. [22, 34].

The forward equation (2.2), can be written in flux form:

∂tf(x, t) = ∂xF(x, t),

where F(x, t) is the flux defined as

F(x, t)=− bf(x, t)+
σ2

2
∂xf(x, t)+

NΘ∑
j=1

αj

∫
Ω

(∫ 0

−s
f(x−y, t)dy

)
Θj(s)ds. (2.8)

By using ∂x
∫ 0

−s f(x−y)dy =
∫ 0

−s f
′(x−y)dy =

∫ x+s

x
f ′(z)dz = f(x+s)−f(x),

it is easy to verify that Equation (2.8) is equivalent to Equation (2.2). Further,
from the conservation of the total probability, it follows that the flux has the
periodic boundary condition F(Ωa, t) = F(Ωb, t). From this we immediately
get the periodic condition on the first derivative ∂xf(Ωa, t) = ∂xf(Ωb, t).

The 1st order necessary optimality system consists of the Equations (2.2),
(2.6) and (2.7). Its solution gives values α∗1, . . . , α

∗
NΘ

that are candidates for
maximizing the functional (2.1). We remark that global minima can not be
easily found when using a maximum likelihood method.

Remark 1. The optimization problem that emerges from maximizing the likeli-
hood in the parameters αj is non convex. Therefore solutions might get stuck
in local minima. This is typical for the maximum likelihood method in general.
On the other hand, maximum likelihood provides error rates that asymptot-
ically approach the Cramèr-Rao minimal error bound. It would be therefore
desirable to maintain the optimal rates from maximum-likelihood theory and
avoid sub optimal local minima by a clever initial guess for the starting point
αj , such that the starting point is in the domain of attraction of the global
maximum. We suggest that this can be achieved by an hybrid method that
combines spectral methods, based on a direct estimation of the Lévy charac-
teristic ψ̂ by taking the complex logarithm of the the empirical characteristic
function on a slowly increasing domain [17], and, thereafter, solving a convex

optimization problem by minimizing the distance between ψ̂ and the Lévy char-
acteristic parametrized by the parameters αj subject to the constraint αj ≥ 0.
We intend to come back to this problem in future research.

Math. Model. Anal., 23(3):390–413, 2018.
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Remark 2. If we consider option pricing with historical data (less frequently
used in practice), one should introduce the constraint for the exponential mar-
tingale condition ψα(−i) = 0, which is in explicit form using the Laplace trans-
form of the triangular distribution

b+ σ2 +∆

 N∑
j=1

αje
θj

(
cosh(∆)− 1

∆2

)
−

N∑
j=1

αj

 = 0.

This equality constraint can now be added into the Lagrangian with a Lagrange
multiplier. As the negative log-likelihood, up to a constant that does not
depend on the parameters α, almost surely converges to the Kullback-Leibler
divergence uniformly on compact sets in parameter space (also called relative
entropy). It is clear that up to the error of replacing the Kullback-Leibler
divergence with the log-likelihood we minimize the relative entropy and thus
approximate the minimal entropy martingale measure.

3 Numerical scheme

The numerical solution of the optimality system is found by a non linear gra-
dient conjugate iterative procedure [4, 26, 39]. At each iteration the solution
of two PIDEs, the forward and the adjoint one, must be found. In particular
the structural properties of the PDF solution must be satisfied, as well as a
stability condition of the PIDEs numerical scheme solver.

For the numerical discretization of the Kolmogorov forward equation we
use the Chang-Cooper scheme (CC) [13], joint to a 2nd order backward differ-
entiation formula (BDF2) for the discrete time operator. The CC method was
proposed for a Fokker-Planck resp. Kolmogorov equation [4] without the inte-
gral term. It is stable, second-order accurate, non-negative, and conservative
numerical scheme [4,33].

