On Discrete Value Distribution of Certain Compositions

Virginija Garbaliauskiené ${ }^{a}$, Julija Karaliūnaitè ${ }^{b}$ and Renata Macaitiene ${ }^{c}$
${ }^{a}$ Department of Computer Sciences, Šiauliai University Vilniaus str. 141, LT-76353 Šiauliai, Lithuania
${ }^{b}$ Faculty of Fundamental Sciences, Vilnius Gediminas Technical University Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
${ }^{c}$ Research Institute, Šiauliai University
P. Višinskio str. 25, LT-76351 Šiauliai, Lithuania
E-mail(corresp.): virginija.garbaliauskiene@su.lt
E-mail: julija.karaliunaite@vgtu.lt
E-mail: renata.macaitiene@su.lt

Received June 7, 2018; revised October 10, 2018; accepted October 12, 2018

Abstract

In the paper, we obtain universality theorems and a lower estimate for the number of zeros for the composition $F(\underline{\zeta}(s, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))$, where F is an operator in the space of analytic functions satisfying the Lipschitz type condition, and $\underline{\zeta}(s, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}})$ is a collection consisting of periodic and periodic Hurwitz zeta-functions.

Keywords: Mergelyan theorem, periodic Hurwitz zeta-function, periodic zeta-function, Rouché theorem, universality.

AMS Subject Classification: 11M41; 41A30.

1 Introduction

Let $s=\sigma+i t$ be a complex variable, and $\mathfrak{a}=\left\{a_{m}: m \in \mathbb{N}\right\}$ be a periodic sequence of complex numbers with minimal period $k \in \mathbb{N}$. The periodic zetafunction $\zeta(s ; \mathfrak{a})$ is defined, for $\sigma>1$, by the Dirichlet series

$$
\zeta(s ; \mathfrak{a})=\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}}
$$

[^0]and can be continued meromorphically to the whole complex plane with unique simple pole at the point $s=1$ with residue $a=\frac{1}{k} \sum_{m=1}^{k} a_{m}$. If $a=0$, then $\zeta(s ; \mathfrak{a})$ is an entire function.

Let $\mathfrak{b}=\left\{b_{m}: m \in \mathbb{N}_{0}\right\}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, be one more periodic sequence of complex numbers with minimal period $l \in \mathbb{N}$. The periodic Hurwitz zetafunction $\zeta(s, \alpha ; \mathfrak{b})$ with parameter $\alpha, 0<\alpha \leqslant 1$, is defined, for $\sigma>1$, by the Dirichlet series

$$
\zeta(s, \alpha ; \mathfrak{b})=\sum_{m=0}^{\infty} \frac{b_{m}}{(m+\alpha)^{s}}
$$

and can be continued meromorphically to the whole complex plane with unique simple pole at the point $s=1$ with residue $b=\frac{1}{l} \sum_{m=0}^{l-1} b_{m}$. If $b=0$, then $\zeta(s, \alpha ; \mathfrak{b})$ is an entire function.

This note is devoted to discrete value distribution of collections consisting of periodic and periodic Hurwitz zeta-functions. In [2], the approximation of a collection of analytic functions by discrete shifts of the above collections of zeta-functions has been considered. For $j=1, \ldots, r_{1}$, let $\mathfrak{a}_{j}=\left\{a_{j m}: m \in \mathbb{N}\right\}$ be a periodic sequence of complex numbers with minimal period $q_{j} \in \mathbb{N}$, and $\zeta\left(s ; \mathfrak{a}_{j}\right)$ be the corresponding periodic zeta-function. For $j=1, \ldots, r_{2}$, let $l_{j} \in \mathbb{N}, 0<\alpha_{j} \leqslant 1, b_{j l}=\left\{b_{j l m}: m \in \mathbb{N}_{0}\right\}, l=1, \ldots, l_{j}$, be a periodic sequence of complex numbers with minimal period $q_{j l}$, and let $\zeta\left(s, \alpha_{j} ; \mathfrak{b}_{j l}\right)$ be the corresponding periodic Hurwitz zeta-function. Moreover, let q denote the least common multiple of the periods $q_{1}, \ldots, q_{r_{1}}$, and let $\eta_{1}, \ldots, \eta_{r}$ be the reduced residue system modulo q, where $r=\varphi(q)$ is the Euler totient function. Similarly, let q_{j} denote the least common multiple of the periods $q_{1 l_{1}}, \ldots, q_{j l_{j}}$, $j=1, \ldots, r_{2}$. Define the matrices

