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Abstract. In the paper, we obtain universality theorems and a lower estimate for
the number of zeros for the composition F

(
ζ (s, α; a, b)

)
, where F is an operator in

the space of analytic functions satisfying the Lipschitz type condition, and ζ (s, α; a, b)
is a collection consisting of periodic and periodic Hurwitz zeta-functions.
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1 Introduction

Let s = σ + it be a complex variable, and a = {am : m ∈ N} be a periodic
sequence of complex numbers with minimal period k ∈ N. The periodic zeta-
function ζ(s; a) is defined, for σ > 1, by the Dirichlet series

ζ(s; a) =

∞∑
m=1

am
ms

�
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and can be continued meromorphically to the whole complex plane with unique
simple pole at the point s = 1 with residue a = 1

k

∑k
m=1 am. If a = 0, then

ζ(s; a) is an entire function.
Let b = {bm : m ∈ N0}, N0 = N ∪ {0}, be one more periodic sequence

of complex numbers with minimal period l ∈ N. The periodic Hurwitz zeta-
function ζ(s, α; b) with parameter α, 0 < α 6 1, is defined, for σ > 1, by the
Dirichlet series

ζ(s, α; b) =

∞∑
m=0

bm
(m+ α)s

and can be continued meromorphically to the whole complex plane with unique
simple pole at the point s = 1 with residue b = 1

l

∑l−1
m=0 bm. If b = 0, then

ζ(s, α; b) is an entire function.
This note is devoted to discrete value distribution of collections consisting

of periodic and periodic Hurwitz zeta-functions. In [2], the approximation of
a collection of analytic functions by discrete shifts of the above collections of
zeta-functions has been considered. For j = 1, . . . , r1, let aj = {ajm : m ∈ N}
be a periodic sequence of complex numbers with minimal period qj ∈ N, and
ζ(s; aj) be the corresponding periodic zeta-function. For j = 1, . . . , r2, let
lj ∈ N, 0 < αj 6 1, bjl = {bjlm : m ∈ N0}, l = 1, . . . , lj , be a periodic
sequence of complex numbers with minimal period qjl, and let ζ(s, αj ; bjl)
be the corresponding periodic Hurwitz zeta-function. Moreover, let q denote
the least common multiple of the periods q1, . . . , qr1 , and let η1, . . . , ηr be the
reduced residue system modulo q, where r = ϕ(q) is the Euler totient function.
Similarly, let qj denote the least common multiple of the periods q1l1 , . . . , qjlj ,
j = 1, . . . , r2. Define the matrices

A =


a1η1 a2η1 . . . ar1η1
a1η2 a2η2 . . . ar1η2
. . . . . . . . . . . .
a1ηr a2ηr . . . ar1ηr

 ,

Bj =


bj10 bj20 . . . bjlj0
bj11 bj21 . . . bjlj1
. . . . . . . . . . . .

bj1(qj−1) bj2(qj−1) . . . bjlj(qj−1)

 , j = 1, . . . , r2.

For the statement of a joint discrete universality theorem, we use the following
notation. Let D =

{
s ∈ C : 1

2 < σ < 1
}

, K be the class of compact subsets of
the strip D with connected complements, H(K) with K ∈ K be the class of
continuous functions on K that are analytic in the interior of K, and let H0(K)
be the subclass of H(K) of non-vanishing functions on K. Denote by P the set
of all prime numbers, by #A the cardinality of the set A, and define the set

L(P;α1, . . . , αr2 ;h, π)

=
{

(log p : p ∈ P), (log(m+ αj) : m ∈ N0, j = 1, . . . , r2),
2π

h

}
with h > 0. Then the main result of [2] is the following theorem.

Math. Model. Anal., 24(1):34–42, 2019.
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Theorem 1. Suppose that the sequences a1, . . . , ar1 are multiplicative, rankA =
r1, the set L(P;α1, . . . , αr2 ;h, π) is linearly independent over the field of ratio-
nal numbers Q, and rankBj = lj, j = 1, . . . , r2. Let Kj ∈ K, j = 1, . . . , r1,
Kjl ∈ K, j = 1, . . . , r2, l = 1, . . . , lj, and fj(s) ∈ H0(Kj), j = 1, . . . , r1,
fjl(s) ∈ H(Kjl), j = 1, . . . , r2, l = 1, . . . , lj. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
16j6r1

sup
s∈Kj

|ζ(s+ ikh; aj)− fj(s)| < ε,

sup
16j6r2

sup
16j6lj

sup
s∈Kjl

|ζ(s+ ikh, αj ; bjl)− fjl(s)| < ε
}
> 0.

