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Abstract. We deal with the standard three-level bilinear FEM and finite-difference
scheme with a weight to solve the initial-boundary value problem for the 1D wave
equation. We consider the rich collection of initial data and the free term which are the
Dirac δ-functions, discontinuous, continuous but with discontinuous derivatives and
from the Sobolev spaces, accomplish the practical error analysis in the L2, L1, energy
and uniform norms as the mesh refines and compare results with known theoretical
error bounds.
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1 Introduction

We deal with the initial-boundary value problem for the 1D wave equation and
discuss error behavior for the standard three-level regularized bilinear finite
element method (FEM) and finite-difference scheme with a weight. In [10]
(where references to a lot of related papers can be also found) general error
bounds for three- and two-level FEMs were proved in several norms in contin-
uous dependence on the order of smoothness of data, i.e. two initial functions
in the Sobolev/Nikolskii spaces and the free term in the equation in the spaces

�
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of the dominating mixed smoothness in (x, t) (much broader then the Sobolev
or Nikolskii spaces of the same order). The negative order of smoothness is
taken into account thus one of the initial functions and the free term can be
distributions like the Dirac δ-functions.

More precisely, the error bounds in L2, energy and (in 1D) uniform spatial
norms and uniformly in time of the orders respectively

O
(
(τ + h)2α/3

)
, 0 ≤ α ≤ 3; O

(
(τ + h)2(α−1)/3

)
, 1 ≤ α ≤ 4

and O
(
(τ + h)2(α−1/2)/3

)
, 1/2 < α < 7/2, were derived. For half-integer

α, these bounds cover such practically interesting cases of non-smooth data
as the Dirac δ-functions, discontinuous or continuous but with discontinuous
derivatives functions, etc.

These error orders differ significantly from those in the elliptic and parabolic
cases. Nevertheless the sharpness of the error bounds in the L2 and energy
norms was confirmed in [8, 9] by the lower error bounds in the corresponding
spaces, for each of two initial functions and the free term. Notice that this was
accomplished on sequences of rapidly oscillating elements of the spaces but not
for their specific typical elements. Also up to now no similar lower bounds in
the uniform norm are known.

In addition, obviously the L2 and energy error bounds (the latter also in-
volves the L2 spatial norms) are weakened after replacing the L2 norms by L1

ones. Nevertheless, according to [9] these weakened bounds remain sharp in
the same data spaces.

From the practical point of view, it is essential to know whether the dis-
cussed error bounds are sharp for typical elements of the above mentioned
non-smooth data spaces. At the moment there exists no any theoretical an-
swer to this question; it seems that a very delicate asymptotic analysis of the
error behavior is required to get such answer.

To understand at least a practical answer (that is also important by itself),
in this paper we analyze practical error orders as mesh refines for the rich
collection of namely such the typical non-smooth two initial functions and free
term (separately for each of them). For the initial functions, we also treat
the case of integer α, i.e. functions from the Sobolev spaces. We also include
examples with mismatches between the initial and boundary data.

The main result consists in finding out that the discussed error orders in the
L2, energy as well as uniform spatial norms are actually sharp with the high
precision for all the considered typical data; in particular, it is observed how
sensitively the orders increase when the data smoothness grows. On the other
hand, we reliably observe higher error orders in the weaker L1 and W 1,1 spatial
norms; thus for these norms the error orders in the spaces of data and for their
typical elements differ significantly. The latter fact as well as the presented
results in general could stimulate further studies.
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2 The initial-boundary value problem, numerical
methods and the theoretical error bounds

We deal with the initial-boundary value problem for the 1D wave equation

D2
t u− a2D2

xu = f(x, t) in Q := Ω × S, (2.1)

u|t=0 = u0(x), Dtu|t=0 = u1(x), x ∈ Ω := (−X/2, X/2), (2.2)

u|x=−X/2 = g0(t), u|x=X/2 = g1(t), t ∈ S := (0, T ). (2.3)

Hereafter Dt and Dx are the weak partial derivatives in t and x; also a =
const > 0. Recall that in dependence on regularity of the data u0, u1 and f (as
well as g0 and g1), there exists a unique weak solution from the energy class,
or even weaker (possibly discontinuous), or strong, or classical solution to this
IBVP, in particular, see [2,10]. Below we treat all these four types of solutions.

Recall that the weak solution from the energy class u ∈ C(S̄,H1(Ω)) with
Dtu ∈ C(S̄, L2(Ω)) satisfies the integral identity∫

Q

(
− (Dtu)Dtη + a2(Dxu)Dxη

)
dxdt =

∫
Ω

u1η|t=0 dx+

∫
Q

fη dxdt (2.4)

for any η ∈ L1(S,H1
0 (Ω)) with Dtη ∈ L1(S,L2(Ω)) and η|t=T = 0, and the

initial-boundary conditions u|t=0 = u0 and (2.3) in the classical sense (since in
our 1D case u ∈ C(Q̄)). For the free term-distribution f = Dtg with g|t=0 = 0,
the last term on the right should be understood as −〈g,Dtη〉.

The weaker solution u ∈ C(S̄, L2(Ω)) with Itu ∈ C(S̄,H1(Ω)) satisfies
another integral identity∫

Q

(
− uDtη + a2(DxItu)Dxη

)
dxdt =

∫
Ω

u0η|t=0 dx

+
〈
u1, (I

∗
t η)|t=0

〉
+
〈
f, I∗t η

〉
for the same η as above and the boundary conditions Itu|x=−X/2 = Itg0 and

Itu|x=X/2 = Itg1 in the classical sense. Here Itu(x, t) :=
∫ t

0
u(x, θ) dθ is a

primitive in t function for u, I∗t η(x, t) :=
∫ T
t
η(x, θ) dθ as well as u1 and f are

distributions respectively on Ω and Q.
The strong solution u ∈ C(S̄,H2(Ω)) with Dtu ∈ C(S̄,H1(Ω)) and D2

t u ∈
C(S̄, L2(Ω)) satisfies equation (2.1) in C(S̄, L2(Ω)) and the initial-boundary
conditions (2.2)–(2.3) in the classical sense.

Notice that for the IBVP (2.1)–(2.3) all the above mentioned types of solu-
tions can be represented by one and the same D’Alembert-type formula so we
could omit their definitions.

Now we present numerical methods to solve the IBVP (2.1)–(2.3) which
error we analyze below. Let ω̄h = {xi = −X/2+ih; 0 ≤ i ≤ n} and ω̄τ = {tm =
mτ ; 0 ≤ m ≤M} be the uniform meshes (for simplicity) on Ω̄ and S̄, with the
steps h = X/n and τ = T/M . Define also the internal mesh ωh = ω̄h \{±X/2}
and the mesh norms ‖ϕ‖Ch = maxω̄h |ϕi| and ‖ϕ‖Lp(ωh) =

(
h
∑n−1
i=1 |ϕi|p

)1/p
,

p ≥ 1.
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Let Sh be the FEM space of functions in C(Ω̄) which are linear over each
element [xi−1, xi], 1 ≤ i ≤ n. Let Sτ be the similar FEM space associated to S̄
and ω̄τ . For w ∈ C(Ω̄), let ŵ ∈ Sh be its interpolant such that w(xi) = ŵ(xi),
0 ≤ i ≤ n.

