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source function from an integral flux condition. The study is mo-
tivated by mathematical models based on Navier-Stokes equations,
particularly those exhibiting Poiseuille-type solutions. We employ a
variational approach, formulating the inverse problem as the min-
imization of a Tikhonov regularization cost functional. Discrete
approximation schemes are rigorously derived using finite volume
methods in space and both backward Euler and Crank-Nicolson
schemes in time. A key contribution of this work is the strict justi-
fication of the gradient formula for the cost functional by deriving
the adjoint problem directly from the fully discrete scheme, rather
than discretizing the continuous adjoint problem. This method-
ology is extended to problems involving fractional powers of el-
liptic operators and two-dimensional domains. Numerical experi-
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ments are conducted to compare the efficiency of Gradient Descent
and Conjugate Gradient methods. The results demonstrate that
the Conjugate Gradient method significantly outperforms standard
gradient descent, maintaining high accuracy and convergence rates
even with the inclusion of regularization terms and complex diffu-
sion operators.
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1 Problem formulation

Inverse problems for parabolic partial differential equations arise in numerous
scientific and engineering applications, including heat conduction, contaminant
transport, groundwater flow, and cardiovascular modeling. Such problems are
often ill-posed in the sense of Hadamard, meaning that small perturbations in
measured data can lead to large deviations in the recovered parameters. Conse-
quently, the development of stable, efficient, and accurate numerical algorithms
is essential for reliable solutions in practice.
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Numerical algorithms to solve inverse problems for parabolic equations

This work is motivated by inverse problems emerging from fluid dynamics,
particularly those derived from the Navier—Stokes equations. In many practical
scenarios, such as flow in pipes, channels, or porous media, the velocity field
admits a Poiseuille-type structure [16], which simplifies the governing system to
a parabolic equation with an unknown time-dependent source term. Recovering
this source from indirect measurements, such as integrated flux, constitutes a
classical but challenging inverse problem.

Following [14], we begin by considering an initial-boundary value problem
for the incompressible Navier—Stokes equations in an infinite straight pipe Il =
{Z = (z1,22) €ER?: 0< 21 <1, —00< a9 <00}

Ju 2. 9%u
— = + (u(@,t) - V)u(,t) + Vp(Z,t) = 0, (1.1)
ot = ij
V-u(z,t) =0,

with no-slip boundary conditions u(Z, t)’H = 0 and initial condition u(Z,0) =
ug(Z). For Poiseuille-type solutions of the form

u(fv t) = (07 UZ(xlvt))v p(f, t) = _q(t)xQ —|—p0(t),

with an arbitrary function pg(t), the system (1.1) reduces to a one-dimensional
parabolic equation for Us(z1,t):

U, 02U,

ot Vom0

where ¢(t) represents an unknown pressure gradient.

Motivated by this setting, we study a more general inverse parabolic prob-
lem. Let 2 = (0,1) be a bounded interval, T' > 0 be a final time, and define
Q=102x(0,T], S=002x(0,T]. We seek a function u(z,t) satisfying the 1D
nonstationary diffusion equation:

0 02
3—7;5 = ”373 = go(a,t) + (g1 (z), (x,t) € Q, (1.2)
U|S =us,

u(x,0) = up(z), =€,

with given boundary and initial conditions, where gy, g1 are known functions,
v is a given diffusion coefficient, and f(¢) is an unknown time-dependent source
term to be determined from the additional integral flux condition

Lu = /Qw(x)u(x,t)dx = h(t), (1.3)

where w is a prescribed weight function and his given measurement data.
Thus, we solve an inverse problem: for given initial and boundary con-
ditions ug, ug and functions go, g1, h(t), w we must find a pair of functions
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(u(x,t), f(t)) by solving the parabolic problem (1.2) and additional conjugation
condition (1.3).

In this paper, we also consider a modified problem, where the classical
diffusion operator is replaced by the fractional power elliptic operator [2]

o

a%t FvAPu = go(z,t) + f(t)gr (), (2,t) € Q, (1.4)
9 p

APy = (—%) , O<p<1.

This extension is motivated by models of anomalous diffusion in heteroge-
neous or porous media [13].

There are different definitions of the fractional powers AP. We use the
spectral definition. Let us denote the eigenpairs of the elliptic operator Au by
(¢, Aj). Eigenvectors ¢; provide an orthonormal basis for Ly(]0,1]):

- *p;
v(z) = chgoj(x), o Ajp;.
j=1

Then, the spectral fractional powers AP for 0 < p < 1 are defined by eigenvec-
tors expansions:

APy = ch)\fapj(x).