The CC method is used for the differential operators, the integral term is
treated separately according to an IMEX methodology. We denote the following
B = −b and C = σ2/2, then the Kolmogorov forward equation reads as follows

∂tf(x, t) = ∂xF (x, t) +

∫
Ω

NΘ∑
j=1

αj(f(x+ s, t)− f(x, t))Θj(s)ds, (3.1)

where F (x, t) = Bf(x, t)+C∂xf(x, t). Consider a uniform grid of size h on the
space domain {Ωh}h>0 given by Ωh = {x ∈ R : xi = i h+Ωa, i = 0, . . . , N, h =
(Ωb −Ωa)/N} and a uniform grid on the time domain Iδt = {t ∈ [0, T ] : tm =
mδt,m = 0, . . . , NT , δt = T/NT }. Let fmi ≈ f(xi, tm) denote the approxi-
mated values of the continuous solution of the FPE. We employ the following
discretization of (2.8)

∂−BDf
m+1
i =

1

h
(Fm+1
i+1/2 − F

m+1
i−1/2) +Q(fmi ; ᾱ), (3.2)

where

∂−BDf
m
i =

3fmi − 4fm−1
i + fm−2

i

2δt
,
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is the BDF2 operator. Q(fmi ; ᾱ) is the sum of the integrals of Equation (2.8)
calculated with the mid-point scheme

Q(fmi ; ᾱ) = h

NΘ∑
j=1

αj

N∑
k=1

f̂mik θjk − afmi ,

where ᾱ = (α1, . . . , αNΘ ), f̂mik ≈ (f(xi + sk, tm))Ωh represents the translated
fmi by the value sk ∈ Ωh and continued by periodicity, θjk = Θj(sk),

a = h

NΘ∑
j=1

αj

N∑
k=1

θjk ≈
NΘ∑
j=1

αj

∫
Ω

Θj(s) ds. (3.3)

Note also that the summation starts from k = 1, because the point k = 0 is the
same of that k = N . Therefore, the solution at a new time step is calculated
by solving the following equation for the unknown fm+1

i

3fm+1
i − 2δt

h
(Fm+1
i+1/2 − F

m+1
i−1/2) = 4fmi − fm−1

i + 2δtQ(fmi ; ᾱ) (3.4)

with the initial condition
f0
i = f0,i. (3.5)

This scheme is based on the fluxes at N cell boundaries. The partial flux at
the position xi+h/2 is computed as follows

Fm+1
i+1/2 =

[
(1− δ)B +

1

h
C

]
fm+1
i+1 −

(
1

h
C − δB

)
fm+1
i . (3.6)

This formula results from the following linear convex combination of f at
the points i and i+ 1:

fm+1
i+1/2 = (1− δ) fm+1

i+1 + δ fm+1
i , δ ∈ [0, 1].

The idea of implementing this combination was proposed by Chang and Cooper
in [13] and it was motivated with the need to guarantee positive solutions that
preserve the equilibrium configuration. Indeed, the CC method is related to
exponential fitting methods, such as that one proposed by Allen and South-
well [2], and by the Scharfetter-Gummel discretization scheme [38]. The value
of the parameter δ is δ = 1/w − 1/(exp(w)− 1), where w = hB/C, which can
be shown to be monotonically decreasing from 1 to 0 as w goes from −∞ to∞.
Notice that with the choice of δ given above, the numerical scheme shares the
same properties of the continuous FP equation that guarantee positiveness and
conservativeness. This is a special case of the CC scheme because in the general
one, the functions B and C may depends on (x, t), hence also δ may depend
on (x, t), too. Both the CC scheme [33] and the mid-point are second order
accurate, then a second order numerical scheme results. For vanishing diffu-
sion coefficient the differential operator of the Kolmogorov equation becomes
hyperbolic. As can be seen by a straight calculation of the matrix coefficients of
Equation (3.7), in the limit they correspond to the first order upwind scheme
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that is the base scheme used for hyperbolic PDE. Hence, provided that the
algorithm deals correctly with the vanishing diffusion coefficient, the numerical
scheme continues working, although with a lower convergence order.

Let fm = (fm1 , . . . , f
m
N )† be the discrete solution at the time tm, with fm0

omitted due to periodicity, and β = C/h−δB. The action of the finite difference
operator for Fm in Equation (3.2) reads as matrix A whose elements are defined
by

Ai,i = −β(1 + ω)/h, Ai,i−1 = β/h, Ai,i+1 = ωβ/h,

A1,N = β/h, AN,1 = ωβ/h, (3.7)

where β = B/(ω − 1), ω = exp(hB/C). Hence, Afm := (Fmi+1/2 − F
m
i−1/2)/h,

and then the Equation (3.4) can be written in matrix form, as follows

Mfm+1 = 4fm − fm−1 + 2δtQ(fm; ᾱ), (3.8)

where M := 3I − 2δtA is the matrix coefficients related to Equations (3.4) and
(3.6). We note that this method needs of a second starting point, that can
be calculated by using a first order Euler scheme with a smaller time step size
than δt. The implicit Euler scheme for the Equations (3.1) and (3.6) is

(I − δtA)fm = fm−1 + δtQ(fm−1; ᾱ). (3.9)

These two numerical schemes own some properties that can be easily proved,
but we list here as remarks.