We introduce the mesh operators in x and t

Bhvi =
1

6
vi−1 +

2

3
vi +

1

6
vi+1, Lhvi = −vi−1 − 2vi + vi+1

h2
, 1 ≤ i ≤ n− 1,

∂ty
m =

ym+1 − ym

τ
, 0 ≤ m ≤M − 1; ∂̄ty

m =
ym − ym−1

τ
, 1 ≤ m ≤M ;

let also ∂̄ty
0 = 0. Clearly Bh and Lh are the scaled mass and stiffness operators

corresponding to the FEM space Sh.
Let the approximate solution v ∈ Sh⊗Sτ . We study the regularized bilinear

FEM written in the following three-level in time operator form [10]

(Bh + στ2Lh)∂t∂̄tv
m + Lhv

m = fh,τ,m on ωh, 1 ≤ m ≤M − 1, (2.5)

(Bh + στ2Lh)∂tv
1
0 +

τ

2
Lhv

0 = uh1 +
τ

2
fh,τ,00 on ωh, (2.6)

v0 = v0
σ0

or v0 = û0 on ω̄h, (2.7)

vm0 = g0(tm), vmn = g1(tm), 1 ≤ m ≤M, (2.8)

with the regularizing parameter σ ≥ 1/4 (for simplicity). Here v0
σ0

satisfies

(Bh + σ0τ
2Lh)v0

σ0
= uh0 on ωh, v0

σ0 i = uh0i, i = 0, n, (2.9)

with the parameter σ0 ≥ σ − 1/4. We omit the original Galerkin form of
the FEM based on the regularized integral identity (2.4), see [10]. Here for
f ∈ L1(Q), w ∈ L1(Ω) and z ∈ L1(S) the following FEM averages are utilized

fh,τ,mi = (fhi )τ,m, whi =
1

h

∫ xi+1

xi−1

w(x)ehi (x) dx, 1 ≤ i ≤ n− 1, (2.10)

zτ,0=
2

τ

∫ τ

0

z(t)eτ,0(t) dt, zτ,m=
1

τ

∫ tm+1

tm−1

z(t)eτ,m(t) dt, 1 ≤ m ≤M − 1, (2.11)

where ehi (x) = max {1−|x/h−i|, 0} and eτ,m(t) = max {1−|t/τ−m|, 0} are the
well-known “hat” functions. The formula (2.10) can be used for i = 0, n as well
using the formulas x−1 = −X/2− h and xn+1 = X/2 + h and, say, the even or
odd extension of w with respect to ±X/2 outside Ω. Below in our computations
we use these averages for discontinuous f , w (including w = u0, u1) and z.

In more general situation where f , w and z are distributions respectively
on Q, Ω and S, we set

fh,τ,mi = 〈f, ehi eτ,m〉, whi = 〈w, ehi 〉, zτ,m = 〈z, eτ,m〉. (2.12)

Below we need them for f , w (including u1) and z like the Dirac δ-functions.
For the Hölder-continuous w = u0 and u1 below in our computations we

often take simply whi = w(xi) that is most usual in practice.
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Below in computations we consider f only with the separated variables, i.e.
f(x, t) = w(x)z(t), and compute fh,τ = whzτ accordingly to the type of w and
z (i.e., distributions or discontinuous functions).

After simplifying the mass operator Bh down to the unit one I (the mass
lumping procedure) and taking σ0 = 0, we get the well-known three-level sym-
metric in space and time finite-difference method (FDM), or scheme, with the
weight σ [3] that we also analyze below.

Next we need to recall the basic error bounds for the above FEM which
are the simplest cases of general error bounds in terms of data smoothness
from [10]. Define the uniform norm ‖r‖Cτ (S̄;B) = maxω̄τ ‖r(tm)‖B in the space
of functions on ω̄τ with values in a Banach space B. Let ε0 > 0 and first
g0 = g1 = 0.

(i) For σ ≥ 1/4 and v0 = v0
σ0

, the following error bound in the extended
L2(Ω) norm holds

‖u− v‖Cτ (S̄;L2(Ω)) + ‖Dx(Îtu− Itv)‖Cτ (S̄;L2(Ω))

≤ c(τ + h)2α/3
(
‖u0‖H(α) + ‖u1‖H(α−1) + ‖f‖F (α1,α2)

)
, 0 ≤ α ≤ 3. (2.13)

Hereafter c is independent of h and τ . For 1 ≤ α ≤ 3, the bound is valid for
simpler v0 = û0 as well, and also one can replace u − v by û − v in it; both
these moments are in use below.

The left-hand side of (2.13) contains the additional non-standard term with
the time primitive Itu; it plays an important role in some recent applications
to optimal control problems [5].

(ii) For σ ≥ 1/4 + ε0 and v0 = û0, the following error bound in the energy-
type norm holds

‖Dx(û− v)‖Cτ (S̄;L2(Ω)) + ‖∂̄t(û− v)‖Cτ (S̄;L2(Ω))

≤ c(τ+h)2(α−1)/3
(
‖u0‖H(α)+‖u1‖H(α−1)+‖f‖F (α1,α2)

)
, 1 ≤ α ≤ 4. (2.14)

(iii) For σ ≥ 1/4 + ε0 and v0 = û0, the following error bound in the mesh
uniform norm holds

‖u− v‖Cτ (S̄;Ch) = max
ω̄h×ω̄τ

|(u− v)(xi, tm)| ≤ c(τ + h)2(α−1/2)/3

×
(
‖u0‖H(α) + ‖u1‖H(α−1) + ‖f‖F (α1,α2)

)
,

1

2
< α <

7

2
. (2.15)

The mesh uniform norm is often especially valuable in practice. Recall that
bound (2.15) is derived in [10] as a consequence of (2.13)–(2.14).

In addition, in the above error bounds α1 + α2 = α − 1 and the pair
(α1, α2) belongs to some sets on the plane that we need not to reproduce in
full generality and confine ourselves by some particular cases below.

Concerning the spaces H(α) for the initial data in the listed error bounds,
H(0) = L2(Ω) and, for integer α = 1, 2, 3, 4, H(α) are the subspaces of func-
tions w in the Sobolev spaces Wα,2(Ω) with w|x=±X/2 = 0 and in addition

D2
xw|x=±X/2 = 0 for α = 3, 4. For non-integer 0 < α < 4, H(α) are similar sub-

spaces in the Nikolskii spaces Hα,2(Ω), see some details in [10]. Importantly

Math. Model. Anal., 23(3):359–378, 2018.
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for what follows, H(1/2) contains the space BV (Ω̄) of functions of bounded
variation on Ω̄ which can be discontinuous, H(3/2) contains w ∈ H(1) with
Dxw ∈ BV (Ω̄), etc. Finally, for negative −1 < α < 0, H(α) consists of distri-
butions w = DxW such that W ∈ Hα+1,2(Ω).