Jj=1

There are two popular approaches how to solve such inverse parabolic prob-
lems. The first is to derive an equivalent integral equation for the unknown
source. For example, one can eliminate the state u to obtain a Volterra in-
tegral equation of the first kind for f(¢). This approach was investigated in
detail in [1]. Numerical schemes for the Volterra integral equations are also
investigated in many papers and books, see e.g. [7]. Such equations are typ-
ically ill-posed. The standard method for regularization of the ill-posed first
kind integral Volterra equations is based on a reduction (approximation) of this
equation by the well-posed second kind integral Volterra equation [15,16].

The second approach treats the problem in a variational PDE framework.
In this approach, one defines a Tikhonov regularization functional measuring
the discrepancy between the computed flux and the data, and minimizes it
with respect to f:

T _ 9 a T
Jo(f) = %/0 (Lu(f) — h(t)) dt+§/0 fA(t)dt, (1.5)

where u(f) denotes the solution of the direct problem corresponding to a given
source f(t) and o > 0 is the regularization parameter. The minimizing source
f balances the fit to measurement data h with the penalty a||f\|%2(01T) (see [8]

for an introduction to Tikhonov regularization, and [10,11] for applications to
inverse source problems).
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We also briefly note here another highly promising general approach that
has gained significant popularity in recent years for solving inverse problems.
It is based on applications of artificial neural networks, particularly Physics-
Informed Neural Networks, which excel at solving inverse problems involving
nonlinear partial differential equations [3,4]. A key advantage of this method
lies in its inherent structure, which naturally incorporates variational formula-
tions and minimization algorithms directly into the computational schemes [17].

While Volterra integral equation methods are a standard approach for 1D
problems, they do not easily generalize to multidimensional or non-local prob-
lems. Therefore, this paper utilizes a variational PDE formulation based on
Tikhonov regularization. A key contribution of this work is the rigorous deriva-
tion of the discrete adjoint problem. Unlike approaches that discretize the con-
tinuous adjoint, we derive the adjoint directly from the fully discrete scheme
(using backward Euler and Crank-Nicolson), ensuring the gradient computed
is exact for the discrete optimization process.

In this work, we develop and analyze robust and efficient numerical schemes
for solving the inverse problem (1.2)—(1.3) (and its fractional variant) in one
and two spatial dimensions. In particular, we discretize the state equation and
the Tikhonov functional to derive gradient-based optimization algorithms for
the source term f(¢). We compare the computational cost of different time-
stepping and optimization schemes. We emphasize the theoretical formulation
and computational methodology; rigorous error estimates and real-world ap-
plications are beyond the scope of this paper and will be addressed in future
work.

The rest of the paper is organized in the following way. In Section 2,
the discretization of the space operators is done. The standard finite volume
approximation is used on the uniform space mesh. As a result a semidiscrete
model of the inverse parabolic problem is defined. The Tikhonov regularization
cost functional (1.5) is also discretized by using the trapezoidal summation
formula. In Section 3, a general technique for derivation of the gradient formula
for the cost functional J, ,(f) is presented. This information makes a basis
for variational minimization algorithms. Inverse problem for ODE is solved in
Section 4. The main aim is to show how the general template with an important
definition of the adjoint problem arises in the analysis of the direct gradient
calculation algorithm. In Section 5, a fully discrete backward Euler scheme is
constructed and analyzed. Its main purpose is to strictly justify the definition of
the adjoint problem in this algorithm for an inverse discrete parabolic problem.
A similar analysis is done for the Crank-Nicolson discrete scheme in Section 6.
In Section 7, the fully discrete Crank-Nicolson scheme is constructed and the
gradient formula is derived for the fractional power discrete elliptic operator.
These schemes can be generalized also for two-dimensional inverse parabolic
problems. This analysis is done in Section 8. In order to solve variational
minimization problems for determination of unknown source function gradient
descent type algorithms are used. In Section 9, first a simple gradient descent
method is applied and next the Conjugate Gradient Method is used to solve
the formulated minimization problems. A comparison of both techniques is
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done. Results of numerical experiments are presented in Section 10. Some
final conclusions are done in Section 11.