Remark 3. The Euler-CC scheme (3.9) to Equations (3.1) and (3.6), defined in
the periodic domain Ωh, is conservative.

In fact,
∑N
i=1Ai,j = 0, ∀j, and

∑N
i=1Q(fmi , ᾱ) = 0 because the set of

values of fmi are the same as f̂mik , being the last only translated by k. Hence,∑
i=1 f

m
i =

∑
i=1 f

m−1
i .

Remark 4. Provided that
∑
i=1 f

m
i =

∑
i=1 f

m−1
i , then the BDF2-CC scheme

(3.8) to Equations (3.1) and (3.6) defined on the periodic domain Ωh, is con-
servative. In fact for the same constraints on A and Q as above, we get the
identity 3

∑
i=1 f

m+1
i = 4

∑
i=1 f

m
i −

∑
i=1 f

m−1
i = 3

∑
i=1 f

m
i .

The positive preserving property of the numerical scheme is proved by using
the theorem for the class of M -matrix [35]. Given a positive matrix E, Eij ≥ 0,
we say that M = sI−E is a non singular M -matrix if s > ρ(E), where ρ(E) is
the spectral radius of E. A non singular M -matrix has the important property:
M is non singular M -matrix ⇒M−1 ≥ 0.

Theorem 1. Let δt ≤ 1/a, with a defined in (3.3), then the Euler scheme (3.9)
to Equation (3.1) defined in the periodic domain Ωh, is positive preserving.

Proof. The argument is as follows: let R the matrix operator such that Rfm =
h
∑N
j=1 αj

∑N
k=1 θjkf̂

m
ik . Such a matrix is non negative because αj and θjk are.

The numerical scheme (3.9) can be recast as((
1 +

δtβ

h
(1 + ω)

)
I − δtÃ

)
fm = (1− a δt)fm−1 + δtRfm−1, (3.10)
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where Ã = A − diag(A) is a positive matrix. Provided that fm−1 ≥ 0 and
δt ≤ 1/a the r.h.s. is a non negative vector. We observe that the matrix on the
l.h.s is always diagonal dominant, hence it has a convergent regular splitting
and consequently is an M -matrix [35]. Therefore, (I − δtA)−1 is non negative
and fm will be too. ut

In order to prove the positive preserving property of the BDF2 numerical
scheme (3.8), we need of the following Lemma that provides a lower bound to
the velocity of decreasing of the solution.

Lemma 1. Let the vector fm ∈ RN be given non negative. Take a number
ξ > 1, then the solution fm+q calculated with the Euler scheme of Equation
(3.9) after q time steps satisfies the following inequality

fm+q ≥ fm/ξq,

provided that δt <
ξ − 1

aξ + β(1 + ω)/h
, with parameters defined in Equations (3.7)

and (3.3).

Proof. A proof is given for a particular case in [33] (see also References
therein). Here we prove it as follows. Given fm and fm+1 calculated with
(3.9), let define v = ξfm+1 − fm. By applying the operator I − δtA, we get
(I − δtA)v = (ξI − (I − δtA))fm + δtξQ(fm; ᾱ), i.e.

(I − δtA)v =
(
(ξ − 1− δt(β(1 + ω)/h+ aξ))I + δtÃ+ δtξR

)
fm,

where Ã = A − diag(A) is a positive matrix. Now provided the bound for δt,
then the r.h.s. is positive and from Theorem 1 we get that v ≥ 0. By iterating
that inequality q times, we get the thesis. ut

Remark 5. The upper bound on δt in Lemma 1 results to be δt < 1/a for ξ > 1,
hence the condition on the Lemma is stricter than those on non negativity of
Theorem 1.

Now we show a Lemma similar to Lemma 1 valid for the BDF2 scheme.