Concerning the spaces F (α1,α2) (for f) of the dominating mixed smoothness
of order α1 in x and order α2 in t in the sense of the anisotropic Lebesgue space
L2,1(Q), below we deal with the case f(x, t) = w(x)z(t) and integer α2 = 0, 1, 2
only. For such α2, in the above error bounds they can be even enlarged up to
the spaces F̄ (α1,α2), and for the mentioned f the property f ∈ F̄ (α1,α2) means
that, first, w ∈ H(α1) and, second:

(1) for α2 = 0, z is the distribution z = DtZ such that Z ∈ BV (S̄), Z(0+) = 0
and α1 ∈ [−1, 2], [0, 3], (−1/2, 5/2) respectively in bounds (2.13)–(2.15);

(2) for α2 = 1, z ∈ BV (S̄), z(0+) = 0 and α1 ∈ [0, 1], [−1, 2], [0, 3/2) respec-
tively in bounds (2.13)–(2.15);

(3) for α2 = 2, z ∈ C(S̄), z(0) = 0 with Dtz ∈ BV (S̄), Dtz(0
+) = 0 and

α1 ∈ [0, 1], [0, 1/2) respectively in bounds (2.14)–(2.15).

Here the restrictions z(0+) = 0, z(0) = 0 and Dtz(0
+) = 0 could be generalized

but this is not required below.
The case of non-zero g0 and g1 is auxiliary in this paper, and we take them

smooth only and mainly to simplify our choice of u0 and u1 below. Thus the
rather simple 2nd order error bound in the energy-type norm (which is the
strongest of all three norms considered above taking (2.13) with û− v instead
of u− v)

‖Dx(û− v)‖Cτ (S̄;L2(Ω)) + ‖∂̄t(û− v)‖Cτ (S̄;L2(Ω)) ≤ c(τ + h)2‖u‖C4(Q̄)

is enough for our purposes since it cannot deteriorate the above error bounds
(the auxiliary smooth solutions

u(x, t) = g0(t)
(
1/2− (x/X)

)
+ g1(t)

(
(x/X) + 1/2

)
having these boundary data can be taken into account). This bound follows
from the proof in [10].

It seems that similar error bounds are valid in the case of the FDM. To
derive them from the error bounds for the FEM, the techniques of reducing
the former to the latter could be applied, in particular, see [6, 8]; some error
bounds for the FDM can be found in [1].

The lower error bounds in the corresponding spaces of data u0, u1 and
f (separately for each of them) of the same orders as in (2.13) and (2.14) are
contained in [8] and in more general form in [9]. They were proved on sequences
of rapidly oscillating elements in the spaces but not for their specific typical
elements. But we emphasize that no lower bounds corresponding to bound
(2.15) are known.

Below we analyze the most interesting cases of half-integer and integer val-
ues of α ∈ (0, 4). For convenience of comparing to practical error orders below,
we put the corresponding orders of error bounds respectively (2.13), (2.15) and
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(2.14) in Table 1 (non-positive values are replaced by dashes). Note that the
orders are the same along “diagonals” of the arising rectangular matrix, and
they increase by 1/3 when passing from one diagonal to the next to the right
one (excluding the last “diagonal” consisting of a unique element).

Table 1. The theoretical error orders in dependence on α

α 1
2

1 3
2

2 5
2

3 7
2

min{2α/3, 2} 0.333... 0.666... 1 1.333... 1.666... 2 2

2(α− 1/2)/3 − 0.333... 0.666... 1 1.333... 1.666... 2

2(α− 1)/3 − − 0.333... 0.666... 1 1.333... 1.666...

3 Practical error analysis

We study the practical error behavior of the following errors

‖u− v‖Cτ (S̄;Lp(Ω)), ‖u− v‖Cτ (S̄;Lp(ωh)), ‖Dx(Îtu− Itv)‖Cτ (S̄;L2(Ω)),

‖Dx(û− v)‖Cτ (S̄;Lp(Ω)), ‖∂̄t(û− v)‖Cτ (S̄;L2(Ω)), ‖u− v‖Cτ (S̄;Ch)

with p = 1, 2 treating the terms on the left-hand sides in bounds (2.13)–(2.14)
separately. The main value is p = 2 since only it appears in bounds (2.13)–
(2.14). Below in tables we mark shortly the listed errors respectively as

Lp, Lph, SW 1,−1;2
h , W 1,0;p

h , W 0,1;2
h , Ch.

The subscript h means that we use û and Îtu instead of u and Itu themselves
(also recall that the Lp(Ω) and Lp(ωh) norms are equivalent uniformly in h
for ϕ ∈ Sh with ϕ|x=±X/2 = 0). The notation SW 1,−1;2

h , W 1,0;p
h or W 0,1;2

h

conform respectively the dominating mixed smoothness of order 1 in x and −1
in t and the anisotropic Sobolev smoothness of order 1 in x or t only. The
L1 and L1

h errors are often used in the case of discontinuous exact solutions in
various applications including gas dynamics, for example, see [4]. In addition
we utilize the W 1,0;1

h error in the case of continuous piecewise smooth solutions;
note that ‖Dxŵ‖L1(Ω) =

∑n
i=1|wi − wi−1| is the variation of w over ω̄h.

Bounds (2.13)–(2.14) are clearly weakened after replacing L2(Ω) by L1(Ω).
Nevertheless, according to [9] these weakened bounds remain sharp in the same
data spaces. Remind that these lower error bounds were actually proved on
sequences of rapidly oscillating elements in the spaces. On the contrary, in what
follows we observe that for some typical elements of these spaces the practical
error orders for p = 1 are always of higher order than for p = 2 (of course,
when the latter are less than 2).

We use exact solutions u to the IBVP (2.1)–(2.3) constructed by the classical
D’Alembert formula and the method of reflections but omit the arising rather
elementary formulas for brevity.

We accomplished a number of preliminary numerical experiments and set-
tled on the following unified strategy for computing practical error orders. We

Math. Model. Anal., 23(3):359–378, 2018.
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select the following values of n: {nk}5k=1 = {1000, 1500, 2200, 3300, 5000}; note
that nk/nk−1 = 1.5 for k = 2, 4 and nk/nk−1 ≈ 1.5 for k = 3, 5. We prefer
such choice compared to the most widespread one nk/nk−1 = 2 since consider
2 being a too high ratio according to our experiments; see a similar choice
previously in [7]. We also tried smaller values of n but restrict our presenta-
tion below by the above relatively large values nk to achieve more reliability of
practical error orders and their closeness to the corresponding theoretical ones
(the observed convergence of the former to latter is not so fast especially for
less smooth data).

