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1 Introduction

The optimal investment and consumption constitute a pivotal role within math-
ematical finance and economics. The basic idea behind this problem revolves
around identifying optimal trading strategies, often referred to as portfolio
weights, which maximize an investor expected utility. Notably, the founda-
tional contribution by [19] ushered in the dynamic portfolio theory framework.
This seminal work gained substantial attention from both researchers and prac-
titioners in the realm of financial economics [1,8]. In this paper, we refer to
the [19] model as Merton’s model. In scenarios where asset prices follow geo-
metric returns, Merton’s model shows that the optimal investment strategy of
an agent exhibits direct proportionality to excess returns and inverse propor-
tionality to asset variance. Despite its significance, Merton’s model relies on
a certain set of assumptions that, in actuality, deviate from behavior observed
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in real financial markets. These assumptions can be broadly classified into two
categories. The first category depends on asset price dynamics, a domain exten-
sively scrutinized by numerous researchers(for instance [13,23]) resulting in an
extensive body of literature. In cases where these assumptions are untenable,
recent work by [18] and related references therein have presented closed-form
solutions for optimal portfolio choice and consumption problems.

The second set of assumptions followed by Merton’s model is based on mar-
ket conditions and trading modalities, commonly known as trading frictions.
These encompass factors such as transaction costs, liquidity costs, and execu-
tion costs. Within the existing body of literature, the introduction of trading
frictions to the portfolio choice problem significantly increases the complex-
ity of the task of finding a solution. By assuming proportional transaction
costs, [6] demonstrated that the existence of such costs curtails continuous
trading for agents. Consequently, their optimal investment strategy exhibits a
non-traded region. Building upon this, [7] incorporated transaction costs and
derived closed-form solutions for Hyperbolic Absolute Risk Aversion (HARA)
utility functions. Furthermore, [21] extended the analysis to an infinite time
horizon while accounting for transaction costs, drawing upon the framework of
viscosity solutions of the Hamilton-Jacobi-Bellman (HJB) equation. The liter-
ature on transaction costs is vast, and many studies are available (for compre-
hensive exploration, readers can refer to [16] and references therein). However,
it is noteworthy that the literature concerning liquidity risk remains notably
limited.

Highlighting the existence of liquidity risks, [22] contributed insights by es-
tablishing illiquidity as a market-wide systemic risk rather than being confined
to the realm of asset-specific risk. Furthermore, [20] meticulously detailed the
impact of liquidity risk on stock returns. Drawing from a broader context, [3]
engaged in a comprehensive examination of the illiquidity premium across stock
markets spanning 45 countries. What they discovered was that this extra re-
turn, known as the “illiquidity premium”, could be measured using various
methods. These included analyzing the monthly returns of stocks that are less
liquid comparatively or calculating a numerical measure of stock illiquidity ob-
tained from statistical analyses like cross-section Fama-MacBeth regressions.
Evidently, the existing literature collectively underscores that liquidity issues
significantly pervade financial markets, albeit without a standardized approach
for measurement. Distinct authors adopt diverse methodologies to quantify
market liquidity risk, reflecting the multifaceted nature of this phenomenon.

The works [11,15] have significantly enriched our understanding of liquid-
ity risk by presenting diverse measures to quantify it. Although liquidity has
multiple facets, a large number of economic researchers have focused on inves-
tigating the effects of liquidity risk on asset prices ( [2,4,14]). There are also
some researchers who explored how liquidity risk influences options, and they
have come up with clear solutions for pricing options in these cases [5,12]. In
our paper, we are interested in finding optimal weights over time when the
market faces liquidity risk.

The investigation into how liquidity risk affects the decisions about optimal
weights has only recently begun to attract attention; the research in this area
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is still in its early stages, and there is no consensus reached on the definition
of liquidity risk. There are few research papers that work on dynamic portfo-
lio choice problems considering liquidity risk. [24] consider the simulation and
regression approach to find the solution of dynamic portfolio theory with lig-
uidity cost, they extend the classical least squares Monte Carlo algorithm to
incorporate switching costs, corresponding to transaction costs and transient
liquidity costs. The work of [10] considers non-linear price impact and finds
asymptotic explicit formulas up to a structural constant that depends only on
the curvature of the price impact function for the portfolio choice. He also con-
sidered a different form of liquidity cost which relies not only on the number
of assets one buys (sells) but also on the asset price and wealth of the investor
at any time ¢. The work of [16] provides closed-form solution to an optimal
investment and consumption problem for a CARA agent, who faces execution
costs when trading correlated risky assets with return predictability.