2 Discrete approximation

In this section we construct discrete in space operators. A uniform discrete
grid in space is defined (here [ = 1):

wh:{zj: zj=7jh, j=1,...,J =1}, z;=1, @, =w,U{0,1}.

Semi-discrete functions V' (x;,t) = (vo,v1, ..., vs) are approximations of u(x;, t),
where v; = V(z;,t), 7=0,...,J.

In the following analysis it is sufficient to take homogeneous boundary condi-
tions vg = 0, vy = 0. For any V we define the discrete diffusion operator

Vip1l — 205 + v .
AV = -2 h; - j=1,...,J -1
The eigenvectors Vi = (Vg1,...,05,7-1) and eigenvalues Ay of Aj are well

known [12]:
AnVie =MiVa, k=1,...,J—1.

4 kh
v =V2sin(rkz;), A\ = 72 sin? <7r2) .

Let us define a scalar product and Ls norm for the discrete functions, which
satisfy homogeneous boundary conditions

J-1
(VW) =3 wjwsh, V] = (V.V),/"
j=1
The set of eigenvectors {V;}, k = 1,...,J — 1 make an orthonormal and

complete basis in Lo space.
The semi-discrete approximation of problem (1.2)—(1.3) is given by

ov
E +vALV = go(.]?j,t) + f(t)gl(xj), Tj € Wh, (2.1)
Uo(t) = O, Uj(t) = 0,

v(w,0) = uo(z;), j=0,....J,

and the discrete flux condition is defined as

J—-1
LhV = ijvj h = E(t)

Jj=1

We obtain the one-dimensional semi-discrete nonstationary parabolic PDE
problem (2.1). It is an inverse problem and we are interested to analyze the
conditioning of this formulation. This aim is based on the well known fact, that
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inverse problems can be ill-posed. In the case of ill-posed problems the main
aim is to apply the efficient and accurate regularization techniques in order to
construct efficient and robust discrete schemes.

We define the discrete regularization Tikhonov functional

1

T _ o [T
Jonfy = [ @V =R a5 [ P

We solve the following discrete least square problem
Jaﬁ(f*) = ?161}} Ja,h(f)a

where F' is a set of admissible time-dependent sources.

3 Gradient formula for the cost functional J, ,(f)

Next we present a short (and quite standard) derivation of the gradient formula.
Consider the first variations

0Jan(f) = Jan(f+0f)=Jan(f), SV(0f) =V (tf+0f)=V([), of € F.
We get

st =y [ [(mavie o0 -i) - (vien i) |

(%

+5 / ' |(F() +8£(1)" = £0)?] at
T

:/T(LhV(t;f)—%(t)) Lh5V(t;5f)dt+/ (Lh5V(t;5f))2dt
0 0

T T
+a/0 f(t)éf(t)dtJra/O (5f(t))%dt.

We write the first variation of Equation (2.1) as

ooV
T +vARV =0f(t)g1(x;), xj € wh. (3.1)

We multiply (3.1) by function &(t) and integrate the obtained equation:
T
I :/ ([Vit:60) + AusV(5:51)] 0(0)) e
0

T
- /O (61 67(1). (1)), dt. (3.2)

Integrating and summing by parts and taking into account initial and boundary
conditions

oV (x,0;0f) =0, oV (0,t;6f) =0, dV(1,t;0f) =0,
B(x,T) =0, ®(0,t) =0, @(1,t)=0,
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we obtain the left-side part of Equation (3.2) in the form

T
I:/ (=Du(t) + Ap®(t), 6V (;61)), dt
0

Neglecting terms of order O(||d f||?), the first variation of the functional is given
by

S1n(f) = [ (EaVi0) =h0) Ludv(espyit+a [ rasr
- T
:/0 3w (LhV(t; f)fh(t)) 6vj(t;5f)hdt+a/0f(t)éf(t)dt

Then, we solve the following adjoint problem

—pnlt) + An(t) =y (LaV(ES) = B(O) s G=100,T =1,

@i (T) =0,
@o(t) =0, @s(t)=0, 0<t<T

and get that

TJ-1

/ Zw] (LaV i) = h0) dus(eaphat = [ (@1, 2(0), 350t (33

It follows from (3.2) and (3.3) that the gradient of the functional J,(f) can be
calculated as

an(f) = (g1,2(1)), +af(t).
4 Inverse problem for ODE
We restrict to the uniform discrete grid in time
Wy = {t”: t"=nr, n=0,...,N}, t" =T.
In this section, our aim is to construct gradient formula for the minimization

algorithm based on the cost functional in the case of discrete approximation of
the inverse ODE problem

Un — Un—l
———— =g+, U’=0. (4.1)

We find U = {U"}, f ={f"}, n=1,..., N by minimizing the functional

N N
AR ERRES ST
n=1 n=1

N =

Ja,‘r(f) =
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The gradient J/, . (f) is defined as

Tor) = {2l v

and it can be calculated directly if explicit formula of functional J,(f) with
respect to f is known. Here we want to compare this result with the approach
given above and based on solving adjoint/dual problems.