We choose the simplest case of the square mesh with τ = h. We also take
a = 1 and X = 1 thus the characteristics of the 1D wave equation (2.1) starting
from the points ω̄h×{0} on the (x, t)-plane go through the mesh nodes. Looking
ahead, this also means that the singularities of u (i.e., discontinuities of u or its
derivatives) in all our examples are situated at the nodes of ω̄h for each time
level in ω̄τ . We also take some T ≤ 0.5 confining ourselves by the case without
reflections of the characteristics from the boundary. It is known that in similar
situations error orders can sometimes be improved. But we have found that
this is not the case in our study and therefore restricted ourselves only by the
square mesh as more complicated to confirm the sharpness of the error bounds.

Assuming the following asymptotic behavior of an error

rn ∼ c(τ + h)γ for h = X/n, τ = h

as n→∞ and considering n = nk−1, nk, we calculate the practical error orders
according to the formula

γk = ln
rnk−1

rnk

/
ln

nk
nk−1

and expect that γk becomes closer and closer to γ as nk grows.
In the rows of all tables below, we present errors rn for n = n1 = 1000 and

then the practical error orders γk for nk = n2, n3, n4, n5.
We have not found any essential differences between the results for the

FEM and FDM, and below mainly the results for the FEM are given unless
the opposite is explicitly stated. In addition, we take only σ = 0.25 or 0.5.

3.1 Practical error orders depending on the smoothness of u0

Our first collection of seven Examples Aα, α = 1/2, 3/2, 5/2, 7/2 and α = 1, 2, 3
is chosen to analyze practical error orders depending on the L2(Ω)-smoothness
of order α of u0. In them functions u0 are nothing more than piecewise-power
(or piecewise-linear for α = 3/2) functions of order α. In addition in Example
Am1/2 we consider the effect of a mismatch between smooth (constant) u0 and
the zero boundary data.

We assume that u1 = 0 and f = 0 in all the examples. We mostly take
T = 0.4, σ = 0.5 and set simply v0 = û0 unless the opposite is explicitly stated.

Example A1/2. We begin with u0 = H as the Heaviside step function, i.e.
H(x) = 0 for x < 0 and H(x) = 1 for x > 0. Obviously u0 is piecewise-constant
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and discontinuous on Ω but it belongs to H(1/2). In addition, we use g0(t) = 0
and g1(t) ≡ 1 to avoid a mismatch of the initial and boundary data. The exact
weaker solution u is also piecewise-constant and discontinuous (on Q̄).

Note that uh0i = H(xi), for all i 6= n/2 (we take these values for i = 0, n as
well), and uh0n/2 = 1/2 (for even n). We set simply v0 = uh0 . Table 2 contains
results in Example A1/2 for the FDM. The final practical orders differ from the
theoretical ones within 1.7% for the terms of the error bound (2.13); hereafter
all percents are relative with respect to the theoretical orders. Note that the
L2 and L1 error orders oscillate while the SW 1,−1;2

h one is decreasing. Also the
L1 error and orders are clearly better than the L2 ones.

The same error results are valid also for u0(x) = (1/2) sgnx−x and g0(t) =
g1(t) = 0 since the function x+ 1/2 solves both the IBVP (2.1)–(2.3) and the
FEM (2.5), (2.6) and (2.8) together with the corresponding FDM simplification
for f = u1 = 0, u0(x) = x+1/2, the above g0(t) = 0 and g1(t) ≡ 1 and v0 = uh0
on ω̄h.

There is no significant difference in results for the FEM and another mesh
initial function v0 = v0

σ0
(see (2.9)) with v0

σ0i
= H(xi), i = 0, n, for σ0 = 1/6.

In particular, the final practical orders are sequentially 0.328, 0.336 and 0.468;
hereafter the corresponding full tables are omitted for brevity.

Example Am
1/2. We take the simplest u0(x) ≡ 1 but in the mismatch with the

zero boundary data g0 = g1 = 0. Notice that such u0 belongs to H(1/2) but not
to H(α) with α > 1/2. This also leads to a piecewise-constant discontinuous
weaker solution u.

Table 3 contains results in Example Am1/2 for σ = 0.25. In general they are
similar to the results in the previous Table 2; the above mentioned percent is
even less: 1.3%.

Table 2. Practical errors and
error orders in Example A1/2

n L2 SW 1,−1;2
h L1

1000 0.041 0.043 0.022

1500 0.324 0.344 0.452
2200 0.328 0.343 0.465
3300 0.327 0.341 0.464
5000 0.329 0.339 0.469

Table 3. Practical errors and
error orders in Example Am

1/2

n L2 SW 1,−1;2
h L1

1000 0.060 0.060 0.021

1500 0.329 0.328 0.462
2200 0.329 0.328 0.465
3300 0.329 0.329 0.464
5000 0.329 0.329 0.467

Example A3/2. We set u0(x) = 1 − 2|x|. Clearly u0 ∈ C(Ω̄) with the

piecewise-constant derivativeDxu0(x) = −2 sgnx ∈ H(1/2). In addition, we use
g0 = g1 = 0 without a mismatch of the initial and boundary data. The exact
weak solution u is piecewise-linear with the discontinuous piecewise-constant
derivatives Dtu and Dxu on Q̄.

Table 4 contains results in Example A3/2 for σ = 0.25. The final practical
orders differ from the theoretical ones within 0.3%, 1.3% and 0.4% for the terms
of the error bounds (2.13), (2.14) and (2.15) respectively. We observe that the
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L2, SW 1,−1;2
h , Ch and W 0,1;2

h error orders are non-decreasing while the rest

are oscillating. Also the Lph and W 1,0;p
h errors and orders are clearly better for

p = 1 than respectively the L2 and W 1,0;2
h ones.

Table 4. Practical errors and error orders in Example A3/2

n L2 SW 1,−1;2
h Ch W 1,0;2

h W 0,1;2
h L1

h W 1,0;1
h

1000 1.050E-4 1.043E-4 9.435E-4 0.061 0.060 3.57E-5 0.031

1500 0.998 0.994 0.660 0.330 0.325 1.298 0.474
2200 0.998 0.995 0.662 0.332 0.327 1.297 0.480
3300 0.999 0.996 0.663 0.331 0.327 1.295 0.474
5000 0.999 0.997 0.664 0.332 0.329 1.307 0.471

Note that the final practical orders for the FDM in comparison with the the-
oretical ones are respectively 0.999 (the same), 1.000, 0.665, 0.333 (all closer),
0.326 (farther), 1.288 and 0.476.

For the FEM and the mesh initial function v0 = v0
σ0

, see equation (2.9),
with v0

σ0i
= 0, i = 0, n, for σ0 = 1/6 the results are the same since by chance

v0 = û0 satisfies this equation. For σ0 = 1/4, there is no significant difference
in results: in particular, the final practical orders are sequentially 0.996, 0.994,
0.666, 0.326, 0.323, 1.297 and 0.468.