The highly tractable framework of [9] and [16] assumes arithmetic returns
follow some random process with return-predicting factors. However, this ap-
proach sometimes results in negative asset prices, prompting further explo-
ration. To address this issue, [17] considers geometric returns, but they only
find the first-order approximate solutions of the problem using asymptotic ex-
pansion of the value function, while this paper derives an exact analytical solu-
tion. They assume liquidity cost is directly proportional to variance. They also
assume liquidity cost depends only on the number of assets one buys (sells),
regardless of the price of the asset at that time. This implies a uniform liquid-
ity cost for all assets when the same quantity is bought or sold, regardless of
individual asset prices.

This paper addresses the aforementioned issues by introducing novel contri-
butions. Firstly, we focus on employing geometric returns (logarithmic returns)
without incorporating a return-predicting factor. This effectively resolves the
challenge of negative asset pricing. Additionally, we present an innovative ap-
proach to measuring liquidity risk, which effectively mitigates the concern of
uniform liquidity cost across all assets.

Our proposed liquidity cost model is contingent upon the invested (or di-
vested) amount in the risky asset, rather than mere quantity. Subsequently,
we succeeded in deriving closed-form solutions for the power utility function
(specifically, Constant Relative Risk Aversion - CRRA). Notably, our analytical
optimal trading strategy, determined through closed-form calculations, exhibits
an inverse correlation with the liquidity parameter A. In cases of pronounced
market illiquidity (A >> 1), our model advocates for reduced allocation to
illiquid assets - a prudent financial strategy.

However, the imposition of liquidity costs imposes constraints on extensive
trading activities for agents, akin to Merton’s model. An intriguing avenue for
extension involves augmenting this model with geometric returns and return-
predicting factors, potentially yielding further closed-form solutions. While this
direction remains unexplored in our current work, it holds promise for future
research.

Central to this paper is the aspiration to craft a model that echoes classical
foundations and offers precise solutions to the portfolio choice problem with
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liquidity risk. In pursuit of this goal, we meticulously verify our newly derived
solution through numerical examples. These examples effectively illustrate the
economic ramifications of our assumptions and lend empirical support to our
model’s implications.

The organization of the rest of the paper is as follows. In Section 2, we
propose a dynamic portfolio selection model with a new form of liquidity cost,
under log-returns. In Section 3, we find the closed-form solution to the problem
and the main results of the problem. In Section 4, we provide numerical results
and economic explanations of our results. Section 5 concludes the paper.

2 Model

2.1 Asset dynamics and liquidity costs

Let (£2,F,P) be a complete filtered probability space, where F = (F)o<i<T
denotes the filtration generated by 1-dimensional Brownian motion (W;);>o.
Consider a portfolio comprising a single risky asset and a risk-free asset. We
only take into account the fact that the risky asset is experiencing liquidity
challenges. The primary focus lies in the investor’s endeavor to allocate their
wealth strategically between these two assets, both of which are subject to
continuous trading dynamics over the interval [0,7]. The dynamics of the
risk-free asset (B;)i>0 is given as,
dBy
— = rdt,
By
where r > 0 denotes the risk-free interest rate. The risky asset (S;):>0 follows
the log return and has the following dynamics,
ds,
=L — pdt + ogdW],
Sy
where p denotes the return of the risky asset and og > 0 denotes the volatility
of the risky asset S;. The symbol w; denotes the proportion of investor wealth
invested in the risky asset(S;) at time ¢t € [0, T.