We note that N runs non-negative integers. Theorem 1 has the following
modification.

Theorem 2. Under hypotheses of Theorem 1, the limit

lim
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
16j6r1

sup
s∈Kj

|ζ(s+ ikh; aj)− fj(s)| < ε,

sup
16j6r2

sup
16j6lj

sup
s∈Kjl

|ζ(s+ ikh, αj ; bjl)− fjl(s)| < ε
}
> 0

exists for all but at most countably many ε > 0.

We recall that D =
{
s ∈ C : 1

2 < σ < 1
}

. Denote by H(D) the space of
analytic functions on D endowed with the topology of uniform convergence on
compacta. The aim of this paper is to obtain some analytic properties of the
function F

(
ζ (s, α; a, b)

)
for a certain class of operators F : Hκ(D) → H(D),

where

ζ (s, α; a, b) = (ζ(s; a1), . . . , ζ(s; ar1), ζ(s, α1; b11) . . . , ζ(s, α1; b1l1), . . . ,

ζ(s, αr2 ; br21) . . . , ζ(s, αr2 ; br2lr2 )
)

with α = (α1, . . . , αr1), a = (a1, . . . , ar1), b = (b11, . . . , b1l1 , . . . , br21, . . . ,
br2lr2 ), and κ = r1 +

∑r2
j=1 lj .

The space H(D) is metrisable. There exists a sequence of compact sets
{Kl : l ∈ N} ⊂ D such that D =

⋃∞
l=1Kl, Kl ⊂ Kl+1 for all l ∈ N, and if

K ⊂ D is a compact, then K ⊂ Kl for some l. Then

ρ(g1, g2) =

∞∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
, g1, g2 ∈ H(D),

is a metric on H(D) inducing its topology of uniform convergence on compacta.
Setting

ρ(g
1
, g

2
) = max

16m6κ
(ρ(g1m, g2m)) , g

j
= (gj1, gj2, . . . , gjκ) ⊂ Hκ(D), j = 1, 2,

we obtain the metric which induces the product topology of Hκ(D).
We note that the sets Kl can be chosen with connected complements. For

example, we can take closed rectangles.
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Suppose that β1, . . . , βκ are positive numbers. We say that an operator F :
Hκ(D)→ H(D) belongs to the class Lip(β1, . . . , βκ) if the following conditions
hold:

1◦ For every polynomial p = p(s) and sets K1, . . . ,Kr1 ∈ K, there exists

g =
(
g1, . . . , gr1 , g11, . . . , g1l1 , . . . , gr21, . . . , gr2lr2

)
∈ F−1{p} ⊂ Hκ(D)

such that gj(s) 6= 0 on Kj for j = 1, . . . , r1;
2◦ For all K ∈ K, there exist a constant c > 0 and sets K1, . . . ,Kκ ∈ K

such that

sup
s∈K
|F (g11(s), . . . , g1κ(s))− F (g21(s), . . . , g2κ(s))|

6 c sup
16j6κ

sup
s∈Kj

|g1j(s)− g2j(s)|βj

for all (gj1, . . . , gjκ) ∈ Hκ(D), j = 1, 2.
We will prove the following discrete universality theorem on the approxi-

mation of analytic functions.

Theorem 3. Suppose that F ∈ Lip(β1, . . . , βκ), the sequences a1, . . . , ar1 are
multiplicative, rankA = r1, the set L(P;α1, . . . , αr2 ;h, π) is linearly indepen-
dent over Q, and rankBj = lj, j = 1, . . . , r2. Let K ∈ K and f(s) ∈ H(K).
Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 6 k 6 N : sup

s∈K

∣∣F (ζ (s, α; a, b)
)
− f(s)

∣∣ < ε

}
> 0.

It is not difficult to give an example of F ∈ Lip(β1, . . . , βκ). Actually, for a
given

(
g1, . . . , gr1 , g11, . . . , g1l1 , . . . , gr21, . . . , gr2lr2

)
∈ Hκ(D), we take

F
(
g1, . . . , gr1 , g11, . . . , g1l1 , . . . , gr21, . . . , gr2lr2

)
= c1g

(n1)
1 + · · ·+ cr1g

(nr1 )
r1

+ c11g
(n11)
11 + · · ·+ c1l1g

(n1l1
)

1l1
+ · · ·+ cr21g

(nr21)
r21

+ · · ·+ cr2lr2 g
(nr2lr2

)

r2lr2
,

where c1, . . . , cr1 , c11, . . . , c1l1 , . . . , cr21, . . . , cr2lr2 ∈ C\{0} and n1, . . . , nr1 , n11,
. . . , n1l1 , . . . , nr21, . . . , nr2lr2 ∈ N. Then, for every polynomial p = p(s), there

exists g ∈ F−1{p} such that gj(s) 6= 0 on Kj , j = 1, . . . , r1. Suppose that

p(s) = ans
n + · · ·+ a0 with an 6= 0.

