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Abstract. Grid approximation of the Cauchy problem on the interval D = {0 ≤
x ≤ d} is first studied for a linear singularly perturbed ordinary differential equation
of the first order with a perturbation parameter ε multiplying the derivative in the
equation where the parameter ε takes arbitrary values in the half-open interval (0, 1].
In the Cauchy problem under consideration, for small values of the parameter ε,
a boundary layer of width O(ε) appears on which the solution varies by a finite
value. It is shown that, for such a Cauchy problem, the solution of the standard
difference scheme on a uniform grid does not converge ε-uniformly in the maximum
norm; convergence occurs only under the condition h � ε, where h = dN−1, N
is the number of grid intervals, h is the grid step-size. Taking into account the
behavior of the singular component in the solution, a special piecewise-uniform grid is
constructed that condenses in a neighborhood of the boundary layer. It is established
that the standard difference scheme on such a special grid converges ε-uniformly in
the maximum norm at the rate O(N−1lnN). Such a scheme is called a robust one.

For a model Cauchy problem for a singularly perturbed ordinary differential equa-
tion, standard difference schemes on a uniform grid (a classical difference scheme) and
on a piecewise-uniform grid (a special difference scheme) are constructed and inves-
tigated. The results of numerical experiments are given, which are consistent with
theoretical results.
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1 Introduction

The Cauchy problem for regular equations was investigated, e.g., in well known
works [3, 4, 5, 7, 9, 12], but for singularly perturbed equations it has not been
considered previously. In this paper, we consider a new class of singularly per-
turbed problems, namely, the Cauchy problem for a linear singularly perturbed
ordinary first-order differential equation with a small parameter ε multiplying
the derivative in the equation where the parameter ε takes arbitrary values in
the half-open interval (0, 1]. For small values of the parameter ε, a boundary
layer of width O(ε) appears on which the solution of this problem varies by
a finite value. In the present paper, we study the applicability of traditional
standard difference schemes for solving such Cauchy problems. It is shown that
the use of standard difference schemes on uniform grids leads to large errors of
the grid solutions that makes these classical difference schemes unsuitable for
practical calculations. Therefore, for the class of singularly perturbed prob-
lems under consideration, it becomes necessary to use special robust difference
schemes whose solutions converge independently of the perturbation parameter
ε, i.e., ε-uniformly, in the maximum norm.

At present, for wide classes of singularly perturbed boundary value prob-
lems with elliptic and ordinary differential equations, and for initial bound-
ary value problems with parabolic equations, special numerical methods based
on standard difference schemes on grids condensing in boundary layers have
been developed and well studied whose solutions converge ε-uniformly in the
maximum norm (see, e.g., [1, 2, 6, 10, 11] and the bibliography therein). In
these special numerical methods, the grid equations are solved on the simplest
piecewise-uniform grids which are known in the literature on numerical meth-
ods for singularly perturbed problems for elliptic and parabolic equations as
Shishkin grids; see, e.g., [8] and the bibliography therein.

In the present paper, for solving the Cauchy problem for a linear singularly
perturbed ordinary differential equation, an approach similar to that used pre-
viously for singularly perturbed elliptic and parabolic equations in [1,2,6,10,11],
is developed to the construction of special difference schemes convergent ε-
uniformly in the maximum norm. As a result, a priori estimates are obtained.
On the basis of these estimates, a special difference scheme is constructed and
ε-uniform convergence in the maximum norm of the grid solution to this scheme
for the Cauchy problem under consideration is justified.

Note that many different methods for solving the Cauchy problem are
known for regular ordinary differential equations, including special schemes,
(see, for example, [7,12]). But the study of their application to singularly per-
turbed problems is a large independent research, since it is required to ensure
their applicability, that is, to prove convergence, independent of the perturba-
tion parameter, in the maximum norm for the grid solution.

Content of this paper is as follows. The formulation of the Cauchy problem
under consideration and the aim of the research are presented in Section 2.
A standard difference scheme and a special difference scheme on a piecewise-
uniform grid are considered in Section 4 and 5, respectively. A priori estimates
of the solution and its derivatives used in the construction of special difference
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schemes and the justification of their ε-uniform convergence in the maximum
norm are derived in Section 3. Numerical experiments on the solution of differ-
ence schemes with uniform and piecewise-uniform grids for the model Cauchy
problem are performed in Section 6.