AssUMPTION 1. Inspired by the insights from [9], we adopt a trading frame-
work wherein the investor’s trading intensity (7:) at time ¢ is governed by the
following differential equation,

duwy

dt = Tt- (21)

The above equation implies the instantaneous change in the proportion
(wy)i>0 of the total wealth invested in the risky asset, where (7;):>0 is subse-
quently referred to as the trading strategy of the investor. It is important
to note that there are no constraints on the sign of 74 for ¢t > 0. At any given
point in time ¢ > 0, if 7 > 0, the investor allocates 7: X; amount of money into
the risky asset within the interval [¢t,¢ 4 dt). Conversely, if 7 < 0, the investor
withdraws (divests) 7+ X; amount of money from their portfolio that is invested
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in the risky asset at time ¢t. Here, X; denotes the investor’s total wealth at
time t. Mathematically, Equation (2.1) signifies our consideration of a smooth
or absolutely continuous portfolio. Next, we will specify the nature of liquidity
cost and the dynamics of the wealth equation.

Remark 1. It should be remarked that we have assumed that an investor would
continuously trade with a non-zero trading intensity of 7¢. Of course, this is
in line with our overall assumption that there is no transaction cost taken into
account in the current model, as otherwise, the investor may choose to “rest”
for a period of time, albeit small, with no trading action at all. In other words,
we have assumed that the investor has always been actively involved in trading,
either buying or selling the risky asset, in order to maximize his/her utility.
This assumption may deviate from the conventional ones, but it delivers the
needed tractability for our model. It also makes financial sense for super-active
traders.

AssuMPTION 2. This assumption specifies the nature of liquidity cost. We
assume the market is not liquid enough to buy (sell) any number of risky
assets, and the liquidity cost is directly proportional to the amount invested in
the risky asset. Following [17], we denote SF to be the execution price when
trading 7:dt proportion of the wealth in the risky asset at time ¢ > 0, the trade
has a transient linear price impact on the asset price S; as shown below,

1
SE2g, + 3 AT X, (2.2)

where A > 0 is a parameter that measures the level of liquidity and is often
referred to as Kyle’s lambda. When the market experiences high illiquidity, A
tends to be greater than or equal to 1. This implies that acquiring the asset
comes at higher costs. In essence, a higher value of A corresponds to increased
market illiquidity. In the context of this paper, our primary focus revolves
around scenarios where assets encounter liquidity challenges. With reference
to Equation (2.2), if the investor opts to purchase the risky asset (7, > 0), this
action would push the price of the risky asset upwards by %ATtXt. Conversely,
if the investor withdraws funds from the risky asset (meaning they sell some of
the risky assets), i.e., 7+ < 0, this would exert a dampening effect on the price
of the risky asset by %ATtXt. In terms of the liquidity price, the total cost of
investing in a risky asset per time unit of trading with intensity 7; is expressed
as follows,

1
TC(Ttdt) £ TtXtdt + §ATt2Xtdt7 (23)

where T'C' denotes the total cost. The first term on the right side denotes
the cost of trading 7 dt proportion of the risky asset at the market price S,
and the second term captures the liquidity cost of trading 7ydt units. From
Equation (2.3), the assumption of the linear transient price impact of trade
size 7 leads to quadratic illiquidity cost %ATEXt, indicating the large trade
size induces higher illiquidity costs. For the convenience of the reader, all
mathematical symbols appearing in this paper are listed in Table 1 together
with their meanings.
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Table 1. Notation and their meanings used throughout the paper.

Notation Meaning

X Investor’s total wealth at time t

wi Proportion of total wealth invested in the risky asset at time t

Tt Proportion of total wealth invested in the risky asset between any time
t to t+dt

m Expected return of the stock

og Volatility of the stock price

A Liquidity parameter

« Risk-aversion parameter of CRRA utility

T Risk-free interest rate

Remark 2. In the paper by [17], the liquidity cost is solely tied to the quantity
of risky assets bought or sold, irrespective of the actual asset price. This
implies that if we consider two assets, let’s call them S; and Ss, with initial
prices of 1000 and 10 respectively, and we purchase the same quantity of both
assets, the resulting illiquidity cost would be identical in both scenarios. This,
however, does not align with economic reality. Indeed, in real-world situations,
higher asset prices tend to correlate with increased illiquidity concerns, as the
potential pool of buyers and sellers is typically more limited. In our approach,
we address this concern by anchoring the liquidity cost to the amount invested
in risky assets, rather than merely the number of assets. This modification
offers a more accurate representation and simultaneously rectifies the issue
mentioned above.