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
a_{1 \eta_{1}} & a_{2 \eta_{1}} & \ldots & a_{r_{1} \eta_{1}} \\
a_{1 \eta_{2}} & a_{2 \eta_{2}} & \ldots & a_{r_{1} \eta_{2}} \\
\ldots & \ldots & \ldots & \ldots \\
a_{1 \eta_{r}} & a_{2 \eta_{r}} & \ldots & a_{r_{1} \eta_{r}}
\end{array}\right), \\
& B_{j}=\left(\begin{array}{cccc}
b_{j 10} & b_{j 20} & \ldots & b_{j l_{j} 0} \\
b_{j 11} & b_{j 21} & \ldots & b_{j l_{j} 1} \\
\ldots & \ldots & \ldots & \ldots \\
b_{j 1\left(q_{j}-1\right)} & b_{j 2\left(q_{j}-1\right)} & \ldots & b_{j l_{j}\left(q_{j}-1\right)}
\end{array}\right), \quad j=1, \ldots, r_{2} .
\end{aligned}
$$

For the statement of a joint discrete universality theorem, we use the following notation. Let $D=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}, \mathcal{K}$ be the class of compact subsets of the strip D with connected complements, $H(K)$ with $K \in \mathcal{K}$ be the class of continuous functions on K that are analytic in the interior of K, and let $H_{0}(K)$ be the subclass of $H(K)$ of non-vanishing functions on K. Denote by \mathbb{P} the set of all prime numbers, by $\# A$ the cardinality of the set A, and define the set

$$
\begin{aligned}
& L\left(\mathbb{P} ; \alpha_{1}, \ldots, \alpha_{r_{2}} ; h, \pi\right) \\
& \quad=\left\{(\log p: p \in \mathbb{P}),\left(\log \left(m+\alpha_{j}\right): m \in \mathbb{N}_{0}, j=1, \ldots, r_{2}\right), \frac{2 \pi}{h}\right\}
\end{aligned}
$$

with $h>0$. Then the main result of [2] is the following theorem.

Theorem 1. Suppose that the sequences $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r_{1}}$ are multiplicative, $\operatorname{rank} A=$ r_{1}, the set $L\left(\mathbb{P} ; \alpha_{1}, \ldots, \alpha_{r_{2}} ; h, \pi\right)$ is linearly independent over the field of rational numbers \mathbb{Q}, and $\operatorname{rank} B_{j}=l_{j}, j=1, \ldots, r_{2}$. Let $K_{j} \in \mathcal{K}, j=1, \ldots, r_{1}$, $K_{j l} \in \mathcal{K}, j=1, \ldots, r_{2}, l=1, \ldots, l_{j}$, and $f_{j}(s) \in H_{0}\left(K_{j}\right), j=1, \ldots, r_{1}$, $f_{j l}(s) \in H\left(K_{j l}\right), j=1, \ldots, r_{2}, l=1, \ldots, l_{j}$. Then, for every $\varepsilon>0$,

$$
\begin{aligned}
\liminf _{N \rightarrow \infty} & \frac{1}{N+1} \# \\
& \left\{0 \leqslant k \leqslant N: \sup _{1 \leqslant j \leqslant r_{1}} \sup _{s \in K_{j}}\left|\zeta\left(s+i k h ; \mathfrak{a}_{j}\right)-f_{j}(s)\right|<\varepsilon\right. \\
& \left.\sup _{1 \leqslant j \leqslant r_{2}} \sup _{1 \leqslant j \leqslant l_{j}} \sup _{s \in K_{j l}}\left|\zeta\left(s+i k h, \alpha_{j} ; \mathfrak{b}_{j l}\right)-f_{j l}(s)\right|<\varepsilon\right\}>0 .
\end{aligned}
$$

We note that N runs non-negative integers. Theorem 1 has the following modification.

Theorem 2. Under hypotheses of Theorem 1, the limit

$$
\begin{aligned}
\lim _{N \rightarrow \infty} & \frac{1}{N+1} \#\left\{0 \leqslant k \leqslant N: \sup _{1 \leqslant j \leqslant r_{1}} \sup _{s \in K_{j}}\left|\zeta\left(s+i k h ; \mathfrak{a}_{j}\right)-f_{j}(s)\right|<\varepsilon\right. \\
& \left.\sup _{1 \leqslant j \leqslant r_{2}} \sup _{1 \leqslant j \leqslant l_{j}} \sup _{s \in K_{j l}}\left|\zeta\left(s+i k h, \alpha_{j} ; \mathfrak{b}_{j l}\right)-f_{j l}(s)\right|<\varepsilon\right\}>0
\end{aligned}
$$

exists for all but at most countably many $\varepsilon>0$.
We recall that $D=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}$. Denote by $H(D)$ the space of analytic functions on D endowed with the topology of uniform convergence on compacta. The aim of this paper is to obtain some analytic properties of the function $F(\underline{\zeta}(s, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))$ for a certain class of operators $F: H^{\kappa}(D) \rightarrow H(D)$, where