Example Aα, α = 5/2,7/2. We set u0(x) = (sgnx)(2x)β ∈ Cβ−1(Ω̄) with
the integer β = α − 1/2. It has the piecewise-constant higher-order derivative
Dβ
xu0(x) = 2ββ! sgnx ∈ H(1/2). In addition, we use g1(t) = −g0(t) = 1 + (2t)2

for α = 5/2 and g1(t) = g0(t) = 1 + 3(2t)2 for α = 7/2 to ensure matching of
the initial and boundary data. The exact solution u ∈ C1(Q̄) is strong with the
piecewise-constant discontinuous 2nd order derivatives D2

xu, D2
t u and DxDtu

for α = 5/2, whereas u ∈ C2(Q̄) is classical with the piecewise-linear 2nd order
derivatives D2

xu, D2
xu and DxDtu and the discontinuous 3rd order derivatives

(thus u is not too smooth) for α = 7/2.
Table 5 contains results in Example A5/2. The final practical orders dif-

fer from the theoretical ones within 0.16%, 0.6% and 0.35% for the terms of
the error bounds (2.13), (2.14) and (2.15) respectively. We see that the L2

h,

SW 1,−1;2
h , W 1,0;2

h and W 0,1;2
h error orders are non-decreasing while the rest are

oscillating. Once again the Lph and W 1,0;p
h errors and orders are better for p = 1

than p = 2.
We take v0 = v0

σ0
with σ0 = 1/6 and replace uh0 by u0 in (2.9) for α = 7/2.

Table 6 contains results in Example A7/2. The final practical orders differ from
the known theoretical ones within only 0.05%-0.14% (we ignore validity of the
error bound (2.15) for any 3 ≤ α < 7/2 only, not α = 7/2). Also the W 1,0;1

h

error and orders are better than the W 1,0;2
h ones.

Example Aα, α= 1,2,3. We set u0(x) = (sgnx)|2x|β ∈ C [β](Ω̄) with the
half-integer β = α− 1/2. Notice that u0 6∈Wα,2(Ω) so that, strictly speaking,
the above error bounds are not applicable with these α. But nevertheless u0
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Table 5. Practical errors and error orders in Example A5/2

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h L1
h W 1,0;1

h

1000 7.84E-6 7.817E-6 6.312E-5 0.002 0.002 1.956E-6 5.953E-4

1500 1.663 1.662 1.320 0.993 0.988 1.977 1.251
2200 1.664 1.663 1.340 0.995 0.991 1.974 1.266
3300 1.665 1.664 1.326 0.996 0.993 1.980 1.258
5000 1.665 1.664 1.338 0.997 0.994 1.985 1.277

Table 6. Practical errors and error orders in Example A7/2

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h W 1,0;1
h

1000 2.859E-6 1.083E-6 3.749E-6 4.695E-5 4.781E-5 1.166E-5

1500 1.999 1.995 1.994 1.662 1.673 1.966
2200 1.999 1.996 2.000 1.663 1.671 1.976
3300 1.999 1.998 1.998 1.664 1.670 1.979
5000 1.998 2.001 1.997 1.665 1.669 1.980

belongs to the fractional order Nikolskii space Hα−ε,2(Ω) (as well as to the
fractional order Sobolev-Slobodetskii space Wα−ε,2(Ω)) for any 0 < ε < 1/2
thus the bounds can be applied for α − ε in the role of α, and we can expect
that the practical error orders almost correspond to α. In addition, we use
g1(t) = −g0(t) =

[
(1 + 2t)β + [(1 − 2t)β

]
/2, 0 ≤ t < 1/2, to ensure again

matching of the initial and boundary data.
Tables 7, 8 and 9 contain results in Examples Aα respectively for α = 1, 2, 3.

For α = 1, the final practical orders differ from the discussed theoretical ones
within 0.4%–4.3%.

Table 7. Practical errors and
error orders in Example A1

n L2
h SW 1,−1;2

h Ch L1
h

1000 0.003 0.003 0.025 0.001

1500 0.658 0.662 0.320 0.867
2200 0.660 0.663 0.336 0.879
3300 0.661 0.664 0.347 0.877
5000 0.663 0.664 0.319 0.886

For α = 2, we set T = 0.3 and σ = 0.25. The final practical orders differ
from the theoretical ones within 0%–1.3% for the terms of the error bounds
(2.13)–(2.14), and they coincide for the error bound (2.15). All the error orders
are increasing except the oscillating Ch one.

For α = 3, the final practical orders differ from the theoretical ones within
0.08%–2.3%, and all the error orders are non-decreasing except the last one.

For all α = 1, 2, 3, the Lph and W 1,0;p
h errors and orders are clearly better
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for p = 1 than p = 2.
Notice also that the errors for n = 1000 in the same norms decrease as α

grows from 1/2 to 3.

Table 8. Practical errors and error orders in Example A2

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h L1
h W 1,0;1

h

1000 3.491E-5 3.491E-5 2.81E-4 0.010 0.010 1.074E-5 0.004

1500 1.329 1.329 0.978 0.657 0.650 1.601 0.867
2200 1.330 1.330 1.004 0.659 0.653 1.618 0.868
3300 1.331 1.331 0.998 0.660 0.656 1.619 0.873
5000 1.332 1.332 1.000 0.662 0.658 1.626 0.888

Table 9. Practical errors and error orders in Example A3

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h W 1,0;1
h

1000 3.28E-7 7.908E-7 2.539E-6 5.669E-5 5.637E-5 1.485E-5

1500 1.946 1.990 1.636 1.324 1.321 1.618
2200 1.948 1.991 1.646 1.326 1.324 1.612
3300 1.950 1.991 1.659 1.328 1.326 1.633
5000 1.954 1.991 1.668 1.329 1.328 1.639

3.2 Practical error orders depending on the smoothness of u1

Our second collection of seven Examples Bβ , β = −1/2, 1/2, 3/2, 5/2 and
β = 0, 1, 2, is chosen to analyze practical error orders depending on the L2(Ω)-
smoothness of order β of u1. Recall that α = β + 1 in the error bounds
(2.13)–(2.15). The collection begins with Example B−1/2 where u1 is the Dirac
δ-function. Other functions u1 are nothing more than the piecewise-power (or
piecewise-linear) functions once again. We assume that u0 = 0 and f = 0 in
all the examples. We mostly take T = 0.4 and σ = 0.5 and replace uh1 simply
by u1 in equation (2.6) unless the opposite is explicitly stated.

Example B−1/2. We first take u1(x) = δ(x) as the Dirac δ-function concen-
trated at x = 0. Since δ = DxH, the L2(Ω)-smoothness of δ is negative and
equals −1/2. We also set g0(t) = g1(t) = 0. The exact weaker solution u is
piecewise-constant and discontinuous on Q̄. We use uh1i = δi,n/2/h on ωh (for
even n) in equation (2.6) according to (2.12). Hereafter δi,j is the Kronecker
delta.