We invest w; proportion of wealth invested in the risky asset (S;) and the
remaining (1 — w;) proportion of wealth invested in the risk-free asset (B;)
at a time ¢t. Effectively managing her wealth, the investor strives to allocate
funds between the risky and risk-free assets while netting the liquidity costs,
and applying Ito’s lemma and the self-financing condition, the dynamics of the
investor’s wealth admit the following form,

% = (w(t)(p —7) + 7 — 0.5A72)dt + w(t)osdW,>.

Remark 3. This model is designed to address scenarios where the market expe-
riences illiquidity challenges. Consequently, the parameter A is strictly positive
(A > 0). This assumption ensures that the trading strategy remains finite and
feasible, avoiding the unrealistic outcome of an infinite trading strategy that
would arise if A were zero. Therefore, we adopt A > 0 as a fundamental as-
sumption to maintain the model’s applicability in realistic market conditions.
It should be noted that, in the above wealth dynamics, only the liquidity cost
is subtracted explicitly, not the basic trading cost. This happened because the
basic self-financing wealth equation already incorporates the standard cost of
acquiring and holding the assets at the market price, but not the additional
liquidity cost. Therefore, we subtract only this incremental liquidity term in
the wealth dynamics, rather than the basic trading cost.
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2.2 Utility maximization problem

We consider an expected utility maximization problem of the CRRA (power
utility function) agent with liquidity costs. Specifically, the CRRA agent
chooses a trading strategy to maximize his terminal wealth. The utility func-
tion we are using in this paper is defined below,

U(z) = 2%/a,
where a > 0 is the risk aversion parameter.

Problem 1. An investor seeks to find an optimal trading strategy to maximize
expected utility over terminal wealth,

max E[U(X7)|w(0) = w, X(0) = z],

TEA

where E is the expectation operator and the above maximization problem is
subject to the following dynamics,

dwt = Ttdt,
D= (wi(p =) + 7 = JAT)dt + w(t)osdWE,

and A is the set of admissible strategies satisfying,

T
/ I7(s)| ds < oo.
0

So far, we have established the model, and in the next section, we will
identify the associated HJB equation for the model and solve it in a clear
and explicit manner. For notational convenience, we may write 7; simply as
7, although the meaning remains unchanged and the control still implicitly
depends on time.

3 Optimal trading strategies

In this section, we present a closed-form solution for Problem 1 using the dy-
namic programming method. To tackle Problem 1, we define a value function
as
V(0,w,X) = mai(E[U(X(T))\w(O) =w, X(0) = z].
TE

Using the well-established concept of dynamic programming, the continuous
value function V (¢, w, X) that ensures smooth outcomes for Problem 1 follows
the HJB equation, which can be expressed as,

1 1
ITrleag{c{W +(wlp—r)+r— §A72)33V£ + 7V + §w20§x2Vm =0}, (3.1

with the terminal condition V (T, w, X) = XTG
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3.1 A closed-form solution

We make the assumption that Problem 1 is well-defined, and the value function
associated with it meets the requirements of the HJB equation described in
Equation (3.1). By applying the first-order conditions concerning 7 € R, we
deduce that for an optimal trading strategy 7, we obtain the following form
as,

. 1 0,V (t,w, X)
Tt w X) = Az 0.V (t,w, X)’

for 9,V (t,w,X) # 0. Here, we denote 7* to be the function of (¢,w, X) to
indicate that the investor’s optimal trading strategy 7* depends on the current
value of portfolio position w and her wealth X. Now, Equation (3.1) changes
to,
L o5 9 1 vy _

Vi+ (w(p—r)+r)zVy + Juiose Ver + LV, 0. (3.2)
The above equation is a highly non-linear partial differential equation in V'
with three independent variables. Now, using the homogeneity condition of
the utility function, we have,