Then we can take g =
(
a1, . . . , ar1 , b11, . . . , b1l1 , . . . , br21, . . . , br2(lr2−1), gr2lr2

)
with a1, . . . , ar1 ∈ C \ {0}, b11, . . . , b1l1 , . . . , br21, . . . , br2(lr2−1) ∈ C and

gr2lr2 (s) =
1

cr2lr2

(
ans

n+nr2lr2

(n+ 1) · · · (n+ nr2lr2 )
+ · · ·+ a0s

nr2lr2

1 · · ·nr2lr2

)
.

This shows that the condition 1◦ of the definition of the class Lip(β1, . . . , βκ)
is fulfilled.

Math. Model. Anal., 24(1):34–42, 2019.
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For checking the condition 2◦ of the class Lip(β1, . . . , βκ), we apply the
Cauchy integral formula. Let K ∈ K, and K ⊂ G ⊂ K̂ with an open set G and
K̂ ∈ K. We take a closed simple contour L lying in K̂ \ G and enclosing the
set K. Taking gj1, . . . , gjκ ∈ Hκ(D), j = 1, 2, and using the Cauchy integral
formula, we find that, for s ∈ K,

|F (g11(s), . . . , g1κ(s))− F (g21(s), . . . , g2κ(s))|

=

∣∣∣∣∣
κ∑

m=1

cm
nm!

2πi

∫
L

g1m(z)−g2m(z)

(z − s)nm+1
dz

∣∣∣∣∣ 6
κ∑

m=1

|cm||ĉm| sup
s∈L
|g1m(s)−g2m(s)|

6 c sup
16m6κ

sup
s∈K̂
|g1m(s)− g2m(s)| (1.1)

with positive constants ĉm, m = 1, . . . , κ, and c. For simplicity, here we have

used the notation cjlg
(njl)
jl = cr1+l1+···+lj−1+l g

(r1+l1+···+lj−1+l)
r1+l1+···+lj−1+l

, j = 1, . . . , r2,

l = 1, . . . , lj . Thus, by (1.1), we have that the condition 2◦ is satisfied with

β1 = · · · = βκ = 1 and K1 = · · · = Kκ = K̂.
Theorem 3, as Theorem 1, has the following modification.

Theorem 4. Under hypotheses of Theorem 3, the limit

lim
N→∞

1

N + 1
#

{
0 6 k 6 N : sup

s∈K

∣∣F (ζ (s, α; a, b)
)
− f(s)

∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

Theorems 1 and 2 are called joint discrete universality theorem for zeta-
functions with periodic coefficients. Theorems 3 and 4 are discrete universality
theorems for composite functions of zeta-functions with periodic coefficients.

Theorem 3 contains a certain information on zeros of the function F
(
ζ (s,

α; a, b)).

Theorem 5. Suppose that F ∈ Lip(β1, . . . , βκ), the sequences a1, . . . , ar1 are
multiplicative, rankA = r1, the set L(P;α1, . . . , αr2 ;h, π) is linearly indepen-
dent over Q, and rankBj = lj, j = 1, . . . , r2. Then, for every σ1, σ2, 1

2 <
σ1 < σ2 < 1, there exists a constant c = c(σ1, σ2, F, α, a, b) > 0 such that the
function F

(
ζ (s, α; a, b)

)
, for sufficiently large N , has a zero in the disc

|s− (σ1 + σ2)/2| 6 (σ2 − σ1)/2

for more than cN numbers k, 0 6 k 6 N .

2 Proof of universality theorems

We remind the Mergelyan theorem on the approximation of analytic functions
by polynomials [3].

Lemma 1. Let K ⊂ C be a compact subset with connected complement, and
f(s) be a continuous function on K and analytic in the interior of K. Then,
for every ε > 0, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε/2. (2.1)
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Next proof of Theorem 3 follows.