It is easy to write the solution of (4.1) in the explicit form

U”:U0+TZ(g§+fkg1), n=1,...,N.
k=1

Then, the functional J, , is presented in the following explicit form

N n N
TarlD) =5 S 004730 (o + o) — 7] 4 23 ()R,
n=1 k=1

n=1

The gradient follows from this equality

8Ja,7’(f)

N
T :Tafr—&—TZng(U"—H").

n=r

We can write it in a form well fitted for generalizations. The following adjoint
(backward in time) problem is solved
v — Vn—l
- =7(W"-H", VN=0, n=N,...,1
.
Then, we write the gradient in a form analogous to one derived for the semidis-
crete parabolic problem

0Ja(f)
afr

=7(af +qV").

Thus, such a technique based on adjoint problems is a very convenient template
for computation of the gradient of regularization functional.

5 The backward Euler discrete scheme

The full discrete approximation of problem (1.2)-(1.3) by using the Backward
Euler (BE) scheme is defined as

v — anl

- +vA, V" :go(xj,t”) + f(tn)gl(.i?j), Tj € Whp, (51)
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and the discrete flux condition is defined as
L,v" = Zw]v h = h(t").

Vectors V™ = (v, v%,...,v7}_,) are approximations of the solution u(x;,t") of
the differential problem (1.2)—(1.3).

We find V = {V"}, f ={f"}, n=1,..., N by minimizing the discrete regu-
larization cost functional

1 Y o
52 thn hn 52 fn

In order to define the gradient of this functional we have two possibilities.

1. The first approach is more general but not fully justified: we discretize
the adjoint problem solved for the semidiscrete scheme. The BE scheme can
be used to solve the adjoint problem, also.

2. In the second approach the discrete adjoint problem of the BE scheme is
derived by using the same technique as applied for the semidiscrete problem.
By using this approach we strictly justify the derived gradient formula.

Here we restrict to the second technique. The first order variation of the
discrete scheme equation (5.1) and the cost functional are defined as

SV —syn-t

T

+vAROV" = gl(xj)éf", Tj € W, (52)

J—1
[ wi (LRV™ = B0 (5™ }r+az Fr)ofm.

1

NE

6Ja7h(f) =

n=1

.
Il

-1

Next, we multiply the discrete scheme Equation (5.2) by function ¢7~ and

apply the summation by parts formula:

N IZ s — gt
(X = v, e

" J\Zz1 J-1  n_  n-1
=S [(X - (@), ) ook 7
n=1 j=1

N =0:
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Then, we solve the adjoint (backward in time) problem
s

- + VAh¢n71 =Wwj (thn - %n), Tj € W, (53)

*1:07 @371207 n=1,...,N,
N =0, j=0,...,J

It follows from (5.3) that the gradient of the cost functional .J, 5, can be calcu-
lated as

o (HE") = (g1, 9" + af™.
6 The Crank-Nicolson discrete scheme

The fully discrete approximation of problem (1.2)-(1.3) is derived by using the
Crank-Nicolson (CN) scheme and is defined as

vr -yl -
e VAT =g ) + [ (), @y wny (6.1)

where we use the notation
n—1i 1 n n—1 n—3 n—i
Vv 2:5(‘/ +V )7 f 2:f(t 2),

The discrete flux condition is approximated as

(E” +E”*1) .