(e

V(z,t,w) = m—h(t, w).
a

Employing the form of value function mentioned above, we can write the initial
three-variable Equation (3.2) into a two-variable partial differential equation
(PDE). The relevant partial derivatives are as follows,

xa (0%

Vi=—hg; vy = w—hw; V, =2 th; Vy, = (a— 1):17"‘72h7
o o

Putting everything back into Equation (3.2), we obtain,

1 9 2 1 hZ
hi + a(w(p —r)+r)h + 2a(a — Dw“ogh Ao h = 0. (3.3)

Now, consider a trial solution in the affine form, which is represented as,

h(t,w) _ eA(t)+B(t)w+C(t)w2,

with terminal condition h(7T,w) = 1. Now, as a result of the simplification,
Equation (3.3) transforms into an ODE which is given as,

A(t) + B(tyw + C(t)w? + a(w(p — r) +7) + %a(a — Dw?od
+ ﬁ[B(t) + C(tyw]* =0,

where A(t) denotes the derivative of A with respect to time ¢. Similarly,
B(t), C(t) represent their derivative with respect to ¢ respectively. Following
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the work of [16], comparing the coefficients of (-)w, (-)w? and constant yields
the following system of differential equations,
. 1

2 =
A(t) + 2/1aB (t) +ar=0,

B(t) + AiaB(t)C(t) +a(p—r)=0,

. 1 1

C(t) + mC’Q(t) + §a(a —1)o% =0,
with terminal conditions A(T) = 0,B(T) = 0,C(T) = 0. Now we will solve
for C(t) and then for B(t) and A(t) respectively. Finally, our nonlinear PDE
reduces to a system of ordinary differential equations, and our task is now to
solve this system in order to obtain the final closed-form solution. Obviously,
the C(t) can be solved by the separable variable method, and the corresponding
solution is given by,

C(t) = p [(1D = 1)/(1) + 1)
where p and ¢ are constants defined as,

11—«
A

p=osay/(l—-a)d; q=os

Now substituting the expression for C(t) into the above system of equations to
determine B(t), we obtain,

P 4 g (e~ (e +1)] B = —a(u—r),

which is a linear differential equation in B(t). Furthermore, to solve B(t), the
integrating factor (I.F.) will be,

LF = (10T _1)2/eat=T)

and finally the corresponding solution for B(t) is given as,
1

2q(t—T)
= ettty - & .
q q

a(p—r)
BU) = et —

At last, A(t) can be worked out by direct integration. However, our core focus
lies in the values of B(t) and C(t). These values are of paramount importance
as they enable us to make a meaningful comparison between our results and
the performance of Merton’s portfolio, a vital aspect of our analysis. Finally,
the optimal trading strategy 7* has the following solution,

Tt w, X) = aiA[B(t) +20(t)w(t)].

Until now, we have successfully derived a closed-form solution for the opti-
mal portfolio with geometric returns, when the underlying price needs to be
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adjusted due to liquidity risk. In the next section, the accuracy of the newly de-
rived solutions will be verified through numerical experiments and the financial
interpretation of the results as well.

Although we verify our results through numerical analysis, which will be
shown in the next section, but to ensure mathematical rigorous of our results
we also provide a verification theorem and show that our solution satisfies the
corresponding HJB equation.

Theorem 1. (Verification Theorem): Let take the solution of above value func-
tion which is defined as,

V(t,z,w) = % exp(A(t) + B(tyw + C(t)w?),

where the functions A(t), B(t) and C(t) are given explicitly and satisfy the sys-
tem of ODFEs which are mentioned above, together with the terminal conditions
A(T) = B(T) = C(T) = 0. The solution found above can be represented as,

Ttz w) = 1 Vot z,w)
U Ax Vit z,w)

To ensure that a solution is indeed optimal and correctly verified, the following
conditions must hold,

1. The pair (V,7*) satisfies the original HIB equation with terminal condi-
tion V(T,z,w) = X*/a.

2. For any admissible strategy 7, the following inequality holds

V(t,z,w) > E[U(XT)].

3. Under the strategy 7*, we have

V(t,z,w) = E[UXE)].