Proof. Let β = min
16j6κ

βj = min

(
min

16j6r1
βj , min

16j6r2
min

16j6lj
βjl

)
. In view of

the condition 1◦ of the class Lip(β1, . . . , βκ), for the polynomial p = p(s) of
Lemma 1 and every K1, . . . ,Kr1 ∈ K, there exists an element

g =
(
g1, . . . , gr1 , g11, . . . , g1l1 , . . . , gr21, . . . , gr2lr2

)
∈ F−1{p}

such that gj(s) 6= 0 on Kj for j = 1, . . . , r1. Suppose that c > 0 is from con-
dition 2◦ of the class Lip(β1, . . . , βκ), K1, . . . ,Kr1 ,K11, . . . ,K1l1 , . . . ,Kr21, . . . ,
Kr2lr2

correspond the set K in 2◦, and that k ∈ N0 satisfies the inequalities

sup
16j6r1

sup
s∈Kj

|ζ(s+ ikh; aj)− gj(s)| < c−1/β (ε/4)
1/β

, (2.2)

sup
16j6r2

sup
16l6lj

sup
s∈Kjl

|ζ(s+ ikh, αj ; bjl)− gjl(s)| < c−1/β (ε/4)
1/β

. (2.3)

Then, for k satisfying the above inequalities, we find by 2◦ that

sup
s∈K

∣∣F (ζ (s+ ikh, α; a, b)
)
− p(s)

∣∣ = sup
s∈K

∣∣F (ζ (s+ ikh, α; a, b)
)
− F (g)

∣∣
6 c sup

16j6r1
sup
s∈Kj

|ζ(s+ ikh; aj)− gj(s)|βj

+ sup
16j6r2

sup
16l6lj

sup
s∈Kjl

|ζ(s+ ikh, αj ; bjl)− gjl(s)|βjl < 2cc−1
ε

4
=
ε

2
. (2.4)

By Theorem 1, the set of k ∈ N0 satisfying inequalities (2.2) and (2.3) has a
positive lower density. Therefore, in view of (2.4),

lim inf
N→∞

1

N + 1
#

{
0 6 k 6 N : sup

s∈K

∣∣F (ζ (s+ ikh, α; a, b)
)
− p(s)

∣∣ < ε

2

}
> 0.

(2.5)
Suppose that k satisfies the inequality

sup
s∈K

∣∣F (ζ (s+ ikh, α; a, b)
)
− p(s)

∣∣ < ε

2
.

Then, taking into account inequality (2.1), we have for such k

sup
s∈K

∣∣F (ζ (s+ ikh, α; a, b)
)
− f(s)

∣∣
6 sup
s∈K

∣∣F (ζ (s+ ikh, α; a, b)
)
− p(s)

∣∣+ sup
s∈K
|f(s)− p(s)| < ε.

Therefore,{
0 6 k 6 N : sup

s∈K

∣∣F (ζ (s+ ikh, α; a, b)
)
− p(s)

∣∣ < ε

2

}
⊂
{

0 6 k 6 N : sup
s∈K

∣∣F (ζ (s+ ikh, α; a, b)
)
− f(s)

∣∣ < ε

}
,

Math. Model. Anal., 24(1):34–42, 2019.
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and the theorem follows by (2.5). ut
Unfortunately, Theorem 4 does not follows directly from Theorem 2, there-

fore, we will give its direct proof.
Denote by B(X) the Borel σ-field of the space X, let S = {g ∈ H(D) :

g(s) 6= 0 or g(s) ≡ 0}, and, for A ∈ B(H(D)), define

PN (A) =
1

N + 1
#
{

1 6 k 6 N : ζ(s+ ikh, α; a, b) ∈ A
}
.

Lemma 2. Suppose that the sequences a1, . . . , ar1 are multiplicative, rankA =
r1, the set L(P;α1, . . . , αr2 ;h, π) is linearly independent over Q, and rankBj =
lj, j = 1, . . . , r2. Then PN , as N →∞, converges weakly to a certain probabil-
ity measure Pζ with support Sr1 ×H(D)κ−r1 .

The lemma is Proposition 3.1 of [2].

Lemma 3. Suppose that F ∈ Lip(β1, . . . , βκ). Then

PN,F (A)
def
=

1

N+1
#
{

0 6 k 6 N : F
(
ζ (s+ikh, α; a, b)

)
∈A
}
, A ∈ B(H(D)),

converges weakly to PζF
−1 as N →∞. Moreover, the support of PζF

−1 is the

whole of H(D).

Proof. We recall that PζF
−1(A) = Pζ(F

−1A) for A ∈ B(H(D)). The con-

dition 2◦ of the class Lip(β1, . . . , βκ) shows that the operator F is continuous.
Moreover, by the definitions of PN and PN,F , we have that PN,F = PNF

−1.
Therefore, Lemma 2, Theorem 5.1 of [1] and the continuity of F prove the weak
convergence of PN,F to PζF

−1 as N →∞.