We find V = {V"}, f = {f2}, n = 1,...,N by minimizing the discrete
Tikhonov functional

|~

J—1
_1 n—1 Thn—1 Thn—1
L,V 2 = E wjv; 2h=h""2, h"2=
—

1 o &
:52 (Ly,vV™™ th"" 52 f"" T (6.2)

The first order variation of the discrete equation (6.1) and the cost functional
(6.2) are defined as

gV — gyn-t

. + VAh(SV”_% = 5f”_%gl(xj), Zj € w, (6.3)

N
Z [ij (LpV =2 E"_%)év? }T-FO&Z fn_7 fn_7

j=1 n=1

Math. Model. Anal., 31(2):246-266, 2026.
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_1
We multiply the discrete Equation (6.3) by function <p? 2 and apply the for-
mula of summation by parts:

) (J_l(W—v(éV"%(éf"%))m)so?%h}T
n=1 =
]\? 1 J—-1 Qﬁn*(pn_l )
(A e, ol
n=1 j=1

In order to prove the equality

N

N
Z(un_un—lx(pn_’_(pn 1 Z u” 4y (pn_wn—l)7

n=1

we use two simple equalities valid for any discrete functions u™, ™ such that
u® =0,V =0

N N
Z(un _ un71)<pn71 — Z [_ un(wn _ (pnfl)],
n=1 n=1
N N
Z(un _ un—l)@n — Z [_ un—l(gpn _ (pn—l)]
n=1 n=1
and add these two equalities.
Then we solve the adjoint problem
7S0‘;1 - ()0?71 1 1 ~

+ VAP 2 =Wwj (Lh‘/niE — hni%), Tj € W,
oot =0, " '=0, n=1,...,N,
<pj =0, 7=0,...,J.

It follows from (6.3) that the gradient of the regularization cost functional J, p
can be calculated as

an(f) = (91,¢"_%)h+af”_%, n=1,...,N.

7 The Crank-Nicolson scheme for the fractional elliptic
operator

In this section, we apply the results obtained in the previous section also for
the inverse parabolic type problem when the diffusion operator is changed by
the fractional power Laplace operator. We approximate the problem (1.4) by
the fully discrete scheme

v — anl

- +VAZVW% =go(3«"j,tn7%)+fn7%91(xj)7 z; €wp, (7.1)
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This discrete problem is solved efficiently by using the efficient discrete FFT
algorithm [6].

A simple analysis shows that A} is a symmetric operator, therefore the adjoint
problem for discrete functions qﬁ"’% is defined as

n_ onl -
L B VAP D" E =wi (L VPTF —hTE), oz € wy, (7.2)
=

apg*l:O, go?*l:O, n=1,...,N,
e =0, j=0,...,J

and the gradient of the cost functional J,j can be computed by the same
formula as for the classical Laplace operator

&,h(f) = (gl,qi’n*%)h +ozf"7%, n=1,...,N,

only function @ is obtained by solving the modified adjoint problem (7.2).

8 Two dimensional inverse parabolic problem

Let £2 be a bounded domain (0,1) x (0,1) and T be a given positive number.
Denote @@ := 2 x (0,T], and S := 02 x (0,T]. Let us consider an initial-
boundary value problem for 2D parabolic equation

ou (8% 0%u

E -V @ + (9y2> :go(x,y,t) + f(t)gl(xvy)v ((E,yﬂf) € Qv (81)

u|5 ZO,
u(x7ya0) :U'O(Ivy)a (l‘,y) € Qa
where gg, g1 are given functions and v is a given diffusion coefficient.

The problem consists of determining the solution u(zx,y,t) of (8.1) and finding
the right hand side source function f(¢) from the additional flux condition

Lu = //Qw(x,y)u(x,y,t)dx — ).

Define the regularization cost functional

Jalf)i= 5 [ (Lur) =R a5 [ P

In the following we restrict to the definition of the Crank-Nicolson discrete
scheme. First we approximate the 2D domain {2 by the uniform mesh wy 2p

whop = {(@5,y;) 1 x =ih, y; =jh, 1<i,j<J—1}.

The boundary points of Sj, := Owp2p are defined in a standard way. The
discrete functions are denoted as v;; := v(x;,y;). Then, the problem (8.1) is

Math. Model. Anal., 31(2):246-266, 2026.
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approximated by the Crank-Nicolson scheme as

vn — anl

- + VAh,QDVn7% =g0(i, Y5, 73) 4 [P 3 gy (g, Ys), (8.2)

(%i,9) € Wh2D,

ve =0, v°(z,y5) = uo(zi,y;), 0<4,5 <,

where the discrete Laplace operator Ay op is defined as

Vig1j — 205 +Vic1, . Vi1 — 20ij + Vi1
ApopV i=— ( L h;] g g h;] = ) .
The discrete flux condition is approximated as
J—1J— 1
_ Tmel Tl “n  Tn—
LyapV"3 Z =FE, Rh = (h” Ty 1) .