2 Problem formulation. Aim of the research

On the set

D, where D = D ∪ Γ, D = (0 < x ≤ d], Γ = {x = 0}, (2.1)

we consider the Cauchy problem for a linearly singularly perturbed ordinary
first-order differential equation

Lu(x) ≡ ε a(x)
d

dx
u(x) + b(x)u(x) = f(x), x ∈ D,

u(x) = ϕ, x ∈ Γ,
(2.2a)

and besides,1

m ≤ a(x), b(x) ≤M, |f(x)| ≤M, x ∈ D, |ϕ| ≤M, (2.2b)

the functions a(x), b(x), and f(x) are assumed to be sufficiently smooth on D,
the parameter ε takes arbitrary values from the half-open interval (0, 1].

For small values of the parameter ε, a boundary layer appears in the solution
of problem (2.2), (2.1) that is a narrow subregion of width O(ε) adjacent to
the set Γ on which the solution of the problem varies by a finite value. By this
reason, the standard difference scheme on a uniform grid does not converge
ε-uniformly.

Our aim is for Cauchy problem (2.2), (2.1) for a linear singularly per-
turbed ordinary differential equation, to study applicability of standard differ-
ence schemes for solving such problems; to construct and investigate a special
difference scheme convergent ε-uniformly in the maximum norm, i.e., robust
difference scheme.

3 A priori estimates of the solution and its derivatives
for problem (2.2), (2.1)

Here we derive a number of a priori estimates for the solution of problem
(2.2), (2.1) and its derivatives that are used to construct difference schemes
and justify their convergence.

For Cauchy problem (2.2), (2.1) for a linear singularly perturbed ordinary
differential equation, a maximum principle is valid (see, e.g., [9] for regular
problems).

1 By M (m) we denote sufficiently large (small) positive constants independent of ε. In the
case of grid problems, these constants also do not depend on the stencils of the difference
schemes.

Math. Model. Anal., 23(4):527–537, 2018.



530 L.P. Shishkina and G.I. Shishkin

Lemma 1. Let the data of the Cauchy problem (2.2), (2.1) satisfy the condition

Lu(x) ≥ 0, x ∈ D; u(x) ≥ 0, x ∈ Γ.

Then for its solution, the following estimate is valid: u(x) ≥ 0, x ∈ D.

For the solution of problem (2.2), (2.1), with using the maximum principle,
we obtain the estimate

|u(x)| ≤M, x ∈ D, (3.1)

where M = M(3.1) = maxx∈D
{
b−1(x) |f(x)|

}
+ |ϕ|.

Taking into account the estimate (3.1), the following “rough” estimate of
derivatives is established:∣∣∣ dk

dxk
u(x)

∣∣∣ ≤Mε−k, x ∈ D, k ≤ 2. (3.2)

The following theorem holds

Theorem 1. Let the data of the Cauchy problem (2.2), (2.1) satisfy the condi-
tion a, b, f ∈ C1(D). Then for the solution of this problem and its derivatives,
the estimates (3.1) and (3.2) are valid, respectively.

To derive more “fine” a priori estimates of the solution and derivatives,
we represent the solution of the Cauchy problem (2.2), (2.1) as the following
decomposition2

u(x) = U(x) + V (x), x ∈ D. (3.3)

Here U(x) and V (x) are the regular and singular components of the solution.
The regular component U(x) is a sufficiently smooth solution of an inhomo-
geneous differential equation; its first-order derivative is ε-uniformly bounded.
The singular component V (x) which is a boundary layer function, is a solu-
tion of a homogeneous equation with a non-homogeneous initial condition; its
derivatives are not ε-uniformly bounded.

The function U(x), x ∈ D, is represented as the following “expansion”:

U(x) = U0(x) + vU0
(x), x ∈ D, (3.4)

where U0(x) and vU0
(x) are main and “remainder” members in the “expansion”

(3.4) with respect to the parameter ε. The function U0(x) is the solution of
the degenerate problem

b(x)U0(x) = f(x), x ∈ D,

the function vU0
(x), x ∈ D, is the solution of the problem with a “small”

right-hand side

LvU0
(x) = −ε a(x)

d

dx
U0(x), x ∈ D, vU0

(x) = 0, x ∈ Γ.

2 Solution decomposition of such a type is known in literature on numerical methods for
singularly perturbed problems for elliptic and parabolic equations as the Shishkin decom-
position or S − decomposition; see, e.g., [8, 11] and the bibliography therein.
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The function V (x) is the solution of the problem

LV (x) = 0, x ∈ D, V (x) = ϕ− U(0), x ∈ Γ.