If the conditions stated above are satisfied by the candidate pair (V,7*), then we
may conclude that V indeed represents the value function of the optimisation
problem and that 7" constitutes the optimal trading strategy.

Proof. To verify our solution, we proceed in several steps. Firstly, we iden-
tify 7* as the maximiser of the Hamiltonian, which allows us to remove the
maximum operator from the HJB equation. We then show that the HJB is
satisfied exactly when we substitute both the candidate value function V and
the control 7* into it, and finally we check the value function inequalities.

Step 1: HJB equation and Hamiltonian.
The original HJB equation for V' can be written as,

0= max {Vt + (w(p — 1) +7)2V, + twoda® Ve, + 7V, — %AxTQVm}. (3.4)
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To organise the terms and isolate the effect of the control, we define the Hamil-
tonian as,

H(t,z,w,7;V) =V + (w(p — 1) +1)aV, + 202z’ Ve, + 7V, — $427%V,.

The HJB equation (3.4) simply states that, at each state (¢,x,w), the value
function must choose the control 7 that maximises this Hamiltonian.

Step 2: First and second-order conditions for 7*.
Basically, if the candidate solution is correct, it must satisfy both the first
and second-order conditions. From the first-order condition, we have,

oH
or
After substituting the derived 7* into the first-order condition, it can be easily
verified that the condition is indeed satisfied, as shown below,
Vi — Az (/L%) Ve=Vy —V, =0.
Hence, the first-order condition is satisfied by the newly derived solution. Next,
we examine whether our solution also satisfies the second-order condition. To
do so, the second partial derivative is given by,
0*H
oT2
Since z > 0, A > 0, and V, > 0 under CRRA utility, the second derivative
is strictly negative. The positivity of V, follows from the fact that CRRA
utility is strictly increasing in wealth, so the value function must also be strictly
increasing, implying V,, > 0. Hence the Hamiltonian is strictly concave in 7, and
the control 7* obtained from the first-order condition is the unique maximiser.
Because 7 achieves the maximum in (3.4), the maximisation operator can
be removed. Thus, the HJB equation can now be written as an equality by
substituting 7 = 7*. Therefore the final PDE can be written as,

0=V, + (w(p—7)+r)zVy + 3w?cd2* Vo, + 7°Viy — 2 A2(7%)?V,.  (3.5)

Vi — AztV, = 0.

= —AzV,.

Step 3: Substituting V' and 7* into the HJB.
We now substitute the explicit form of V' and the control 7* into (3.5) to
verify that our solution. The final value function is defined as,

[}

V(t,x,w) = % exp(A(t) + B(tyw + C(t)w?),

for which we have,

[

Vi=—exp (A®t) + B(tyw + C(t)w?) (4'(t) + B (H)w + C' (t)w?),
Ve = 2% Lexp(A(t) + B(t)w + C(t)w?),

Vi, = % exp(A(t) + B(t)w + C(t)w?) (B(t) + 2C(t)w),

Viw = (a = 1)2* ?exp(A(t) + B(t)w + C(t)w?).
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Substituting these expressions and the value of 7* into the right hand side of
(3.5) gives,

(0%
— ¥ A+Buw+Cw’ (A + B'w + C'w?) + (w(ps — 1) + r)z 20~ LeA+BurC®
(0%

+ Lw?o2a? (o — 1)z0 2eATBuHCw? L Vi
2™ 7S 20z V,
For the last term, we computed,

V2 (%€A+Bw+sz(B_~_20w))2 potl

w o _ A+Bw+Cw? 2
71 - gjoz—leA—Q—Bw—&-sz - a2 € (B+20’w) ’
so that,
1 V2 _a®

w

24z V, 242
Hence the right hand side of (3.5) converted to,

eA+Bu+Cw? (B + 2Cw)2.

1
— gOeAtButCw? [ (A'+ B'w+ C'w?) + (w(p —7) + 1) + 3(a — 1)ogw?

1

+ 575 (B +2Cw) }

Now, after substituting the candidate value function V' and the control 7* int20
the rhs of the HJB equation and factoring out the positive term z®eA+TBw+Cw”
we define,

E(w) = é(A’(t) + B'(tyw + C'(t)w?) + (w(p —r) +7) 56
(B(t) +2C(t)w)”. .