=1y

<.

The variational problem is defined as a minimization of the cost functional with
respect to the source function f:

N

N
n—z Tn—1\2 « n—1\2
S (napV B S 3 ()

n=1

—_

Jan2n(f) =

|

We solve the adjoint problem, which is derived applying the same technique as
for 1D case:

ey
T

wl=0, n=1,...,N, N =0, 0<i,j<J

@Sh - Y n= PR I 90”— ) _Za.]_ .

+ VAh,QD@n7% = Wij (thn7% — Eni%), Lij € Wh, (83)

The gradient of the cost functional J, »2p can be calculated as

&,h,zD(f) = (917@n_%>h +Oéfn_%, n=1,...,N,

where the scalar product is defined as

J—-1J-1

(U V h = ZZU”%]

=1 j5=1

Both discrete problems (8.2) and (8.3) are solved efficiently by using discrete
FFT algorithm [6].

Remark 1. We note that an interesting algorithm is obtained by using split-
ting techniques to solve 2D direct and adjoint problems. For example we solve
the 2D problems applying the Peaceman—Rachford ADI scheme for the direct
parabolic problem and its modification for the dual problem [12]. This method
of calculation of the gradient of 2D cost function is based on the second ap-
proach suggested in Section 5. Still such minimization algorithm is not strongly
justified because it is not shown that the adjoint problem strictly follows from
the direct problem. This analysis is not done in the present paper and will be
considered in a separate paper.
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9 Gradient descent type methods

A general technique to find a minimum point for the cost functional J, p, is
based on standard gradient descent method, when a new approximation of the
discrete source function f is computed by applying the formula [12]

fs#»l,’fl:J('S,?’L_ﬁ(s)‘]/(fs)7 TL:1,~-~7N7

where s is the iteration number and 3(*) > 0 is an adjustable step length of
iteration parameter.
In different realizations of this general scheme the negative gradient direction
can be changed and modified directions, such as conjugated gradient directions
can be used. We will give more information on this topic below.

A template of the Gradient Descent algorithm, which is used in this paper
is defined as follows.

1. Initialization. Set the iteration counter s = 0 and choose the initial
iteration f(9), usually we set f(©) = 0.

Compute the initial value of the cost functional J = Jon(fO).

2. Descent direction. Calculate the new descent direction ¢(*). In the
simple version of the gradient descent method we use the negative gradient of
Ja’ht

q(s) = _J(Iy,h(f(s))'

3. New approximation. The adjustable step length parameter 3(*) is
computed by solving a line search in the direction ¢(*) until it reaches the local
minimum point

8 = arg min Jo ( 7O 4 5<s>q<s>>_
We use the following search algorithm:

ok = ]-7 ﬂ = ﬁo
while (ok == 1){

F=19+8¢9, Ji = Jan(f)

if (J; <J)
J=J, B =5
B=2p

else
ok =20

}

Find a new approximation of the source term
fOTD = #(s) 4 g6)g(s),

Change the counter s := s + 1.

Math. Model. Anal., 31(2):246-266, 2026.


https://doi.org/10.3846/mma.2026.25585

260 R. Ciegis, O. Suboé and V. Starikovicius

4. New iteration of the gradient descent method. If the required
accuracy is not reached .J > £2 and the maximum number of iterations is not
reached, then go to Step 2. Otherwise Stop the algorithm.

9.1 The Conjugate Gradient Method - Version 1.

Next, we define two modifications of the Gradient descent method, they are
based on the Conjugate Gradient (CG) method for nonlinear optimization. It
extends the classical and very efficient linear CG algorithm in order to find
minima of general non-linear functions. The aim as in linear CG methods
is iteratively generate conjugate gradient descent directions. Our analysis is
bs(xs)ed on Fletcher-Reeves variant to generate adjustable step length parameter
B [5].

In the first version of the CGM (Step 2 of the general algorithm) a descent
direction is defined by taking a linear combination of the previous conjugate
vector and the new negative gradient direction of J, j, (see also [10]):

¢ == T (F) 7Y,
Y =T ST n (PP

This selection of 4(*) is recommended in [5] and seeks to preserve the orthonor-
mality of system of conjugate vectors. Techniques like restarts are recom-
mended if the loss of conjugacy occurs, and this drawback phenomenon is
inherent in nonlinear settings.