Lemma 2. Let 1 < ξ < 3 and 2δt ≤ h(ξ−1)(3−ξ)/(aξh+β(1+ω)) be the time
step size of the numerical scheme of Equation (3.8) that generates the sequence
of vectors fm for m = 2, 3, ... from the starting vectors f0, f1. If there exists
m∗ such that ξfm

∗+1 − fm∗ ≥ 0 and fm
∗ ≥ 0, then ξfm+1 − fm ≥ 0 for all

m > m∗.

Proof. We apply the operator (3I − 2δtA) to v = ξfm+2 − fm+1,

(3I − 2δtA)v = ξ
(
3I − 2δtA)fm+2 − (3I − 2δtA

)
fm+1

and use Equation (3.8) to the first term on the r.h.s. to get

(3I − 2δtA)v=[4ξ−3−2δt(aξ + β(1 + ω)/h)]fm+1−ξfm+2δt(Ã+ξR)fm+1,
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where Ã = A − diag(A) is a positive matrix. We know that (3I − 2δtA) is an
M -matrix and its inverse is always non-negative. Also Ã+ ξR is non negative.
Hence, we can prove non negativity of v, provided that

4ξ − 3− 2δt(aξ + β(1 + ω)/h) ≥ ξ2

for a value m = m∗, because of the hypothesis ξfm
∗+1 − fm∗ ≥ 0, that also

states that fm
∗+1 ≥ 0. The last inequality is just the bound on δt in the

assertion that gives a positive value for δt only when 1 < ξ < 3. ut

Indeed, this Lemma proves positivity of the numerical solution of Equation
(3.8), provided that f0 ≥ 0, and ξf1 − f0 ≥ 0. f1 is the second starting value
of the numerical scheme, that can be calculated with the Euler scheme (3.9).

Theorem 2. Let f0 ≥ 0 the discrete initial condition (3.5), and let f1 the
second starting value calculated with the Euler scheme (3.9) with an appropriate
time step, such that ξf1−f0 ≥ 0, for 1 < ξ < 3. Then, the BDF2 scheme (3.8)
to Equation (3.1), defined in the periodic domain Ωh, is positive preserving for
the solution fm, with m > 1.

Proof. The proof is an application of the Lemmas 1 and 2. ut

In order to establish the stability of the discrete numerical schemes of Equa-
tions (3.8) and (3.9), we need inequalities of the form ‖fm+1‖ ≤ K‖fm‖ eval-
uated in a suitable norm with K possibly less or equal than 1. We prove that
it realizes for the 1-norm with K = 1.

Theorem 3. Let the positivity condition of Theorem 1 be fulfilled, i.e. δt ≤
1/a. Then, the Euler scheme (3.9) is stable in the 1-norm, that is ‖fm‖1 ≤
‖fm−1‖1 for all m.

Proof. Let r = δtβ/h and invert the matrix operator at l.h.s., then Equation
(3.10) reads as

fm =

(
I − δtÃ

1 + r(1 + ω)

)−1

1 + r(1 + ω)
[(1− a δt)fm−1 + δtRfm−1].

Now we observe that∥∥∥∥(I − δtÃ

1 + r(1 + ω)

)−1∥∥∥∥
1

≤
(

1−
∥∥∥∥ δtÃ

1 + r(1 + ω)

∥∥∥∥
1

)−1

= 1 + r(1 + ω).

Hence,
‖fm‖1 ≤ ‖(1− a δt)fm−1 + δtRfm−1‖1.

Since δt ≤ 1/a, all the components of the vectors inside the norm at the r.h.s.
are positive, so that the modulus for the evaluation of the 1-norm can be
removed. Using

∑N
i=1Q(fmi , ᾱ) = 0 as in Remark 3, we get the statement of

the theorem. ut

Now we can prove the stability of the numerical scheme with BDF2 inte-
gration of Equation (3.8).
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Theorem 4. Let the positivity condition of the Theorem 2 be fulfilled, i.e. let
δt be the time step size of the numerical scheme of Equation (3.8), f0 ≥ 0 the
discrete initial condition (3.5) and f1 the second starting value evaluated at the
time δt. If there exists a real number ξ such that f1 ≥ f0/ξ with 1 < ξ < 3 and
2δt ≤ h(ξ − 1)(3− ξ)/(aξh+ β(1 + ω)), then the BDF2 scheme (3.8) is stable
in the 1-norm, that is ‖fm‖1 ≤ ‖fm−1‖1 for all m.