$$
\begin{array}{r}
\underline{\zeta}(s, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}})=\left(\zeta\left(s ; \mathfrak{a}_{1}\right), \ldots, \zeta\left(s ; \mathfrak{a}_{r_{1}}\right), \zeta\left(s, \alpha_{1} ; \mathfrak{b}_{11}\right) \ldots, \zeta\left(s, \alpha_{1} ; \mathfrak{b}_{1 l_{1}}\right), \ldots,\right. \\
\left.\zeta\left(s, \alpha_{r_{2}} ; \mathfrak{b}_{r_{2} 1}\right) \ldots, \zeta\left(s, \alpha_{r_{2}} ; \mathfrak{b}_{r_{2} l_{r_{2}}}\right)\right)
\end{array}
$$

with $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r_{1}}\right), \underline{\mathfrak{a}}=\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r_{1}}\right), \underline{\mathfrak{b}}=\left(\mathfrak{b}_{11}, \ldots, \mathfrak{b}_{1 l_{1}}, \ldots, \mathfrak{b}_{r_{2} 1}, \ldots\right.$, $\mathfrak{b}_{r_{2} l_{r_{2}}}$, and $\kappa=r_{1}+\sum_{j=1}^{r_{2}} l_{j}$.

The space $H(D)$ is metrisable. There exists a sequence of compact sets $\left\{K_{l}: l \in \mathbb{N}\right\} \subset D$ such that $D=\bigcup_{l=1}^{\infty} K_{l}, K_{l} \subset K_{l+1}$ for all $l \in \mathbb{N}$, and if $K \subset D$ is a compact, then $K \subset K_{l}$ for some l. Then

$$
\rho\left(g_{1}, g_{2}\right)=\sum_{l=1}^{\infty} 2^{-l} \frac{\sup _{s \in K_{l}}\left|g_{1}(s)-g_{2}(s)\right|}{1+\sup _{s \in K_{l}}\left|g_{1}(s)-g_{2}(s)\right|}, \quad g_{1}, g_{2} \in H(D)
$$

is a metric on $H(D)$ inducing its topology of uniform convergence on compacta. Setting
$\underline{\rho}\left(\underline{g}_{1}, \underline{g}_{2}\right)=\max _{1 \leqslant m \leqslant \kappa}\left(\rho\left(g_{1 m}, g_{2 m}\right)\right), \quad \underline{g}_{j}=\left(g_{j 1}, g_{j 2}, \ldots, g_{j \kappa}\right) \subset H^{\kappa}(D), j=1,2$,
we obtain the metric which induces the product topology of $H^{\kappa}(D)$.
We note that the sets K_{l} can be chosen with connected complements. For example, we can take closed rectangles.

Suppose that $\beta_{1}, \ldots, \beta_{\kappa}$ are positive numbers. We say that an operator F : $H^{\kappa}(D) \rightarrow H(D)$ belongs to the class $\operatorname{Lip}\left(\beta_{1}, \ldots, \beta_{\kappa}\right)$ if the following conditions hold:
1° For every polynomial $p=p(s)$ and sets $K_{1}, \ldots, K_{r_{1}} \in \mathcal{K}$, there exists

$$
\underline{g}=\left(g_{1}, \ldots, g_{r_{1}}, g_{11}, \ldots, g_{1 l_{1}}, \ldots, g_{r_{2} 1}, \ldots, g_{r_{2} l_{r_{2}}}\right) \in F^{-1}\{p\} \subset H^{\kappa}(D)
$$

such that $g_{j}(s) \neq 0$ on K_{j} for $j=1, \ldots, r_{1}$;
2° For all $K \in \mathcal{K}$, there exist a constant $c>0$ and sets $K_{1}, \ldots, K_{\kappa} \in \mathcal{K}$ such that

$$
\begin{gathered}
\sup _{s \in K}\left|F\left(g_{11}(s), \ldots, g_{1 \kappa}(s)\right)-F\left(g_{21}(s), \ldots, g_{2 \kappa}(s)\right)\right| \\
\leqslant c \sup _{1 \leqslant j \leqslant \kappa} \sup _{s \in K_{j}}\left|g_{1 j}(s)-g_{2 j}(s)\right|^{\beta_{j}}
\end{gathered}
$$

for all $\left(g_{j 1}, \ldots, g_{j \kappa}\right) \in H^{\kappa}(D), j=1,2$.
We will prove the following discrete universality theorem on the approximation of analytic functions.