Table 10 contains results in Example B−1/2 for σ = 0.25. The final practical
orders differ from the theoretical one within only 0.4% for the error bound
(2.13). All the error orders are oscillating. Also the L1 error and orders are
clearly better than the L2 ones.
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Table 10. Practical errors and
error orders in Example B−1/2

n L2 SW 1,−1;2
h L1

1000 0.031 0.031 0.015

1500 0.334 0.330 0.473
2200 0.331 0.332 0.464
3300 0.333 0.331 0.476
5000 0.332 0.332 0.474

Example Bβ, β= 1/2,3/2,5/2. We take u1(x) = sgnx for β = 1/2, u1(x) =
1−2|x| for β = 3/2, u1(x) = (sgnx)x2 for β = 5/2 similarly to the correspond-
ing Examples Aβ+1. In addition, we take g1(t) = −g0(t) = t for β = 1/2 and
g1(t) = −g0(t) = t3/3 + t/4 for β = 5/2 to ensure matching of the initial and
boundary data.

The exact solution u is weak and piecewise-linear with discontinuous piece-
wise-constant derivatives Dtu and Dxu on Q̄ for β = 1/2, u ∈ C1(Q̄) is strong
with the piecewise-constant discontinuous 2nd order derivatives D2

xu, D2
t u and

DxDtu for β = 3/2 and u ∈ C2(Q̄) is classical with the piecewise-linear 2nd
order derivatives D2

xu, D2
t u and DxDtu and discontinuous 3rd order derivatives

(thus u is not too smooth) for β = 5/2. We use uh1i = sgnxi for i 6= n/2 and
uh1n/2 = 0 in equation (2.6) (for even n) according to (2.10) for β = 1/2.
Table 11 contains results in Example B1/2 for T = 0.2. The final practical
orders differ from the theoretical ones within 0.6%, 5.5% and 0.05% for the
terms of the error bounds (2.13), (2.14) and (2.15) respectively. The error
orders are non-decreasing except the oscillating last one.

Table 11. Practical errors and error orders in Example B1/2

n L2 SW 1,−1;2
h Ch W 1,0;2

h W 0,1;2
h L1

h W 1,0;1
h

1000 1.455E-4 1.464E-4 0.001 0.065 0.063 4.343E-5 0.024

1500 0.986 0.989 0.667 0.312 0.305 1.225 0.444
2200 0.989 0.992 0.667 0.315 0.309 1.247 0.451
3300 0.992 0.994 0.667 0.318 0.312 1.255 0.457
5000 0.994 0.995 0.667 0.320 0.315 1.261 0.456

The same error results are valid also for u1(x) = sgnx − 2x together with
g0(t) = g1(t) = 0 since the function 2xt solves both the IBVP (2.1)–(2.3)
and the FEM (2.5), (2.6) and (2.8) for f = u0 = 0, u1(x) = 2x, the above
g1(t) = −g0(t) = t and v0 = 0 on ω̄h.

Notice that quite similar results are valid even for the simplest u1(x) ≡ 1
and g0(t) = g1(t) = 0 (cp. Example Am1/2). In particular, the final practical
orders are sequentially 0.996, 0.997, 0.667, 0.323, 0.319, 1.265 and 0.466. This
is not surprising since then due to the mismatch between the second initial con-
dition Dtu|t=0 = u1 and zero boundary data the exact weak solution u remains
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continuous piecewise-linear with discontinuous piecewise-constant derivatives
Dtu and Dxu. Table 12 contains results in Example B3/2. The final practical
orders differ from the theoretical ones within only 0.1%, 0.4% and 0.2% for the
terms of the error bounds (2.13), (2.14) and (2.15) respectively.

Table 12. Practical errors and error orders in Example B3/2

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h L1
h W 1,0;1

h

1000 1.958E-6 1.964E-6 1.569E-5 4.193E-4 4.150E-4 5.745E-7 1.571E-4

1500 1.663 1.664 1.316 0.997 0.991 1.964 1.263
2200 1.664 1.665 1.337 0.998 0.993 1.962 1.277
3300 1.664 1.665 1.325 0.998 0.995 1.970 1.267
5000 1.665 1.666 1.336 0.999 0.996 1.973 1.286

Table 13. Practical errors and error orders in Example B5/2

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h W 1,0;1
h

1000 3.933E-8 5.019E-8 9.829E-8 1.528E-6 1.551E-6 5.019E-7

1500 1.996 1.998 1.982 1.658 1.666 1.944
2200 1.998 1.998 1.989 1.660 1.666 1.954
3300 1.999 1.998 1.990 1.662 1.667 1.959
5000 2.001 1.997 1.995 1.663 1.667 1.965

Table 13 contains results in Example B5/2 for σ = 0.25. The final practical
orders differ from the theoretical ones within only 0.15% and 0.25% for the
terms of the error bounds (2.13) and (2.14)–(2.15) respectively (we ignore va-
lidity of the error bound (2.15) for any 2 ≤ β = α−1 < 5/2 only, not β = 5/2).
All the error orders are monotone.

Also the L1
h (for β = 1/2, 3/2) and W 1,0;1

h (for β = 1/2, 3/2, 5/2) errors and

orders are better than respectively the L2 (or L2
h) and W 1,0;2

h ones.

Example Bβ, β= 0,1,2. We take u1(x) = (sgnx)|x|β−1/2. Notice that
u1(x) = (sgnx)|x|−1/2 6∈ L2(Ω) for β = 0 so that, strictly speaking, the above
error bounds are not applicable for α = 1. But nevertheless u1(x) = 2Dx

√
|x|

with
√
|x| ∈ H(1−ε) for any 0 < ε < 1, thus the bounds are applicable for

α = 1− ε, and we can expect that the practical error orders almost correspond
to α = 1. The same functions as u1(x) = (sgnx)|x|β−1/2 for β = 1, 2 (up to
constant multipliers) have already been discussed in Example Aβ . In addition,
we take

g1(t) = −g0(t) =
1

2β+3/2(β + 1/2)

[
(1 + 2t)β+1/2 − (1− 2t)β+1/2

]
, 0 ≤ t < 1

2
.

The above formulas in Examples B1/2 and B5/2 are particular cases of this one.

We use uh1i = u1(xi) for i 6= n/2 and uh1n/2 = 0 in equation (2.6) (for even
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n) in the case β = 0. Table 14 contains results in Example B0. The final
practical orders differ from the theoretical ones within only 0.5%–1.15%.

Table 14. Practical errors and
error orders in Example B0

n L2
h SW 1,−1;2

h Ch L1
h

1000 0.005 0.005 0.056 0.002

1500 0.680 0.652 0.336 0.867
2200 0.678 0.655 0.335 0.869
3300 0.676 0.657 0.335 0.880
5000 0.674 0.659 0.335 0.878

Table 15 contains results in Example B1 for σ = 0.25. The final practical
orders differ from the theoretical ones within only 0.1%–0.6%.