Proof. The numerical scheme (3.8) can be written as

Mfm+1 = (4− ζ)fm + (ζ − 2aδt)fm − fm−1 + 2δtRfm,

where R is defined as in Theorem 1. We apply M−1 and evaluate the 1-norm
to both sides. Following the same calculations as in Theorem 3, we get that
‖M−1‖1 = 1/3.

From the bound on δt, we note that

2a δt < (ξ − 1)(3− ξ)/ξ ≤ 4− 2
√

3 < 0.536.

This means that for all ζ in the interval 5 − 2
√

3 < ζ < 3, it is ζ − 2a δt = ξ
with ξ ∈ (1, 3). Now we have that fm ≥ 0 by virtue of the positivity condition,
(ζ−2a δt)fm−fm−1 ≥ 0 by our assumptions, and 4−ζ > 0, hence is guaranteed
that the sum in the r.h.s. is a non negative vector and the modulus in the
calculation of the 1-norm can be removed. Using the property given in Remark
3, we conclude that ‖fm+1‖1 ≤ ‖fm‖1. ut

Remark 6. Indeed, in the stability Theorem 4 the equality ‖fm+1‖1 = ‖fm‖1
holds. Because of the conservativeness from Remark 4 we have

∑
i=1 f

m+1
i =∑

i=1 f
m
i , and under the non negativity condition of Theorem 2 all the compo-

nents of the vectors fm+1
i , fmi are non negative, so that the previous conserva-

tiveness identity corresponds to the 1-norm equivalence. Further, we can state
that for these numerical schemes the conservativeness and the non negativity
imply the stability of the discrete operator.

Remark 7. We can finally conclude from the Lax equivalence theorem, that for
regular solutions of the Kolmogorov forward equation f(x, t), (x, t) ∈ [Ω, T ],
provided that the hypothesis of Theorem 4 are fulfilled, the numerical scheme
(3.8) yields discrete solutions that are second order convergent in time and
space.

The discrete adjoint equation can be found by discretizing the Lagrangian
function (2.4) and then performing the variations on the discrete variables.
This is know as the discretize-then-optimize approach (see [4] for details). This
technique yields the following discrete adjoint equation

M†pm = 4pm+1 − pm+2 + 2δt Q̃(pm+1; ᾱ), (3.11)

where M† is the transpose of M , and Q̃(pm+1; ᾱ) = h
∑NΘ
j=1 αj

∑N
k=1 p̃

m
ikθjk −

apmi , with p̃mik ≈ (p(xi − sk, tm))Ωh .
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The numerical stability is given by the same condition for the forward equa-
tion, since the transpose of the operator M has the same eigenvalues, but in
this case the non negativity and conservativeness properties are not required.

Care has to be taken for the discrete terminal condition, since it can not
be defined through the Equation (2.6) for the presence of the δ-Dirac measure.
For this purpose we discretize the term (2.5) as follows

1

L

L∑
l=1

N∑
i=1

∫ xi+1/2

xi−1/2

log(f(x, T ))δ(x−Xl)dx

=
1

L

L∑
l=1

N∑
i=1

log(f(x̂i, T ))1{Xl∈[xi−1/2,xi+1/2)},

where x̂i are the points of the integral average theorem. Then we use the
approximation f(x̂i, T ) ≈ fNTi , so that, by performing the variation δfNTi on
this discrete functional, we get the discrete terminal condition

pNTi = pT,i = − 1

L

L∑
l=1

1{Xl∈[xi−1/2,xi+1/2)}/f
NT
i , i = 1, . . . , N. (3.12)

According to (2.6) it completes the formulation of the discrete adjoint problem.
The discrete approximation of the reduced gradient related to the optimality

condition (2.7) is calculated with the mid-point quadrature formula. Each
component j is given by

(DᾱĴ)j := −δt h2
NT∑
m=0

N∑
i=1

N∑
k=1

(f̂mik − fmi )pmi θjk, (3.13)

where (DᾱĴ)j ≈ (∇ᾱĴ)j , for j = 1, . . . , NΘ.
The availability of the discrete gradient allows us to implement a non linear

conjugate gradient scheme (NLCG) in order to solve the optimization problem
(2.3). The NLCG represents an extension of the linear conjugate gradient
method to non-quadratic problems [4, 26,39].

