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Abstract. In the paper, we obtain universality theorems and a lower estimate for
the number of zeros for the composition F (¢ (s,a;a,b)), where F is an operator in
the space of analytic functions satisfying the Lipschitz type condition, and ¢ (s, «; a, b)
is a collection consisting of periodic and periodic Hurwitz zeta-functions.
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1 Introduction

Let s = o + it be a complex variable, and a = {a,, : m € N} be a periodic
sequence of complex numbers with minimal period & € N. The periodic zeta-
function ((s;a) is defined, for o > 1, by the Dirichlet series

am

mS

C(s;a) =

gL
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and can be continued meromorphically to the whole complex plane with unique
simple pole at the point s = 1 with residue a = %an:l Q. If @ = 0, then
¢(s;a) is an entire function.

Let b = {b,, : m € Ny}, Ny = NU {0}, be one more periodic sequence
of complex numbers with minimal period I € N. The periodic Hurwitz zeta-
function ((s, «;b) with parameter o, 0 < o < 1, is defined, for o > 1, by the
Dirichlet series

b
((s,a;0) = Y —"

(m + )

m=0

and can be continued meromorphically to the whole complex plane with unique
simple pole at the point s = 1 with residue b = %Zf;io bm. If b =0, then
¢(s,a;b) is an entire function.

This note is devoted to discrete value distribution of collections consisting
of periodic and periodic Hurwitz zeta-functions. In [2], the approximation of
a collection of analytic functions by discrete shifts of the above collections of

zeta-functions has been considered. For j =1,...,r, let a; = {a;n, : m € N}
be a periodic sequence of complex numbers with minimal period ¢; € N, and
((s;a;) be the corresponding periodic zeta-function. For j = 1,...,rg, let

l; e NJO < a; <1, bj; = {bjym : m € No}, I =1,...,1;, be a periodic
sequence of complex numbers with minimal period g¢;;, and let ((s,c;;b5)
be the corresponding periodic Hurwitz zeta-function. Moreover, let ¢ denote
the least common multiple of the periods g1, ..., ¢, and let n1,...,n, be the
reduced residue system modulo ¢, where r = (q) is the Euler totient function.

Similarly, let g; denote the least common multiple of the periods g1y, , ..., ¢ji;,
j=1,...,7r5. Define the matrices
i, G2y - Orypy
A | @ a2 - anm,
Qip, Q2p,  --- Gy,
bj10 bj20 e bji;0
B, — bj11 bjo1 bji; R
bji(g;—1) bjaeg-1) - biti(a;-1)

For the statement of a joint discrete universality theorem, we use the following
notation. Let D = {s eC: % <o < 1}, K be the class of compact subsets of
the strip D with connected complements, H(K) with K € K be the class of
continuous functions on K that are analytic in the interior of K, and let Hy(K)
be the subclass of H(K) of non-vanishing functions on K. Denote by P the set
of all prime numbers, by # A the cardinality of the set A, and define the set

L(P;a1,...,Qpy; h,m)

2
= {(logp :p€eP),(log(m+a;) :meNy, j=1,...,r9), %}
with & > 0. Then the main result of [2] is the following theorem.

Math. Model. Anal., 24(1):34-42, 2019.
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Theorem 1. Suppose that the sequences ay, ..., a,, are multiplicative, rankA =
r1, the set L(P;aq, ..., ap,; h,m) is linearly independent over the field of ratio-
nal numbers Q, and rankB; = 1;, j = 1,...,m. Let K; € K, j =1,...,7,
Kjl e K, jg=1...,7r9, l = 1,...,lj, and fj(S) S Ho(Kj), jg=1...,r,
fu(s) e H(Kj;), j=1,...,ro, l=1,...,1;. Then, for everye >0,

lim inf
N—oco

1 .
1#{0 <ESN: sup sup |((s+ikh;a;) — fi(s)] <e,

1<j<r1 s€K;

sup sup sup [C(s+ikh,a ;b5) — fiu(s)] < E} > 0.
1<j<ra 1<j<l; s€K;1

We note that N runs non-negative integers. Theorem 1 has the following
modification.

Theorem 2. Under hypotheses of Theorem 1, the limit

1
lim —— {ogng: sup su s+ ikh;a;) — fi(s)] <e,
NN up  sup [<( §) = 1i(5)|

sup sup sup |[((s+ikh,a;;b5) — fiu(s)] < 5} >0
1<ySre 1Syl s€Ky

exists for all but at most countably many £ > 0.

We recall that D = {s € C:1 <o <1}. Denote by H(D) the space of
analytic functions on D endowed with the topology of uniform convergence on
compacta. The aim of this paper is to obtain some analytic properties of the
function F (¢ (s,;a,b)) for a certain class of operators F : H*(D) — H(D),
where

Q(S,g;gvb) = (C(Sv al)a cet C(Sa arl)a C(S,al; b11) s 74(87 a3 blh), ey
C(57 aTz; br21) M C(Sv a’f"2; bTQlT2 ))

with o = (al,...,arl), a = (01,...,arl), b = (bll,...,blll,...,bml,...,
bryt,,)s and k=11 + 3772 1.