The condition 1◦ of the class Lip(β1, . . . , βκ) implies that, for each polyno-
mial p = p(s), there exists

g =
(
g1, . . . , gr1 , g11, . . . , g1l1 , . . . , gr21, . . . , gr2lr2

)
∈
(
F−1{p}

)
∩
(
Sr1 ×Hκ−r1(D)

)
.

Actually, if gj(s) 6= 0 on every Kj ∈ K, j = 1, . . . , r1, then gj ∈ S, j = 1, . . . , r1,

because if gj(s) = 0 on D, then in view of the equality D =
⋃∞
l=1 K̂l with

K̂l ∈ K from the definition of the metric ρ, we obtain gj(K̂l) = 0 for some l.
We take an arbitrary g ∈ H(D) and its open neighbourhood G. Then, by

the continuity of F , the set F−1G is open as well. In virtue of Lemma 2, there
exists a polynomial p = p(s) lying in G. Therefore, F−1{p} ⊂ F−1G, and
by the above remark, the set F−1G contains an element of Sr1 × Hκ−r1(D).
Hence, Lemma 2 implies the inequality Pζ(F

−1G) > 0. Thus,

PζF
−1(G) = Pζ(F

−1G) > 0.

Since g and G are arbitrary, this shows that the support of the measure PζF
−1

is the whole of H(D). ut
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Next we give the proof of Theorem 4.

Proof. Let the polynomial p(s) satisfy (2.1). Define the set

Gε =

{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε/2

}
.

By the second part of Lemma 3, the set Gε is an open neighbourhood of the
element of the support of the measure PζF

−1. Thus, PζF
−1(Gε) > 0. We

recall that the set A ∈ B(H(D)) is a continuity set of the measure PζF
−1 if

PζF
−1(∂ A) = 0, where ∂ A is a boundary of the set A. Define one more set

Ĝε =

{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
.

Then the boundary ∂ Ĝε lies in the set{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| = ε

}
,

therefore, ∂ Ĝε1 ∩ ∂ Ĝε2 = ∅ for distinct positive ε1 and ε2. This shows that
the set Ĝε is a continuity set of PζF

−1 for all but at most countably many

ε > 0. Moreover, the definitions of Gε and Ĝε together with (2.1) imply the
inclusion Gε ⊂ Ĝε. Hence,

PζF
−1(Ĝε) > PζF

−1(Gε) > 0. (2.6)

Using the equivalent of weak convergence of probability measures in terms of
continuity sets, by the first part of Lemma 3 and (2.6), we obtain that

lim
N→∞

PN,F (Ĝε) = PζF
−1(Ĝε) > 0

for all but at most countably many ε > 0. This and the definitions of PN,F
and Ĝε prove the theorem. ut

3 Proof of Theorem 5

For convenience, we remind the Rouché theorem.

Lemma 4. Suppose that G is a domain in C, K is a compact subset of G, and
f(s) and g(s) are analytic functions on G such that

|f(s)− g(s)| < |f(s)|

for every point s in the boundary of K. Then f(s) and g(s) have the same
number of zeros in the interior of K, taking into account multiplicities.

Math. Model. Anal., 24(1):34–42, 2019.
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Proof of the lemma can be found, for example, in [4]. Now, we prove
Theorem 5.

Proof. Let, for brevity,

σ0 =
σ1 + σ2

2
and r0 =

σ2 − σ1
2

.

We take f(s) = s − σ0 in Theorem 3. Then, by the latter theorem, for every
ε > 0, the set of k ∈ N0 satisfying the inequality

sup
|s−σ0|6r0

∣∣F (ζ (s+ ikh, α; a, b)
)
− (s− σ0)

∣∣ < ε (3.1)

has a positive lower density. We choose ε to satisfy

0 < ε <
1

20
inf

|s−σ0|=r0
|s− σ0| =

r0
20
.

Then we have that the functions F
(
ζ (s+ ikh, α; a, b)

)
and s− σ0 on the disc

|s− σ0| 6 r0 satisfy the conditions of Lemma 4. Since, obviously, the function
s − σ0 has one zero in the disc |s − σ0| < r0, we find that also the function
F
(
ζ (s+ ikh, α; a, b)

)
has only one zero in that disc. However, the number of

k satisfying inequality (3.1), for sufficiently large N , is greater than cN with
a certain constant c > 0 depending on σ1, σ2, F, α, and a, b. The theorem is
proved. ut
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