Table 15. Practical errors and error orders in Example B1

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h L1
h W 1,0;1

h

1000 3.315E-6 3.267E-6 2.844E-5 0.001 0.001 9.222E-7 5.344E-4

1500 1.338 1.330 1.003 0.664 0.660 1.627 0.882
2200 1.337 1.330 1.014 0.665 0.662 1.651 0.891
3300 1.336 1.331 1.009 0.666 0.663 1.627 0.887
5000 1.335 1.332 1.006 0.666 0.664 1.643 0.888

Table 16 contains results in Example B2 for σ = 0.25. The final practical
orders differ from the theoretical ones within 1.8%, 0.1% and 2.84% for the
terms of the error bounds (2.13), (2.14) and (2.15) respectively. Note that for
σ = 0.5 the percents are respectively 3.35%, 0.33% (both larger) and 0.74%
(much smaller). Also the Lph (for β = 0, 1) and W 1,0;p

h (for β = 1, 2) errors and
orders are better for p = 1 than p = 2. Notice also that the errors for n = 1000
in the same norms decrease as β grows from −1/2 to 2.

Table 16. Practical errors and error orders in Example B2

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h W 1,0;1
h

1000 3.850E-8 4.113E-8 1.883E-7 4.936E-6 4.908E-6 1.295E-6

1500 1.965 1.969 1.739 1.334 1.331 1.639
2200 1.966 1.970 1.731 1.334 1.331 1.634
3300 1.966 1.971 1.718 1.334 1.332 1.635
5000 1.964 1.970 1.714 1.334 1.332 1.644

3.3 Practical error orders depending on the smoothness of f

The third collection of seven Examples Cα1,α2
, where α1 = −1/2, 1/2, 3/2 and

respectively α2 ∈ {0, 1}, {0, 1, 2}, {0, 1}, is chosen to analyze practical error
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orders depending on the dominating mixed smoothness of f , namely, L2(Ω)-
smoothness of order α1 in x and the generalized L1(S)-smoothness of order
α2 in t. Remind that we consider only f with the separated variables for
more clearance; also f(x, t) = 0 for t < t∗ with some t∗ ∈ S. Recall that
α = α1 + α2 + 1 in the error bounds (2.13)–(2.15). The corresponding exact
solutions u are piecewise-polynomial from constant to cubic.

For α2 = 0, f is the Dirac δ-function in (x, t) for α1 = −1/2 or in t only for
α1 = 1/2, 3/2. These cases are of special interest in connection with utilizing
the impulse external forces, in particular, as controls. For brevity, in contrast
to above two subsections we do not consider the integer values of α1.

We assume that u0 = u1 = 0, g0 = g1 = 0 and t∗ = 0.1 in all the examples.

Example C−1/2,0. We first take f(x, t) = δ(x, t− t∗) as the Dirac δ-function
concentrated at the point (0, t∗) with t∗ ∈ S. The exact weaker solution u is
piecewise-constant and discontinuous on Q̄.

Notice that in our computations (0, t∗) = (xn/2, tm0
) ∈ ωh × ω̄τ , for even n

and some 0 < m0 < M ; thus fh,τ,mi = δi,n/2δm,m0
/(hτ) on ωh× ω̄τ , see (2.12).

Table 17 contains results in Example C−1/2,0 for T = 0.5 and σ = 0.25. The
final practical orders differ from the known theoretical one within only 0.4%.
All the error orders oscillate. Also the L1 error and orders are clearly better
than the L2 ones.

Table 17. Practical errors and
error orders in Example C−1/2,0

n L2 SW 1,−1;2
h L1

1000 0.031 0.031 0.015

1500 0.334 0.330 0.473
2200 0.331 0.332 0.464
3300 0.333 0.331 0.476
5000 0.332 0.332 0.474

Example C−1/2,1. We take f(x, t) = δ(x)H(t − t∗) as the Dirac δ-function
concentrated at the point (0, t∗) with t∗ ∈ S. The exact weak solution u
is piecewise-linear with discontinuous piecewise-constant derivatives Dtu and
Dxu on Q̄.

The averages of the cofactors of f are calculated as stated above; in partic-
ular, for z(t) = H(t−t∗) with t∗ = tm0

, we have zτ,m = H(tm−t∗) for m 6= m0

and zτ,m0 = 1/2 according to (2.11).
Table 18 contains results in Example C−1/2,1 for T = 0.5 and σ = 0.5.

The final practical orders differ from the possible theoretical ones within only
0.1%, 2.2% and 0.25% for the terms of the error bounds (2.13), (2.14) and
(2.15) respectively. Here “possible” means that the values (α1, α2) = (−1/2, 1)
were covered in (2.14) only but not in (2.13) and (2.15) though some related
extensions were discussed in [10]. The 1st-3rd and 5th error orders are non-
decreasing whereas other oscillate. Also the L1

h and W 1,0;1
h errors and orders
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are better than respectively the L2 and W 1,0;2
h ones.

Table 18. Practical errors and error orders in Example C−1/2,1

n L2 SW 1,−1;2
h Ch W 1,0;2

h W 0,1;2
h L1

h W 1,0;1
h

1000 1.048E-4 1.054E-4 7.517E-4 0.039 0.037 3.992E-5 0.022

1500 0.997 1.000 0.663 0.330 0.322 1.269 0.461
2200 0.997 1.000 0.664 0.334 0.322 1.268 0.471
3300 0.998 1.000 0.664 0.332 0.324 1.283 0.467
5000 0.999 1.000 0.665 0.332 0.326 1.279 0.471

Example C1/2,0. We take f(x, t) = H(x)δ(t − t∗) with t∗ ∈ S. The exact
solution u is almost weak and piecewise-linear with discontinuous piecewise-
constant derivatives Dtu and Dxu on Q̄. Here “the almost weak” solution
from the energy class means that Dtu belongs to L∞(S,L2(Ω)) only but not
to C(S̄, L2(Ω)) as Dxu, see details in [10]; fortunately this fact does not reduce
the error orders.

The averages of the cofactors of f are calculated as stated above. Table 19
contains results in Example C1/2,0 for T = 0.3 and σ = 0.25. The final practical
orders differ from the theoretical ones within 0.6%, 5.5% and 0.05% for the
terms of the error bounds (2.13), (2.14) and (2.15) respectively. All the orders
are increasing except the constant Ch one and the oscillating last one. Also the
L1
h and W 1,0;1

h errors and orders are better than respectively the L2 and W 1,0;2
h

ones. The results in this and the previous example C−1/2,1 are similar that is
seemed rather natural due to the form of the error bounds (2.13)–(2.15).