+ Ia —1)odw? +

N[

1
2Aa?
We first expand the quadratic term,

(B +2Cw)” = B? + 4BCw + 4C%u?,

and hence B2 BC o

2 2
B+ 2Cw)” = 2,
( + w) 2402 + Aa? w Aa2w

1
2402
Substituting this into (3.6) gives,

1 1 1
Blw) = A+ CBw+ Cw 4wl =) + 5o~ Dogw?

B 2BC - 22
2402 T A2 T A2

Next, we collect constant, linear, and quadratic terms in w and factor é:

+

1= (0 sar )+ 2(5 vt 0+ 2
+ a(C/Jr a(afl)USﬂLQAi)
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It can be observed that each of the bracketed expressions appearing in the
decomposition of E(w) coincides exactly with the left-hand sides of the ODE
system derived earlier for A(t), B(t), and C(t). Therefore, upon substitut-
ing these three identities into the expression for E(w), every bracketed term
vanishes identically, and hence,

E(w) =0 for all w.
Finally, since the Hamiltonian reduces to,
H(t, z,w, 755V) = 20 AW +B(Hw+C(t)w? E(w)

and the prefactor z@eA®+BOwHC(Hw?

of F(w) implies that,

is strictly positive, and the vanishing

H(ta (E,UJ,T*; V) = 0.

Hence, the candidate value function V', together with the optimal control 7*,
indeed satisfies the HJB equation.

Step 5: Value function inequalities and optimality.

Finally, we show that V' dominates the expected utility of any other strategy
and that the maximum is attained under 7*. Let 7 be an arbitrary admissible
control and let (X, w;) be the associated state process. Applying Ito’s formula
to V (¢, X, w;), we obtain,

dV(t,Xt, ’LUt) = H(t,Xt,’wt,Tt; V) dt + th,

where M; is a local martingale. By the HJB equation and the optimality of 7*,
we have,

H(t, z,w,m; V) < H(t, z,w, 755 V) =0,

the drift of V (¢, Xy, w) is non-positive for any admissible strategy. Thus
V(t, X;,w;) is a supermartingale, and using the terminal condition
V(T, XT, wT) = U(XT) we obtain,

ElU(XT)] < V(t,z,w),

which proves the desired inequality for any admissible strategy 7.
When 7 = 7%, the drift term vanishes and V (¢, X;, w;) becomes a true
martingale. Therefore,

V(t,z,w) = E[V(T, X7, wr)] = E[UXF )],
which shows that the upper bound is attained by 7* and completes the proof.

Combining these steps shows that V is the value function and that 7* is the
optimal trading strategy. 0O
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4 Results and discussions

To discuss the impact of liquidity on the optimal choice for a fundamental
portfolio that involves a riskless and risky asset, the results calculated from
the new closed-form solution are compared in this section with those presented
in the classical paper of [19], which assumes that the risky asset is perfectly
liquid. Let

(k—r)

M 1 )

be the optimal weights found in [19] and assume a specific set of parameters as
follows:
nw=027r=01,A=1a=0.1,06 =0.7,w = 0.

Portiolio weights.

o
o 4
/
> wal /
oorf/
(a) Comparison between Merton (b) The evolution of optimal
and optimal portfolio weights portfolio with different levels of

liquidity

Figure 1. Sample path of optimal portfolio weight and Merton.