9.2 The Conjugate Gradient Method - Version 2.

In the second version of the CGM the descent direction is defined as in the
Version 1 algorithm. The changes are introduced in calculation of the length of
the search parameter 3(*). It is defined not by solving a line search for a local
minimization problem as in Step 3 but by using a generalized classical formula
known for the linear CGM algorithms (see also [9,10]):

Find a new approximation of the source term

f(s+1) — f(S) + 5(5)9(5),
where
B = — < g T (F) >/ (14912 + alld™?),

and
1

den=3) = (0, V=) p=1,... N,
here V(*) is a solution of the red auxiliary discrete problem

‘75,77, _ ‘75,7171

FVAZVITE =" a gy (a), @ € wh,
-
0" =0, 85" =0, o(z;)=0, j=0,..,J

The new updated residue vector can be computed by the explicit recursion
formula
FEHD 50 4 gL, 7o)
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10 Numerical experiments

First, we solve 1D parabolic problem (1.2) with the following coefficients:

V:]-v g1($)2$2, OJ:L

where go(z,t) and h(t) are selected such that the exact solution is defined as
u(z,t) = da(l —2)t, f(t)=(t+1)%

This inverse parabolic problem is approximated by the Crank-Nicolson discrete
scheme (6.1). In order to guarantee that the discrete solution (V" f™) is equal
the exact solution of the differential problem we modified the definition of
discrete flux condition and the function h(t") is computed as

En S Lhu",

where Lj, is the trapezoidal summation formula.
Initial and boundary data are defined according to the exact solution.

10.1 Conjugate Gradient Method without Tikhonov regularization
term o =0

Let us fix the space mesh wy, size J = 20 and take a sequence of time meshes
with different V.

First we solve this test problem with N = 8. Errors of the reconstructed
source function

e(r) = |f(tV2) = ;N3

for different iteration numbers s are presented in Tables 1 and 2.

Table 1. Errors e(7) of the reconstructed source function for J = 20 and N = 8.

s 1 3 5 7 8
e(t) 2.2543 1.1268 0.6707 0.3440 6.417e-12

Table 2. Errors e(7) of the reconstructed source function for J = 20 and N = 12.

s 1 3 5 8 11 12
e(r) 2.6511 1.5389 0.9789 0.5122 0.2357 1.691e-06

Two conclusions follow from the presented results. First, the error of ap-
proximations for different iterations decrease as a geometric progression. Sec-
ond, we see the well-known property that CGM solves quadratic minimization
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problems as a direct solver in N iterations (some influence of the fact that the
system of conjugate vectors is not strictly orthonormal can be seen in Table 2).
Next, we solve the parabolic equation with the fractional power Laplace oper-
ator. The power parameter p = 0.8, the space and time meshes are of sizes
J =20, N = 8. Errors e(r) for different iteration numbers s are presented
in Table 3. It follows that both previous statements on the accuracy of ob-

Table 3. Errors e(7) of the reconstructed source function for the discrete parabolic problem
(7.1) with power Laplace operator. The mesh parameters are selected as J = 20 and N = 8.

s 1 3 ) 7 8
e(t) 2.5809 1.4237 0.7666 0.3640 5.2682¢-12

tained approximations are valid for this more complicated non-local diffusion
operator, also.

10.2 CG method with Tikhonov regularization term a > 0

Errors of the reconstructed source function
* N-1i
e(r) =|f = V77|

for different iteration numbers s are presented in Table 4. Here f* is the value of
the stabilized solution for a sufficiently large number of iterations s. It follows

Table 4. Errors e(7) of the reconstructed source function for J =20, N = 8 and
a = 0.00001.

5 1 3 ) 7 8
e(r) 1.6149 0.5617 0.2003 0.0318 2.6734e-13

from the presented results that the convergence rate is not degraded due to the
inclusion of regularization term into the cost functional J, .

10.3 CG method for the 2D parabolic problem
We solve 2D parabolic problem (1.2) with the following coefficients:
V:L gl(xay):x2+y27 W:L
where go(z,t) and h(t) are selected such that the exact solution is defined as

u(z,y,t) = 162(1 — z)y(1 —y)t, f(t) = (t+1)%
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This inverse parabolic problem is approximated by the Crank-Nicolson discrete
scheme (6.1). In order to guarantee that the discrete solution (V", f™) is equal
the exact solution of the differential problem we modified the definition of
discrete flux condition and the function h(¢") is computed as

A" = Lhu",

where Ly, is the 2D trapezoidal summation formula. Initial and boundary data
are defined according to the the exact solution.