The optimality system is solved by implementing the discrete gradient eval-
uation given by the following algorithm

Algorithm 1 [Evaluation of the Gradient at ᾱ].

• Input: model parameters, space step h, time step δt according to the
restriction of Theorem 4.

1. Solve the discrete FP equation (3.4) with given initial condition
(3.5);

2. Solve the discrete adjoint FP equation (3.11) with terminal condition
(3.12);

3. Compute the approximated discrete gradient DᾱĴ by using (3.13);

4. End.
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in a NLCG scheme. This is based on search directions dk of the minimum that
are recursively computed as

dk+1 = −gk+1 + βk dk, (3.14)

where k = 0, 1, 2, . . . in this paragraph stands for the iteration index, gk =
DᾱĴ(ᾱk) is the numerical gradient, with d0 = −g0. Let ᾱk an estimation of
the best rates at the iteration k, the next one for a minimum point are given
by

ᾱk+1 = ᾱk + ξk dk, (3.15)

where here ξk > 0 is a steplength obtained with a line-search that satisfies the
Armijo condition of sufficient decrease of Ĵ ’s value as follows

Ĵ(ᾱk + ξk dk) ≤ Ĵ(ᾱk) + δ ξk (∇Ĵ(ᾱk), dk)U , (3.16)

where 0 < δ < 1/2; see [34]. Notice that we use the inner product of the
U ≡ RNΘ space. For βk we use the Dai and Yuan formulation [19]

βDYk = (gk+1, gk+1)U/(dk, yk)U , (3.17)

where yk = gk+1 − gk.
Summarizing, the NLCG scheme is implemented as follows

Algorithm 2 [NLCG Scheme].

• Input: initial approx. ᾱ0, maximum ᾱM , g0 = ∇Ĵ(ᾱ0), d0 = −g0, index
k = 0, maximum kmax, tolerance tol.

1. While (k < kmax && ‖gk‖R` > tol ) do

2. Search the steplength ξk > 0, by sequentially shrinking, along dk
satisfying (3.16); if it can not be found, then the algorithm end.

3. Set ᾱk+1 = ᾱk + ξk dk. i.e. Equation (3.15), according to the KKT
condition, the eventually negative components of ᾱk+1 are set to 0.
Components ᾱk+1 > ᾱM are set to ᾱM .

4. Compute gk+1 = ∇Ĵ(ᾱk+1) using Algorithm 1;

5. Compute βDYk given by (3.17);

6. Let dk+1 = −gk+1 + βDYk dk, i.e. Equation (3.14);

7. Set k = k + 1;

8. End while

The numerical evaluation of the functional (2.1) has the problem of the
logarithm in the points Xl where the PDF at the final time has vanishing
values. Hence, the functional is replaced as follows

Jε(f, ᾱ) =
1

L

L∑
l=1

log(max(ε, f(Xl, T, ᾱ))),
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with ε = 10−12.
The discrete PDF is defined on the mesh grid Ωh, the sample values Xl

used for the evaluation of the PDF are approximated to the nearest values
of the space mesh grid Ωh. This approximation affects both the value of the
functional and the terminal condition for the adjoint equation.

The initial PDF f0(x) of Equation (2.2) is set as the following von Mises
density distribution

ρ(x;µ, κ) =
eκ cos(2π(x−µ−Ωa)/(Ωb−Ωa)−π)

2πI0(κ)
,

where I0(.) is the modified Bessel function of order 0, and κ is the concentration
parameter that should be taken large in order to approximate the δ-Dirac
function in zero as initial data for the forward PIDE.

The computational time cost of the Algorithm 1 scales as N4. For a d-
dimensional Lévy process, it would be N2(d+1). This is due to the evaluation of
the numerical gradient (3.13). The calculation of the NLCG algorithm consists
of many repetitions of the Algorithm 1. An estimation of the computational
cost is difficult since it depends, e.g., on the initial search point ᾱ0 and on pa-
rameters of the line search of the Armijo condition. Further, also the choice of
the formula for βk affects the efficiency of the optimization algorithm. Anyway,
in general, NLCG has linear convergence order [18]. We can roughly assume
that the lower bound of the computational cost scales at least as N2d+3. For
high dimensional problems the computation requires high performance facili-
ties, indeed for the following tests, executed on an Intel R© CoreTM Duo CPU,
the time for computation took only some minutes.