Figure 1(a) displays the optimal allocations w* and w},, respectively, as a
function of time for the given parameters. From this figure, the impact of lig-
uidity can be clearly observed; the optimal weights with liquidity being taken
into consideration are always less than those without. Financially, this makes
perfect sense as the cost of liquidity is proportional to the amount one has
allocated to the risky asset as assumed in Equation (2.2). Therefore, market
friction in the form of liquidity risk should naturally discourage the investor
from putting more money into the basket of his/her risky asset. When liquidity
cost comes into the role, it can be seen that the optimal weights (w*) increase
gradually and then become steady. In other words, with the presence of lig-
uidity risk, the investor’s tolerance of the risk associated with the risky asset is
damped when his/her tolerance of the total risk in the portfolio is maintained
unchanged. It shows that the optimal portfolio is more conservative than the
Merton portfolio in the presence of liquidity costs. Here, we assume that at
time ¢ = 0, the investor enters the market with all their funds allocated to a
risk-free asset. From this initial position, the investor then actively trades with
the objective of maximizing returns.
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Figure 1(b) examines the influence of the liquidity parameter (A), keeping
the other parameters unchanged. This figure reveals that in the scenario of
extremely illiquid assets (A = 1000), the optimal weights are lower compared
to a less illiquid asset (A = 100). So we allocate relatively less weight to the
illiquid asset, compared to the case of a more liquid asset. Our findings save the
investor from putting more money into an illiquid asset. This sounds logical,
as the illiquidity penalty depends on the amount of money you invest in that
asset at any time ¢, the more one invests the more is the penalty. A larger A
means more liquidity challenges in the market. Our findings save the investor
from putting more money into an illiquid asset.

In Figure 2(a), we are comparing optimal weights (w*) for different levels of
volatility, keeping the other parameters the same. From a financial standpoint,
when the volatility of an asset rises, it generally leads to a decrease in our in-
vestment allocation for that asset. Our findings echo this financial insight. As
evidenced in Figure 2(a), we discern that more volatility in the risky asset cor-
responds to a reduced allocation of funds to that asset, all else being constant.
This visual representation corroborates that our optimal portfolio weights are
indeed sensitive and responsive to changes in volatility.

Portfolio weights

004 ////" /
O B R T R
(a) The evolution of optimal (b) The evolution of optimal
portfolio weights with different portfolio weights with different
levels of volatility levels of risk aversion

parameter

Figure 2. Optimal portfolio weight with respect o5 and a.

To analyze the impact of the risk aversion parameter («), we vary the a and
keep the other parameters unchanged. A higher value of o implies a more
risk-seeking investor. This phenomenon is illustrated in Figure 2(b), where we
observe that an increased risk aversion parameter translates to a larger pro-
portion of funds being invested in the risky asset. This alignment with our
intuition is rooted in the investor’s willingness to embrace more risk, subse-
quently leading to greater emphasis being placed on risky assets within our
results.
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045
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Portfolio weights
\

0 0.002 0.004 0.006 0.008 001
time

Figure 3. The evolution of optimal portfolio weights with different levels of mean.

Lastly, we delve into the impact of the mean (i) on optimal portfolio weights,
while keeping other parameters the same. Drawing from the classical insights
presented in [19], it’s established that portfolio weights are proportionate to the
mean of the asset. In simpler terms, a higher asset mean correlates with larger
investments in that asset. Remarkably, our findings align harmoniously with
this rationale. Referring to Figure 3, we discern that elevated means of risky
assets correspond to higher optimal portfolio weights allocated to those assets.
This alignment not only resonates financially but is also logically grounded.
Therefore, our outcomes effectively mirror the financial justifications exhibited
in the Merton model, while also accommodating the presence of liquidity issues
in the market.

5 Conclusions

This paper addresses the role of liquidity risk in dynamic portfolio theory for a
CRRA utility function within a finite time frame. The approach involves con-
sidering geometric returns for the stock price and employing a quadratic form
for liquidity cost. Notably, we succeed in solving a non-linear HJB equation by
using the homogeneity condition of the power utility function that leads to a
closed-form solution for the optimal weights.

Our closed-form optimal trading strategy sheds light on the dynamics of
agent trading behavior. Specifically, we observe a pattern where trading ac-
tions initially increase over time and eventually stabilize, but always less than
the classical solution found in [19] model. These findings are justifiable as
the influence of liquidity cost curbs the agent’s ability to engage in significant
trades, aligning with the constraints observed in Merton’s portfolio strategy.

Furthermore, our numerical analysis not only validates the findings but
also demonstrates that our results align with the classical financial strategies
as well. Our solution demonstrates a time-dependent impact on the agent’s
optimal portfolio, which later converges to a constant configuration similar to
Merton’s portfolio strategy.
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