Theorem 3. Suppose that $F \in \operatorname{Lip}\left(\beta_{1}, \ldots, \beta_{\kappa}\right)$, the sequences $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r_{1}}$ are multiplicative, $\operatorname{rank} A=r_{1}$, the set $L\left(\mathbb{P} ; \alpha_{1}, \ldots, \alpha_{r_{2}} ; h, \pi\right)$ is linearly independent over \mathbb{Q}, and $\operatorname{rank} B_{j}=l_{j}, j=1, \ldots, r_{2}$. Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then, for every $\varepsilon>0$,

$$
\liminf _{N \rightarrow \infty} \frac{1}{N+1} \#\left\{0 \leqslant k \leqslant N: \sup _{s \in K}|F(\underline{\zeta}(s, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))-f(s)|<\varepsilon\right\}>0
$$

It is not difficult to give an example of $F \in \operatorname{Lip}\left(\beta_{1}, \ldots, \beta_{\kappa}\right)$. Actually, for a given $\left(g_{1}, \ldots, g_{r_{1}}, g_{11}, \ldots, g_{1 l_{1}}, \ldots, g_{r_{2} 1}, \ldots, g_{r_{2} l_{r_{2}}}\right) \in H^{\kappa}(D)$, we take

$$
\begin{aligned}
& F\left(g_{1}, \ldots, g_{r_{1}}, g_{11}, \ldots, g_{1 l_{1}}, \ldots, g_{r_{2} 1}, \ldots, g_{r_{2} l_{r_{2}}}\right)=c_{1} g_{1}^{\left(n_{1}\right)}+\cdots+c_{r_{1}} g_{r_{1}}^{\left(n_{r_{1}}\right)} \\
& \quad+c_{11} g_{11}^{\left(n_{11}\right)}+\cdots+c_{1 l_{1}} g_{1 l_{1}}^{\left(n_{1 l_{1}}\right)}+\cdots+c_{r_{2} 1} g_{r_{2} 1}^{\left(n_{r_{2} 1}\right)}+\cdots+c_{r_{2} l_{r_{2}}} g_{r_{2} l_{r_{2}}}^{\left(n_{r_{2} r_{2}}\right)}
\end{aligned}
$$

where $c_{1}, \ldots, c_{r_{1}}, c_{11}, \ldots, c_{1 l_{1}}, \ldots, c_{r_{2} 1}, \ldots, c_{r_{2} l_{r_{2}}} \in \mathbb{C} \backslash\{0\}$ and $n_{1}, \ldots, n_{r_{1}}, n_{11}$, $\ldots, n_{1 l_{1}}, \ldots, n_{r_{2} 1}, \ldots, n_{r_{2} l_{r_{2}}} \in \mathbb{N}$. Then, for every polynomial $p=p(s)$, there exists $\underline{g} \in F^{-1}\{p\}$ such that $g_{j}(s) \neq 0$ on $K_{j}, j=1, \ldots, r_{1}$. Suppose that

$$
p(s)=a_{n} s^{n}+\cdots+a_{0} \quad \text { with } a_{n} \neq 0
$$

Then we can take $g=\left(a_{1}, \ldots, a_{r_{1}}, b_{11}, \ldots, b_{1 l_{1}}, \ldots, b_{r_{2} 1}, \ldots, b_{r_{2}\left(l_{r_{2}}-1\right)}, g_{r_{2} l_{r_{2}}}\right)$ with $a_{1}, \ldots, a_{r_{1}} \in \mathbb{C} \backslash\{0\}, b_{11}, \ldots, b_{1 l_{1}}, \ldots, b_{r_{2} 1}, \ldots, b_{r_{2}\left(l_{r_{2}}-1\right)} \in \mathbb{C}$ and

$$
g_{r_{2} l_{r_{2}}}(s)=\frac{1}{c_{r_{2} l_{r_{2}}}}\left(\frac{a_{n} s^{n+n_{r_{2} l_{r_{2}}}}}{(n+1) \cdots\left(n+n_{r_{2}} l_{r_{2}}\right)}+\cdots+\frac{a_{0} s^{n_{r_{2} l r_{2}}}}{1 \cdots n_{r_{2} l_{r_{2}}}}\right) .
$$

This shows that the condition 1° of the definition of the class $\operatorname{Lip}\left(\beta_{1}, \ldots, \beta_{\kappa}\right)$ is fulfilled.