4 Numerical tests

In this section we perform the non parametric estimation of Lévy density dis-
tribution functions, that is to find the value ᾱ = (α1, . . . , αNΘ ) such that best
fits with the given data {Xl}. We present two validation test cases and one
application case to finance.

However note that in our case, cyclic boundary conditions have to be taken
into account. The data setting for our test case is as follows: the space domain
Ω = [−π, π), the final time T = 1, the initial von Mises distribution has center
µ = 0 and wideness κ = 400, the drift of the stochastic process is b = 0 and
the Gaussian volatility is σ =

√
0.02. The setting for the numerical solution is:

space grid size N = 420, time grid size NT = 250.
First, we perform a fit for a set of L = 105 values generated by a Monte

Carlo algorithm for a simulated Lévy process on the torus, with the following
five values of the jump rates: α̂ = {3, 2, 1, 0.5, 0.25}. We solve the fitting
problem, i.e. calculating the estimates to α1, . . . , αNΘ , for different numbers
of interpolatory functions: NΘ = 3, . . . , 7. The initial approximation is set
to ᾱ0 = {1, . . . , 1}. The center θ1, . . . , θNΘ of the basis functions Θj(x) are
equally spaced in the domain (−1, 1) at the places θj = −1+j∆, j = 1, . . . , NΘ,
∆ = 2/(NΘ + 1), this means the basis functions do not cover all the domain
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Ω. In the following table the calculated value of {αj} for each problem are
reported versus NΘ

NΘ = 3 NΘ = 4 NΘ = 5 NΘ = 6 NΘ = 7

α1 3.4502 3.1771 2.9746 2.8580 2.8452
α2 1.1089 1.5577 1.8100 1.9922 2.1003
α3 0.4505 0.6576 1.0198 1.3025 1.5083
α4 0.3362 0.4951 0.7607 1.0077
α5 0.2490 0.3946 0.6137
α6 0.2042 0.3428
α7 0.1847

We see the good match for NΘ = 5 with the original rates α̂. In Figures
1, 2 and 3 we can also appreciate the good data fitting between the calculated
PDF and the histograms of the simulated Monte Carlo data, for the proposed
optimization problem with NΘ = 3, 5, 6.

Another interesting problem is the selection of the number of parameters
NΘ and the corresponding basis functions Θj for the best data fit. In Figure 4
we depict the result of the Akaike’s Information Criterion (AIC) [12], given by

AIC(NΘ) = LJ(f, ᾱ∗)− log(NΘ).

A common choice in statistics is to pick that parametrization that maximises
the AIC. Other choices such as Ridge regression or Lasso methods could not
be so efficent when applied to our optimization technique. The first for its
inability to automatically select an adequate number of parameters, the second
for difficulties in the adjoint method raising from the non-differentiability of
the regularisation term. We can see that criterion gives the value NΘ,opt = 6,
while the correct value is 5. The difference in the AIC is however rather small
for NΘ between 5 and 7.

In the second test we fit the final position at T = 1 of 105 samples of
a stochastic process with the jumps distributed according to a bi-directional
gamma process with Lévy measure ν on R given by the density [6]

dν(s) = A
e−β|s|

|s|
ds.

Here A > 0 is the so-called shape parameter and β is the rate parameter.
Note that this is not a finite measure, so we are out of the compound Poisson
class, and the trajectory of the bi-directional gamma process as infinitely many
(small) jumps. If we project this Lévy process to the torus [−π, π], the effect
on the projected Lévy measure ν is

dν(s) = A

(
e−β|s|

|s|
+ 2

∞∑
n=1

s sinh(βs) + 2nπ cosh(βs)

4n2π2 − s2
e−2nπ

)
ds

as the Lévy measure on the torus for the projected bi-directional Gamma pro-
cess.
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Figure 1. Left, result of the data fitting with NΘ = 3 rates. Histograms: experimental
Lévy data collected in 40 bins. Solid line calculated PDF. Right, dashed line calculated