The space H(D) is metrisable. There exists a sequence of compact sets
{K, : 1 € N} C D such that D = |J;2, K;, K; C Kj41 for all | € N, and if
K C D is a compact, then K C K; for some [. Then

o0

1 SUPse, 191(5) — g2(5)|
) = 2 : : I ) € H -D )
p(91,92) ; 1+ sup,c, 191(5) — g2(5)] 91, 92 (D)

is a metric on H (D) inducing its topology of uniform convergence on compacta.
Setting

B(legz) = 11<nax (p(glmag2m)) 9, = (gj17gj2> o 7gjﬁ) C HK(D)v Jj=12,
we obtain the metric which induces the product topology of H"(D).

We note that the sets K; can be chosen with connected complements. For
example, we can take closed rectangles.
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Suppose that f1,..., B are positive numbers. We say that an operator F' :
H"(D) — H(D) belongs to the class Lip(S1, ..., () if the following conditions
hold:

1° For every polynomial p = p(s) and sets Ki,..., K, € K, there exists

9= (gla"'agT1agll7"'791117"'7g7"21a"'797”21r2) € Fﬁl{p} - HK(D)

such that g;(s) #0on K for j =1,...,ry;
2° For all K € K, there exist a constant ¢ > 0 and sets K1,..., K, € K
such that

sup |F(911(8)7 e 791n(5)) - F(QQl(S)a cee 792K(8))|
seEK

<c sup sup [g1;(s) — ga;(s)[*
1<j<k s€K;

for all (g;1,...,9;x) € H*(D), j =1,2.

We will prove the following discrete universality theorem on the approxi-
mation of analytic functions.

Theorem 3. Suppose that F' € Lip(P1,...,Bx), the sequences ai,...,a, are
multiplicative, rankA = ry, the set L(P;aq,...,qp,;h,m) is linearly indepen-
dent over Q, and rankBj = 1;, j =1,...,r3. Let K € K and f(s) € H(K).
Then, for every e > 0,

. 1
lﬂlélofN_’_l#{Og k< N:SSE‘F(Q(S,Q;Q,Q)) —f(s)’ <E} > 0.

It is not difficult to give an example of F' € Lip(f1,. .., 8x). Actually, for a
given (glv°"7g'l"17.gll7" '791[17"'7gT217"'7gr2lr2) € HK(D)7 we take

( )

F (g1, 0 0m 911, Glls s Grals e Gralyy ) = g™+ e gn

(n11) (n11y) (nrg1) (Prgiry)

+egn e tangy, Ut g, ot Crolry il 2
where c1,...,Cry, Cl1,5 -+ 3 Cllys o5 Craly - o, € C\{0} and na, ...y, 111,
e s MUy e ooy Mgdy ooy Myl € No Then, for every polynomial p = p(s), there

exists g € F~'{p} such that g;(s) # 0 on K;, j =1,...,71. Suppose that
p(s) = ans" +---+ap witha, # 0.

Then we can take g = (a1, ., @, 011, D1y5 -5 bl o5 Dry(1,, —1)5 Gral,,)
with a1,...,a,, € C\ {0}, b11,...,b11,5- -, Dra1, - - .,brz(sz_l) € C and

1 ananrnrzzrz aosnrzlrz
s) = 4+ — .
g’l‘zlrz( ) Cral,, <(n+ 1)~~(n+nr2172) Loy,

This shows that the condition 1° of the definition of the class Lip(51, ..., Bx)
is fulfilled.

Math. Model. Anal., 24(1):34-42, 2019.
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For checking the condition 2° of the class Lip(Bi,...,3s), we apply the
Cauchy integral formula. Let K € K, and K C G C K ‘with an open set G and
K € K. We take a closed simple contour L lying in K \ G and enclosing the
set K. Taking gj1,...,9;x € H"(D), j = 1,2, and using the Cauchy integral
formula, we find that, for s € K,

[F(g11(8), -+ 91x(5)) = F (g21(5), - -, 926(s))

K K
n g1 —92ml\Z .
= g [ Dl ) < 3 el sup g ()02 ()
el ™ Jr, z S g el sel
<c sup  sup [gim(s) — gam(s)| (1.1)
1<Sm<rk se K
with positive constants ¢é,,, m = 1,...,k, and c. For simplicity, here we have
. ] ST I S .
used the notation cjlg§7”) = Crylytootly_1+l 97(71:;114-++—~1_J111+—§ ), j=1,...,19,
I =1,...,l;. Thus, by (1.1), we have that the condition 2° is satisfied with
b= =p.,=land K1 =--- =K, =K.