For checking the condition 2° of the class $\operatorname{Lip}\left(\beta_{1}, \ldots, \beta_{\kappa}\right)$, we apply the Cauchy integral formula. Let $K \in \mathcal{K}$, and $K \subset G \subset \hat{K}$ with an open set G and $\hat{K} \in \mathcal{K}$. We take a closed simple contour L lying in $\hat{K} \backslash G$ and enclosing the set K. Taking $g_{j 1}, \ldots, g_{j \kappa} \in H^{\kappa}(D), j=1,2$, and using the Cauchy integral formula, we find that, for $s \in K$,

$$
\begin{align*}
\mid F & \left(g_{11}(s), \ldots, g_{1 \kappa}(s)\right)-F\left(g_{21}(s), \ldots, g_{2 \kappa}(s)\right) \mid \\
& =\left|\sum_{m=1}^{\kappa} c_{m} \frac{n_{m}!}{2 \pi i} \int_{L} \frac{g_{1 m}(z)-g_{2 m}(z)}{(z-s)^{n_{m}+1}} d z\right| \leqslant \sum_{m=1}^{\kappa}\left|c_{m}\right|\left|\hat{c}_{m}\right| \sup _{s \in L}\left|g_{1 m}(s)-g_{2 m}(s)\right| \\
& \leqslant c \sup _{1 \leqslant m \leqslant \kappa} \sup _{s \in \hat{K}}\left|g_{1 m}(s)-g_{2 m}(s)\right| \tag{1.1}
\end{align*}
$$

with positive constants $\hat{c}_{m}, m=1, \ldots, \kappa$, and c. For simplicity, here we have used the notation $c_{j l} g_{j l}^{\left(n_{j l}\right)}=c_{r_{1}+l_{1}+\cdots+l_{j-1}+l} g_{r_{1}+l_{1}+\cdots+l_{j-1}+l}^{\left(r_{1}+l_{1}+\cdots+l_{j-1}+l\right)}, j=1, \ldots, r_{2}$, $l=1, \ldots, l_{j}$. Thus, by (1.1), we have that the condition 2° is satisfied with $\beta_{1}=\cdots=\beta_{\kappa}=1$ and $K_{1}=\cdots=K_{\kappa}=\hat{K}$.

Theorem 3, as Theorem 1, has the following modification.
Theorem 4. Under hypotheses of Theorem 3, the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \#\left\{0 \leqslant k \leqslant N: \sup _{s \in K}|F(\underline{\zeta}(s, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))-f(s)|<\varepsilon\right\}>0
$$

exists for all but at most countably many $\varepsilon>0$.
Theorems 1 and 2 are called joint discrete universality theorem for zetafunctions with periodic coefficients. Theorems 3 and 4 are discrete universality theorems for composite functions of zeta-functions with periodic coefficients.

Theorem 3 contains a certain information on zeros of the function $F(\underline{\zeta}(s$, $\underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}})$).
Theorem 5. Suppose that $F \in \operatorname{Lip}\left(\beta_{1}, \ldots, \beta_{\kappa}\right)$, the sequences $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r_{1}}$ are multiplicative, $\operatorname{rank} A=r_{1}$, the set $L\left(\mathbb{P} ; \alpha_{1}, \ldots, \alpha_{r_{2}} ; h, \pi\right)$ is linearly independent over \mathbb{Q}, and $\operatorname{rank} B_{j}=l_{j}, j=1, \ldots, r_{2}$. Then, for every $\sigma_{1}, \sigma_{2}, \frac{1}{2}<$ $\sigma_{1}<\sigma_{2}<1$, there exists a constant $c=c\left(\sigma_{1}, \sigma_{2}, F, \underline{\alpha}, \underline{\mathfrak{a}}, \underline{\mathfrak{b}}\right)>0$ such that the function $F(\underline{\zeta}(s, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))$, for sufficiently large N, has a zero in the disc

$$
\left|s-\left(\sigma_{1}+\sigma_{2}\right) / 2\right| \leqslant\left(\sigma_{2}-\sigma_{1}\right) / 2
$$

for more than $c N$ numbers $k, 0 \leqslant k \leqslant N$.

2 Proof of universality theorems

We remind the Mergelyan theorem on the approximation of analytic functions by polynomials [3].

Lemma 1. Let $K \subset \mathbb{C}$ be a compact subset with connected complement, and $f(s)$ be a continuous function on K and analytic in the interior of K. Then, for every $\varepsilon>0$, there exists a polynomial $p(s)$ such that

$$
\begin{equation*}
\sup _{s \in K}|f(s)-p(s)|<\varepsilon / 2 \tag{2.1}
\end{equation*}
$$