PDF with the original 5 rates.
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Figure 2. Left, result of the data fitting with NΘ = 5 rates. Histograms: experimental
Lévy data collected in 40 bins. Solid line calculated PDF. Right, dashed line calculated

PDF with the original 5 rates.
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Figure 3. Left, result of the data fitting with NΘ = 6 rates. Histograms: experimental
Lévy data collected in 40 bins. Solid line calculated PDF. Right, dashed line calculated

PDF with the original 5 rates.
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Figure 4. Test for the appropriate regularisation with Akaike’s Information Criterion

In the simulations data are generated by scaling the rate parameter such
that 1/β = 1, and setting the shape to A = 0.5. Finally, the data {Yl}
are projected to the torus [−π, π). For this test the starting values of the
unknowns are set to ᾱ0 = {0.1, . . . , 0.1}. The drift and the Gaussian volatility
have the same values of the previous test. In Figure 5 we report the result
of the AIC test and the fit with NΘ = 9 basis functions centered to θj =
(−1 + 2(j−1)/9)π, j = 1, . . . 9. We conclude that our procedure results in high
quality fits, even for Lévy distributions that can only be approximated by the
hierarchy of parametrizations.
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Figure 5. Left, AIC test for the Gamma test. Right, fit with NΘ = 9 basis functions.

As an example from a real world problem we report the result of fitting
of the German Stock Exchange (DAX) index see Figure 6. Within the data
of all closing quotes between April 1998 and March 2015, there are several
periods of volatility bursts. In order to avoid the pitfalls of time dependent
(or stochastic [15, 29]) volatility, we identify a period of comparatively stable
volatility of 1000 trading days between April 1998 and February 2002, see the
right panel of Figure 6. The obvious absence of axial symmetry prohibits a
Gaussian (Black-Scholes) market model from the outset. Our goal is to find
a suitable description of this sample with an exponential Lévy market model
from our hierarchy of parametrizations. The data has been mapped to the
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Figure 6. Cumulative and daily log-returns of the DAX index between 26/11/1990 and
05/03/2015 (left panel) 16/4/1998 and 4/02/2002 (right panel). The vertical lines on the

left panel correspond to the time period on the right panel, downloaded from
finance.yahoo.com

[−π, π] torus, by rescaling and “wrapping” the daily log-returns below/above
3%, i.e. [Ωa, Ωb] = [−0.03, 0.03]. Three data sets, all of them negative, were
situated outside this band. We calculated the fitting of the distribution, with
equally spaced basis functions in the interval [−π, π). The starting values of
the unknown rates are the same of the previous test. The drift and Gaussian
volatility are set b = 6.787 · 10−4 and σ = 0.3444. In Figure 7 (left panel) we
report the result of the AIC test and the fit with NΘ = 6 (right panel). The
selected basis functions are centred at θj = (−1+(j−1)/3)π, j = 1, . . . 6, whose
the calculated rates are ᾱ = (0, 0, 0.484, 0.223, 0.304, 0). Although only three
parameters are different from zero, the AIC is maximized at NΘ = 6. That
the AIC at NΘ = 3 is lower is explained by the fact, that the more localized
basis functions in the NΘ = 6-basis are more adequate to fit the data. It is
also a misinterpretation that the chosen parametrization misses an effective
description with three parameters, since the position of the grid points are
additional parameters. Note that the zero entries of the 1st, 2nd and 6th slot ᾱ
actually correspond to small positive values and only represented as zero when
rounded to the 3rd digit.

5 Conclusions
We have shown that our non-parametric method for calibration, grounded on
a Fokker-Planck-Kolmogorov constrained optimization framework, works for
spline discretizations of the density of the Lévy measure with symmetric bound-
ary conditions for up to 11 parameters. The results consistently fit simulated
data from the family of discretizations itself. The same turns out to be true
from Lévy processes that only can be approximated by such discretizations, if
the number of parameters goes to infinity, like the gamma process. Here the
AIC provides an effective mechanism to choose an adequate discretization at a
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Figure 7. Left, AIC for the maximum likelihood estimate as a function of parameters for
the DAX data (left). Right density for the maximum-likelihood fit with NΘ = 6 basis

functions, corresponding to the maximal AIC.

given sample size. Finally, we have demonstrated that also real-world, financial
data can be effectively fitted using our strategy.
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