Theorem 3, as Theorem 1, has the following modification.

Theorem 4. Under hypotheses of Theorem 3, the limit

J\;E}HOOM#{ k:gszgg‘F( ¢(s,a;a,b)) — f(s)]<e}>0

exists for all but at most countably many € > 0.

Theorems 1 and 2 are called joint discrete universality theorem for zeta-
functions with periodic coefficients. Theorems 3 and 4 are discrete universality
theorems for composite functions of zeta-functions with periodic coefficients.

Theorem 3 contains a certain information on zeros of the function F' (C (s,
a;a,b)).

Theorem 5. Suppose that F' € Lip(P1,...,Bx), the sequences ai,...,a,, are
multiplicative, rankA = ry, the set L(P;aq,...,qp,;h,m) is linearly indepen-
dent over Q, and rankB; = l;, 7 = 1,...,79. Then, for every 01,09, % <
01 < 09 < 1, there exists a constant ¢ = ¢(o1,09, F,a,a,b) > 0 such that the
function F (g(s,g; a, b)), for sufficiently large N, has a zero in the disc

|s = (01 +02)/2| < (02 —01)/2

for more than ¢cN numbers k, 0 < k < N.

2 Proof of universality theorems

We remind the Mergelyan theorem on the approximation of analytic functions
by polynomials [3].

Lemma 1. Let K C C be a compact subset with connected complement, and
f(s) be a continuous function on K and analytic in the interior of K. Then,
for every e > 0, there exists a polynomial p(s) such that

sup | f(s) —p(s)| <e/2. (2.1)
se K
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Next proof of Theorem 3 follows.

Proof. Let § = min 8; = min| min £;, min min §j In view of
/f 1<<r’ 7 1<5<m | 1< <r2 1<G<l; | 7

the condition 1° of the class Lip(f1,...,Bx), for the polynomial p = p(s) of
Lemma 1 and every K,...,K,, € K, there exists an element

Q: (917“-agr17gll7~-~7gll1v'~-7g7‘21)'~-ag7‘2l¢~2) € F_l{p}

such that g;(s) # 0 on Kj for j = 1,...,r1. Suppose that ¢ > 0 is from con-
dition 2° of the class Lip(B1, ..., 84), K1y s Kpyy K11y ooy Kipyy o ooy Kpg1y e - s
K, correspond the set K in 2°, and that k € Ny satisfies the inequalities

2l"'2
sup sup [C(s +ikh;a;) — g;(s)| < VP (5/4)1/ﬂ, (2.2)
1<j<ry s€K;
sup  sup sup |((s + ikh,a;j;bj;) — g(s)| < YA (e/0)'" . (2.3)

1<j<rs 1<I<l; s€K g
Then, for k satisfying the above inequalities, we find by 2° that
sup |F (¢ (s + ikh, a;a,b)) — }—sup!F( (s +ikh,a;a,b)) — F(g)|

sEK -

<c sup sup [((s+ ikh;a;) fgj(s)|ﬁ7
1<j<r1 s€K;

e ¢
+ sup sup sup |((s+ikh,a;;b5) — gu(s)|P < 2ccTi o = 2. (2.4)
1<j<rs 1LYy s€K 4 2

By Theorem 1, the set of k € Ny satisfying inequalities (2.2) and (2.3) has a
positive lower density. Therefore, in view of (2.4),

. 1 €
%niilfzvﬂ#{K’“N sup | F (¢ (s + ikh, 038, 8)) = p(s)] < 2} > 0.
(2.5)
Suppose that k satisfies the inequality

sup |F (¢ (s + ikh, a;a,b)) — p(s)| <
seK

| ™

Then, taking into account inequality (2.1), we have for such k

SSE|F< ¢ (s+ikh,a;a,b)) — f(s)|

< sup |F (¢ (s + ikh,a;a,b)) — p(s)| + sup | f(s) — p(s)| <e.
sEK seEK

Therefore,

{0 k<N : sg£|F( ¢ (s +ikh,a;a,b)) — ()}<;}

c{o k<N :sup|F (¢ (s+ikh,a;a,b)) — f(s)\<a},

seK

Math. Model. Anal., 24(1):34-42, 2019.
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and the theorem follows by (2.5). O

Unfortunately, Theorem 4 does not follows directly from Theorem 2, there-
fore, we will give its direct proof.

Denote by B(X) the Borel o-field of the space X, let S = {g € H(D) :
g(s) #0org(s) =0}, and, for A € B(H(D)), define

Py(A) = #{1 ng:g(erikh,g;g,b)eA}.

N +1
Lemma 2. Suppose that the sequences ai,...,a,, are multiplicative, rankA =
1, the set L(P; a1, ..., ap,; b, m) is linearly independent over Q, and rankB; =
lj,73=1,...,72. Then Py, as N — oo, converges weakly to a certain probabil-
ity measure P with support S™ x H(D)"~".