Next proof of Theorem 3 follows.
Proof. Let $\beta=\min _{1 \leqslant j \leqslant \kappa} \beta_{j}=\min \left(\min _{1 \leqslant j \leqslant r_{1}} \beta_{j}, \min _{1 \leqslant j \leqslant r_{2}} \min _{1 \leqslant j \leqslant l_{j}} \beta_{j l}\right)$. In view of the condition 1° of the class $\operatorname{Lip}\left(\beta_{1}, \ldots, \beta_{\kappa}\right)$, for the polynomial $p=p(s)$ of Lemma 1 and every $K_{1}, \ldots, K_{r_{1}} \in \mathcal{K}$, there exists an element

$$
\underline{g}=\left(g_{1}, \ldots, g_{r_{1}}, g_{11}, \ldots, g_{1 l_{1}}, \ldots, g_{r_{2} 1}, \ldots, g_{r_{2} l_{r_{2}}}\right) \in F^{-1}\{p\}
$$

such that $g_{j}(s) \neq 0$ on K_{j} for $j=1, \ldots, r_{1}$. Suppose that $c>0$ is from condition 2° of the class $\operatorname{Lip}\left(\beta_{1}, \ldots, \beta_{\kappa}\right), K_{1}, \ldots, K_{r_{1}}, K_{11}, \ldots, K_{1 l_{1}}, \ldots, K_{r_{2} 1}, \ldots$, $K_{r_{2} l_{r_{2}}}$ correspond the set K in 2°, and that $k \in \mathbb{N}_{0}$ satisfies the inequalities

$$
\begin{align*}
& \sup _{1 \leqslant j \leqslant r_{1}} \sup _{s \in K_{j}}\left|\zeta\left(s+i k h ; \mathfrak{a}_{j}\right)-g_{j}(s)\right|<c^{-1 / \beta}(\varepsilon / 4)^{1 / \beta}, \tag{2.2}\\
& \sup _{1 \leqslant j \leqslant r_{2}} \sup _{1 \leqslant l \leqslant l_{j}} \sup _{s \in K_{j l}}\left|\zeta\left(s+i k h, \alpha_{j} ; \mathfrak{b}_{j l}\right)-g_{j l}(s)\right|<c^{-1 / \beta}(\varepsilon / 4)^{1 / \beta} . \tag{2.3}
\end{align*}
$$

Then, for k satisfying the above inequalities, we find by 2° that

$$
\begin{align*}
& \sup _{s \in K}|F(\underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))-p(s)|=\sup _{s \in K}|F(\underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))-F(\underline{g})| \\
& \quad \leqslant c \sup _{1 \leqslant j \leqslant r_{1}} \sup _{s \in K_{j}}\left|\zeta\left(s+i k h ; \mathfrak{a}_{j}\right)-g_{j}(s)\right|^{\beta_{j}} \\
& \quad+\sup _{1 \leqslant j \leqslant r_{2}} \sup _{1 \leqslant l \leqslant l_{j}} \sup _{s \in K_{j l}}\left|\zeta\left(s+i k h, \alpha_{j} ; \mathfrak{b}_{j l}\right)-g_{j l}(s)\right|^{\beta_{j l}}<2 c c^{-1} \frac{\varepsilon}{4}=\frac{\varepsilon}{2} . \quad(2 \tag{2.4}
\end{align*}
$$

By Theorem 1, the set of $k \in \mathbb{N}_{0}$ satisfying inequalities (2.2) and (2.3) has a positive lower density. Therefore, in view of (2.4),

$$
\begin{equation*}
\liminf _{N \rightarrow \infty} \frac{1}{N+1} \#\left\{0 \leqslant k \leqslant N: \sup _{s \in K}|F(\underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))-p(s)|<\frac{\varepsilon}{2}\right\}>0 \tag{2.5}
\end{equation*}
$$

Suppose that k satisfies the inequality

$$
\sup _{s \in K}|F(\underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))-p(s)|<\frac{\varepsilon}{2} .
$$

Then, taking into account inequality (2.1), we have for such k

$$
\begin{aligned}
\sup _{s \in K} & |F(\underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))-f(s)| \\
& \leqslant \sup _{s \in K}|F(\underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))-p(s)|+\sup _{s \in K}|f(s)-p(s)|<\varepsilon .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left\{0 \leqslant k \leqslant N: \sup _{s \in K}|F(\underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))-p(s)|<\frac{\varepsilon}{2}\right\} \\
& \quad \subset\left\{0 \leqslant k \leqslant N: \sup _{s \in K}|F(\underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))-f(s)|<\varepsilon\right\},
\end{aligned}
$$

and the theorem follows by (2.5).
Unfortunately, Theorem 4 does not follows directly from Theorem 2, therefore, we will give its direct proof.