Table 19. Practical errors and error orders in Example C1/2,0

n L2 SW 1,−1;2
h Ch W 1,0;2

h W 0,1;2
h L1

h W 1,0;1
h

1000 1.26E-4 1.268E-4 0.001 0.056 0.055 4.343E-5 0.024

1500 0.986 0.989 0.667 0.312 0.305 1.225 0.444
2200 0.989 0.992 0.667 0.315 0.309 1.247 0.451
3300 0.992 0.994 0.667 0.318 0.312 1.255 0.457
5000 0.994 0.995 0.667 0.320 0.315 1.261 0.456

Example C1/2,1. We take f(x, t) = H(x)H(t− t∗) with t∗ ∈ S. The exact so-
lution u ∈ C1(Q̄) is piecewise-quadratic and strong with the piecewise-constant
discontinuous 2nd order derivatives D2

t u, D2
xu and DxDtu on Q̄.

Table 20 contains results in Example C1/2,1 for T = 0.3 and σ = 0.25. The
final practical orders differ from the theoretical ones within only 0.25%, 1% and
0.35% for the terms of the error bounds (2.13), (2.14) and (2.15) respectively.
For σ = 0.5, the percents are respectively 0.22%, 0.9% and 0.58%. Also the Lph
and W 1,0;p

h errors and orders are better for p = 1 than p = 2.
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Table 20. Practical errors and error orders in Example C1/2,1

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h L1
h W 1,0;1

h

1000 1.500E-7 1.518E-7 1.959E-6 6.272E-5 6.214E-5 3.052E-8 1.753E-5

1500 1.663 1.670 1.361 0.983 0.978 1.978 1.254
2200 1.664 1.670 1.289 0.987 0.983 1.971 1.218
3300 1.665 1.669 1.317 0.990 0.987 1.981 1.259
5000 1.665 1.668 1.338 0.992 0.990 1.984 1.257

Example C1/2,2. We take f(x, t) = H(x)L(t − t∗) with t∗ ∈ S. Hereafter
L is a piecewise-linear function: L(t) = 0 for t ≤ 0 and L(t) = t for t > 0.
Clearly DtL(t) = H(t). The exact solution u ∈ C1(Q̄) is piecewise-cubic
and strong with the piecewise-linear 2nd order discontinuous derivative D2

xu
but continuous derivatives D2

t u and DxDtu on Q̄; thus there exist also the
piecewise-constant 3rd order mixed derivatives D2

xDtu and DxD
2
t u (that is

essential for getting higher order error bounds according to [10]) together with
D3
t u on Q.

Note that, for t∗ = tm0
, we have Lτ,m = L(tm) for m 6= m0 and Lτ,m0 = τ/6

according to (2.11). Table 21 contains results in Example C1/2,2 for T = 0.3
and σ = 0.5. The final practical orders differ from the theoretical ones within
only 0.5% (we ignore validity of the error bound (2.15) for any 0 ≤ α1 < 1/2
only, not α1 = 1/2, when α2 = 2). All the orders are non-decreasing. Also the
W 1,0;p
h error and orders are clearly better for p = 1 than p = 2.

In this example, the similar results are valid for t∗ = 0 as well. In particular,
for T = 0.2 and σ = 0.25, the final practical orders are sequentially 2.000, 2.000,
2.000, 1.671, 1.663 and 1.962.

Table 21. Practical errors and error orders in Example C1/2,2

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h W 1,0;1
h

1000 1.048E-8 9.055E-9 3.783E-8 4.761E-7 6.723E-7 1.644E-7

1000 1.996 1.995 1.981 1.663 1.658 1.947
1500 1.997 1.996 1.983 1.664 1.660 1.952
2200 1.998 1.997 1.986 1.665 1.662 1.957
3300 1.998 1.998 1.990 1.665 1.663 1.962

Example C3/2,0. We take f(x, t) = (1− 2|x|)δ(t− t∗) with t∗ ∈ S. The exact
solution u has the same properties as listed above in Example C1/2,1.

Note that, for w(x) = 1− 2|x| and even n, we have whi = w(xi) for i 6= n/2
and whn/2 = 1−2h/3 according to (2.10). Table 22 contains results in Example
C3/2,0 for T = 0.3 and σ = 0.25. The final practical orders differ from the
theoretical ones within only 0.22%, 0.7% and 0.05% for the terms of the error
bound (2.13), (2.14) and (2.15) respectively. For σ = 0.5, the percents are
respectively 0.16%, 1% and 0.7%. Also the Lph and W 1,0;p

h errors and orders
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are better for p = 1 than p = 2. The results in this and the above example
C1/2,1 are similar in full accordance with the error bounds (2.13)–(2.15).

Table 22. Practical errors and error orders in Example C3/2,0

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h L1
h W 1,0;1

h

1000 3.478E-7 3.439E-7 3.880E-6 1.465E-4 1.451E-4 8.521E-8 3.850E-5

1500 1.666 1.659 1.356 0.990 0.985 1.957 1.276
2200 1.666 1.661 1.287 0.992 0.988 1.953 1.238
3300 1.666 1.662 1.312 0.994 0.991 1.970 1.274
5000 1.666 1.663 1.334 0.995 0.993 1.971 1.270

Example C3/2,1. We take f(x, t) = (1− 2|x|)H(t− t∗) with t∗ ∈ S. Similarly
to above Example C1/2,2, the exact solution u ∈ C1(Q̄) is piecewise-cubic
and strong with the piecewise-linear 2nd order discontinuous derivative D2

t u
but continuous derivatives D2

xu and DxDtu on Q̄; thus there exist also the
piecewise-constant 3rd order mixed derivatives D2

xDtu and DxD
2
t u together

with D3
xu on Q.

Table 23 contains results in Example C3/2,1 for T = 0.3 and σ = 0.25.
The final practical orders equal the theoretical ones for the terms of the error
bound (2.13) and differ within only 0.22% and 0.1% for the terms of the error
bounds (2.14) and (2.15) respectively (we ignore validity of the error bound
(2.15) for any 0 ≤ α1 < 3/2 only, not α1 = 3/2, when α2 = 1). As usual, the
W 1,0;1
h error and orders are better than the W 1,0;2

h ones. The results in this and
the above example C1/2,2 are similar in full accordance with the error bounds
(2.13)–(2.15).

Table 23. Practical errors and error orders in Example C3/2,1

n L2
h SW 1,−1;2

h Ch W 1,0;2
h W 0,1;2

h W 1,0;1
h

1000 1.053E-8 2.652E-8 1.953E-8 3.439E-7 3.500E-7 6.066E-8

1500 1.999 2.000 1.994 1.659 1.669 1.970
2200 1.999 2.000 2.000 1.661 1.669 1.972
3300 1.999 2.000 1.999 1.662 1.668 1.978
5000 2.000 2.000 1.998 1.663 1.668 1.984

Finally, we emphasize that the closeness in general of the above results
in Examples Aα, Bβ and Cα1,α2

in the cases α = β + 1 = α1 + α2 + 1 for
α = 1/2, 3/2, 5/2, 7/2 is caused, of course, by the similar regularity properties
and the precise forms of the exact solution u.
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