The obtained system of linear equations is solved by using the well known FFT
solver [6].

The space and time meshes are of sizes 20 x 20, N = 8. Errors e for different
iteration numbers s are presented in Table 5. We note that the convergence

Table 5. Errors e(7) of the reconstructed source function for the 2D discrete parabolic
problem (6.1). The mesh parameters are selected as 20 x 20 and N = 8.

s 1 3 5 7 8
e(r) 1.5897 0.5928 0.3402 0.2682 1.7763e-15

behavior of the iterations is very similar to one obtained for the 1D case.

10.4 Gradient descent method for the 2D parabolic problem

For a comparison of convergence of gradient descent and CGM, consider the
following versions of minimization algorithms. First, we consider the classical
gradient descent algorithm but the descent direction vector is defined by a con-
jugate gradient.

The space mesh size is taken 20 x 20 and time mesh size is N = 8. A sufficiently
large step increasing parameter d = 2 in line search algorithm is used to variate
the optimization step lengths in the minimization algorithm.

Errors e(r) for different iteration numbers s are presented in Table 6. It is

Table 6. Errors e(7) of the reconstructed source function for the 2D discrete parabolic
problem (6.1). The mesh parameters are selected as 20 x 20 and N = 8.

S 1 4 7 10 15
e(t) 1.4318 0.3964 0.2839 0.1902 0.02153

clearly seen that such version of the gradient descent method defines the itera-
tive sequence of approximations and does not satisfy the property of becoming
a direct solver after N iterations.

Next we reduced the parameter d value till the value d = 1.05. Errors e(7)
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Table 7. Errors e(7) of the reconstructed source function for the 2D discrete parabolic
problem (6.1). The mesh parameters are selected as 20 x 20 and N = 8.

s 1 4 7 9 11
e(r) 1.6118 0.4281 0.2708 0.0112 0.00458

for different iteration numbers s are presented in Table 7. It follows that after
achieving a much better accuracy of local approximations at each iterations
this modification of the gradient descent method mimics convergence dynam-
ics of the CGM algorithm.

In the last series of numerical experiments we compared the results in Table 7
with results obtained by taking the plain antigradient direction as the descent
direction. The factor d for dynamical changes of the minimization step was
fixed to d = 2. Errors e(7) for different iteration numbers s are presented in
Table 8.

Table 8. Errors e(7) of the reconstructed source function for the 2D discrete parabolic
problem (6.1). The descent direction is defined as the antigradient direction. The mesh
parameters are selected as 20 x 20 and N = 8.

s 1 4 7 10 13 16
e(r) 1.4318 0.5921 0.3194 0.1988 0.1854 0.16768

This comparison of Gradient Descent and CGM algorithms show that CGM
algorithms can be recommended for solution of real world applications.

11 Conclusions

In this work, we developed and analyzed a set of robust numerical algorithms
for solving one- and two-dimensional inverse parabolic problems. The pro-
posed methodology is based on finite-volume and finite-difference discretiza-
tions of the direct and adjoint problems, combined with variational regular-
ization and gradient-based optimization techniques. Both backward Euler and
Crank—Nicolson schemes were examined in detail, and their corresponding dis-
crete adjoint formulations were rigorously derived. We also extended the frame-
work to parabolic equations involving fractional powers of elliptic operators,
demonstrating that the same optimization structure applies naturally to non-
local diffusion models.

The computational experiments confirm that the Conjugate Gradient Method
significantly accelerates convergence compared to the classical gradient descent
approach. In particular, the CG method exhibits near—direct-solver behavior
in the noise-free setting, requiring approximately N iterations to recover the
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source term on a mesh with N time levels. These observations remain valid
for problems with fractional diffusion and for two-dimensional spatial domains,
illustrating the flexibility and efficiency of the proposed approach.

The results presented here form a foundation for tackling more complex
inverse parabolic models. Two promising research directions arise. First, the
integration of physics-informed neural networks and hybrid PINN-adjoint tech-
niques may provide alternative solvers capable of handling noisy data and ir-
regular geometries. Second, the extension of the methods to multidimensional
problems with variable or anisotropic diffusion coefficients would require the
development of scalable parallel solvers, since FFT-based methods are no longer
applicable in such settings.
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