Denote by $\mathcal{B}(X)$ the Borel σ-field of the space X, let $S=\{g \in H(D)$: $g(s) \neq 0$ or $g(s) \equiv 0\}$, and, for $A \in \mathcal{B}(H(D))$, define

$$
P_{N}(A)=\frac{1}{N+1} \#\{1 \leqslant k \leqslant N: \underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}) \in A\} .
$$

Lemma 2. Suppose that the sequences $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r_{1}}$ are multiplicative, $\operatorname{rank} A=$ r_{1}, the set $L\left(\mathbb{P} ; \alpha_{1}, \ldots, \alpha_{r_{2}} ; h, \pi\right)$ is linearly independent over \mathbb{Q}, and $\operatorname{rank} B_{j}=$ $l_{j}, j=1, \ldots, r_{2}$. Then P_{N}, as $N \rightarrow \infty$, converges weakly to a certain probability measure $P_{\underline{\zeta}}$ with support $S^{r_{1}} \times H(D)^{\kappa-r_{1}}$.

The lemma is Proposition 3.1 of [2].
Lemma 3. Suppose that $F \in \operatorname{Lip}\left(\beta_{1}, \ldots, \beta_{\kappa}\right)$. Then

$$
P_{N, F}(A) \stackrel{\text { def }}{=} \frac{1}{N+1} \#\{0 \leqslant k \leqslant N: F(\underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}})) \in A\}, A \in \mathcal{B}(H(D))
$$

converges weakly to $P_{\underline{\zeta}} F^{-1}$ as $N \rightarrow \infty$. Moreover, the support of $P_{\underline{\zeta}} F^{-1}$ is the whole of $H(D)$.

Proof. We recall that $P_{\underline{\zeta}} F^{-1}(A)=P_{\underline{\zeta}}\left(F^{-1} A\right)$ for $A \in \mathcal{B}(H(D))$. The condition 2° of the class $\operatorname{Lip}\left(\bar{\beta}_{1}, \ldots, \beta_{\kappa}\right)$ shows that the operator F is continuous. Moreover, by the definitions of P_{N} and $P_{N, F}$, we have that $P_{N, F}=P_{N} F^{-1}$. Therefore, Lemma 2, Theorem 5.1 of [1] and the continuity of F prove the weak convergence of $P_{N, F}$ to $P_{\underline{\underline{\zeta}}} F^{-1}$ as $N \rightarrow \infty$.

The condition 1° of the class $\operatorname{Lip}\left(\beta_{1}, \ldots, \beta_{\kappa}\right)$ implies that, for each polynomial $p=p(s)$, there exists

$$
\begin{array}{r}
\underline{g}=\left(g_{1}, \ldots, g_{r_{1}}, g_{11}, \ldots, g_{1 l_{1}}, \ldots, g_{r_{2} 1}, \ldots, g_{r_{2} l_{r_{2}}}\right) \\
\in\left(F^{-1}\{p\}\right) \cap\left(S^{r_{1}} \times H^{\kappa-r_{1}}(D)\right) .
\end{array}
$$

Actually, if $g_{j}(s) \neq 0$ on every $K_{j} \in \mathcal{K}, j=1, \ldots, r_{1}$, then $g_{j} \in S, j=1, \ldots, r_{1}$, because if $g_{j}(s)=0$ on D, then in view of the equality $D=\bigcup_{l=1}^{\infty} \hat{K}_{l}$ with $\hat{K}_{l} \in \mathcal{K}$ from the definition of the metric ρ, we obtain $g_{j}\left(\hat{K}_{l}\right)=0$ for some l.

We take an arbitrary $g \in H(D)$ and its open neighbourhood G. Then, by the continuity of F, the set $F^{-1} G$ is open as well. In virtue of Lemma 2, there exists a polynomial $p=p(s)$ lying in G. Therefore, $F^{-1}\{p\} \subset F^{-1} G$, and by the above remark, the set $F^{-1} G$ contains an element of $S^{r_{1}} \times H^{\kappa-r_{1}}(D)$. Hence, Lemma 2 implies the inequality $P_{\underline{\zeta}}\left(F^{-1} G\right)>0$. Thus,

$$
P_{\underline{\zeta}} F^{-1}(G)=P_{\underline{\zeta}}\left(F^{-1} G\right)>0
$$

Since g and G are arbitrary, this shows that the support of the measure $P_{\underline{\zeta}} F^{-1}$ is the whole of $H(D)$.

Next we give the proof of Theorem 4.
Proof. Let the polynomial $p(s)$ satisfy (2.1). Define the set

$$
G_{\varepsilon}=\left\{g \in H(D): \sup _{s \in K}|g(s)-p(s)|<\varepsilon / 2\right\}
$$

By the second part of Lemma 3, the set G_{ε} is an open neighbourhood of the element of the support of the measure $P_{\underline{\zeta}} F^{-1}$. Thus, $P_{\underline{\zeta}} F^{-1}\left(G_{\varepsilon}\right)>0$. We recall that the set $A \in \mathcal{B}(H(D))$ is a continuity set of the measure $P_{\underline{\zeta}} F^{-1}$ if $P_{\underline{\zeta}} F^{-1}(\partial A)=0$, where ∂A is a boundary of the set A. Define one more set

$$
\hat{G}_{\varepsilon}=\left\{g \in H(D): \sup _{s \in K}|g(s)-f(s)|<\varepsilon\right\} .
$$