The lemma is Proposition 3.1 of [2].

Lemma 3. Suppose that F' € Lip(B1,...,08x). Then

Pyr(A) —#{0<k < N:F(C(s+ikh,a;a,b)) €A}, A € B(H(D)),

N+1
converges weakly to PQF_1 as N — oco. Moreover, the support of PQF_1 is the
whole of H(D).

Proof.  We recall that P.F~1(A) = P:(F~1A) for A € B(H(D)). The con-
dition 2° of the class Lz’p(Bl, ey Br) shows that the operator F is continuous.
Moreover, by the definitions of Py and Py, p, we have that Py p = PyF L.
Therefore, Lemma 2, Theorem 5.1 of [1] and the continuity of F prove the weak
convergence of Py r to PCF_1 as N — oo.

The condition 1° of the class Lip(fi, ..., Sx) implies that, for each polyno-
mial p = p(s), there exists

Q: (917"'797“179117"'791113"'397’217"';97“2lr2)
e (FY{p})n (5™ x H* " (D)).

Actually, if g;(s) #Oonevery K; € K, j=1,...,7r,theng; € S, 5 =1,...,71,
because if g;(s) = 0 on D, then in view of the equality D = (J;2, K, with
K, € K from the definition of the metric p, we obtain g;(K;) = 0 for some [.

We take an arbitrary g € H(D) and its open neighbourhood G. Then, by
the continuity of F, the set F~'G is open as well. In virtue of Lemma 2, there
exists a polynomial p = p(s) lying in G. Therefore, F~*{p} C F~'G, and
by the above remark, the set F~'G contains an element of S™ x H*~"1(D).
Hence, Lemma 2 implies the inequality P:(F~'G) > 0. Thus,

PF Y G) = P(F7'G) >0

Since g and G are arbitrary, this shows that the support of the measure P F -1
is the whole of H(D). O
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Next we give the proof of Theorem 4.

Proof. Let the polynomial p(s) satisfy (2.1). Define the set

G - {g € H(D): suplg(s) ~plo)] < 5/2} |

By the second part of Lemma 3, the set G, is an open neighbourhood of the
element of the support of the measure P.F~'. Thus, PgFfl(GE) > 0. We

recall that the set A € B(H(D)) is a continuity set of the measure PR if
PSF*I((? A) =0, where 0 A is a boundary of the set A. Define one more set

G. - {g € H(D) : sup lg(s) — f(s)] < } .

seK

Then the boundary & G, lies in the set
{oemD): suploe) - 19 =< .

seEK

therefore, 8@61 N QGSQ = ¢ for distinct positive 1 and 5. This shows that
the set G. is a continuity set of PQF’1 for all but at most countably many

e > 0. Moreover, the definitions of G. and G. together with (2.1) imply the
inclusion G, C G.. Hence,

P.FYG.) > P.FYG.) > 0. (2.6)

Using the equivalent of weak convergence of probability measures in terms of
continuity sets, by the first part of Lemma 3 and (2.6), we obtain that

lim Py p(G.) =P F~YG.) >0
N—o0

for all but at most countably many € > 0. This and the definitions of Py, r
and G, prove the theorem. O

3 Proof of Theorem 5
For convenience, we remind the Rouché theorem.

Lemma 4. Suppose that G is a domain in C, K is a compact subset of G, and
f(s) and g(s) are analytic functions on G such that

[£(s) = g(s)| <[f(s)]

for every point s in the boundary of K. Then f(s) and g(s) have the same
number of zeros in the interior of K, taking into account multiplicities.

Math. Model. Anal., 24(1):34-42, 2019.
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Proof of the lemma can be found, for example, in [4]. Now, we prove
Theorem 5.

Proof. Let, for brevity,

op = Qo and o= 2%
0T 2 0T 2
We take f(s) = s — op in Theorem 3. Then, by the latter theorem, for every
€ > 0, the set of k € Ny satisfying the inequality

sup ‘F (¢ (s +ikh,a;a,b)) — (s —00)| < e (3.1)

[s—0o|<ro

has a positive lower density. We choose ¢ to satisfy

1 .
0<€<% inf |s—og|=

|s—oo|=ro 20°

Then we have that the functions F’ (C (s + ikh, a; a, Q)) and s — o on the disc
|s — 00| < 7o satisfy the conditions of Lemma 4. Since, obviously, the function
s — oo has one zero in the disc |s — gg| < rg, we find that also the function
F (C (s + ikh, a;a, b)) has only one zero in that disc. However, the number of
k satisfying inequality (3.1), for sufficiently large N, is greater than ¢N with
a certain constant ¢ > 0 depending on 01,092, F,a, and a,b. The theorem is
proved. O
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