Then the boundary $\partial \hat{G}_{\varepsilon}$ lies in the set

$$
\left\{g \in H(D): \sup _{s \in K}|g(s)-f(s)|=\varepsilon\right\}
$$

therefore, $\partial \hat{G}_{\varepsilon_{1}} \cap \partial \hat{G}_{\varepsilon_{2}}=\varnothing$ for distinct positive ε_{1} and ε_{2}. This shows that the set \hat{G}_{ε} is a continuity set of $P_{\underline{\zeta}} F^{-1}$ for all but at most countably many $\varepsilon>0$. Moreover, the definitions of G_{ε} and \hat{G}_{ε} together with (2.1) imply the inclusion $G_{\varepsilon} \subset \hat{G}_{\varepsilon}$. Hence,

$$
\begin{equation*}
P_{\underline{\zeta}} F^{-1}\left(\hat{G}_{\varepsilon}\right) \geqslant P_{\underline{\zeta}} F^{-1}\left(G_{\varepsilon}\right)>0 . \tag{2.6}
\end{equation*}
$$

Using the equivalent of weak convergence of probability measures in terms of continuity sets, by the first part of Lemma 3 and (2.6), we obtain that

$$
\lim _{N \rightarrow \infty} P_{N, F}\left(\hat{G}_{\varepsilon}\right)=P_{\underline{\zeta}} F^{-1}\left(\hat{G}_{\varepsilon}\right)>0
$$

for all but at most countably many $\varepsilon>0$. This and the definitions of $P_{N, F}$ and \hat{G}_{ε} prove the theorem.

3 Proof of Theorem 5

For convenience, we remind the Rouché theorem.
Lemma 4. Suppose that G is a domain in \mathbb{C}, K is a compact subset of G, and $f(s)$ and $g(s)$ are analytic functions on G such that

$$
|f(s)-g(s)|<|f(s)|
$$

for every point s in the boundary of K. Then $f(s)$ and $g(s)$ have the same number of zeros in the interior of K, taking into account multiplicities.

Proof of the lemma can be found, for example, in [4]. Now, we prove Theorem 5.

Proof. Let, for brevity,

$$
\sigma_{0}=\frac{\sigma_{1}+\sigma_{2}}{2} \quad \text { and } \quad r_{0}=\frac{\sigma_{2}-\sigma_{1}}{2} .
$$

We take $f(s)=s-\sigma_{0}$ in Theorem 3. Then, by the latter theorem, for every $\varepsilon>0$, the set of $k \in \mathbb{N}_{0}$ satisfying the inequality

$$
\begin{equation*}
\sup _{\left|s-\sigma_{0}\right| \leqslant r_{0}}\left|F(\underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))-\left(s-\sigma_{0}\right)\right|<\varepsilon \tag{3.1}
\end{equation*}
$$

has a positive lower density. We choose ε to satisfy

$$
0<\varepsilon<\frac{1}{20} \inf _{\left|s-\sigma_{0}\right|=r_{0}}\left|s-\sigma_{0}\right|=\frac{r_{0}}{20}
$$

Then we have that the functions $F(\zeta(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))$ and $s-\sigma_{0}$ on the disc $\left|s-\sigma_{0}\right| \leqslant r_{0}$ satisfy the conditions of Lemma 4. Since, obviously, the function $s-\sigma_{0}$ has one zero in the disc $\left|s-\sigma_{0}\right|<r_{0}$, we find that also the function $F(\underline{\zeta}(s+i k h, \underline{\alpha} ; \underline{\mathfrak{a}}, \underline{\mathfrak{b}}))$ has only one zero in that disc. However, the number of k satisfying inequality (3.1), for sufficiently large N, is greater than $c N$ with a certain constant $c>0$ depending on $\sigma_{1}, \sigma_{2}, F, \underline{\alpha}$, and $\underline{\mathfrak{a}}, \underline{\mathfrak{b}}$. The theorem is proved.

References

[1] P. Billingsley. Convergence of Probability Measures. Willey, New York, 1968.
[2] A. Laurinčikas. Joint discrete universality for periodic zeta-functions. Quaest. Math., 2018. https://doi.org/10.2989/16073606.2018.1481891.
[3] S.N. Mergelyan. Uniform approximations to functions of complex variable. Usp. Mat. Nauk., 7:31-122, 1952 (in Russian).
[4] D. Sarason. Complex Function Theory. Amer. Math. Soc., 2007.

[^0]: Copyright © 2019 The Author(s). Published by VGTU Press
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