Taking into account the following estimates of components in the “expan-
sion” (3.4):∣∣∣ dk

dxk
U0(x)

∣∣∣ ≤M,
∣∣∣ dk
dxk

vU0
(x)
∣∣∣ ≤M ε1−k, x ∈ D, k ≤ 2,

we obtain the following estimates for the components in the decomposition
(3.3): ∣∣∣ dk

dxk
U(x)

∣∣∣ ≤M (1 + ε1−k),∣∣∣ dk
dxk

V (x)
∣∣∣ ≤M ε−k exp{−mε−1 x}, x ∈ D, k ≤ 2,

(3.5)

where m ≤ m0, m0 = minx

{
a−1(x) b(x)

}
, x ∈ D.

The following theorem holds

Theorem 2. Let the data of the Cauchy problem (2.2), (2.1) satisfy the con-
dition a, b, f ∈ C2(D). Then for the regular and singular components of the
solution in the decomposition (3.3), the estimates (3.5) are valid.

4 Standard difference scheme for problem (2.2), (2.1)

Consider a standard difference scheme for Cauchy problem (2.2), (2.1) con-
structed on the basis of a monotone grid approximation of a differential equa-
tion (see, e.g., [9] in the case of a regular equation).

4.1 Construction of a standard difference scheme

On the set D we introduce the grid

Dh = Dh ∪ Γh. (4.1)

Here Dh is an arbitrary, in general, non-uniform grid on the interval D. Set
hi = xi − xi−1, xi, xi−1 ∈ Dh, h = maxi h

i, i = 1, 2, . . . , N . Assume that the
condition h ≤ M N−1 holds, where N + 1 is the number of nodes in the grid
Dh.

We approximate problem (2.2), (2.1) by the implicit standard difference
scheme:

Λz(x) = f(x), x ∈ Dh, z(x) = ϕ, x ∈ Γh. (4.2a)

Here Dh = D ∩Dh, Γh = Γ ∩Dh, x = xi, i = 1, 2, . . . , N ,

Λz(x) ≡ ε a(x) δx z(x) + b(x) z(x), δx z(x) =
z(xi)− z(xi−1)

xi − xi−1
, (4.2b)

δx z(x) is the first-order backward difference derivative in x.
Difference scheme (4.2), (4.1) is monotone ε-uniformly (for the definition of

monotonicity to difference schemes, see, e.g., in [9]). For this scheme, the grid
maximum principle is valid.

Math. Model. Anal., 23(4):527–537, 2018.
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Lemma 2. Let for difference scheme (4.2), (4.1), the following condition be
satisfied:

Λz(x) ≥ 0, x ∈ Dh; z(x) ≥ 0, x ∈ Γh.

Then the solution z(x) of this difference scheme satisfies the bound

z(x) ≥ 0, x ∈ Dh.

4.2 On convergence of standard difference schemes on an arbitrary
and uniform grids

In the case of arbitrary grid3 Dh (4.1), using a priori estimate (3.2), we obtain
the estimate

|u(x)− z(x)| ≤M
(
ε+N−1

)−1
N−1, x ∈ Dh (4.1). (4.3)

In the case of the uniform grid

Dh = Du
h, (4.4)

we have the estimate similar to (4.3),

|u(x)− z(x)| ≤M
(
ε+N−1

)−1
N−1, x ∈ Du

h (4.4), (4.5)

where M(4.3), M(4.5) = O(1).
Thus, the standard difference schemes (4.2), (4.1) and (4.2), (4.4) converge

as N →∞ only for fixed values of the parameter ε with first-order accuracy.
The following theorem holds

Theorem 3. Let the data of the Cauchy problem for the equation (2.2), (2.1)
satisfy the condition (2.2b), and let the solution of the problem satisfy the
estimates from Theorem 1 with k ≤ 2. Then for the solutions of the standard
difference schemes (4.2), (4.1) and (4.2), (4.4), the estimates (4.3) and (4.5)
are valid, respectively.

Remark 1. Standard difference schemes (4.2), (4.1) and (4.2), (4.4) converge
under the unimprovable condition N−1 = o(ε). According to estimates (4.3)
and (4.5), for convergence of schemes (4.2), (4.1) and (4.2), (4.4), it is need
to use grids with the number of nodes satisfying the condition N � ε−1,
i.e., increasing unboundedly as ε → 0. Thus, standard difference schemes
(4.2), (4.1) and (4.2), (4.4) on an arbitrary and uniform grids, respectively, do
not converge ε-uniformly with increasing number of grid nodes.

5 Special difference scheme for problem (2.2), (2.1)
convergent ε-uniformly

For Cauchy problem (2.2), (2.1), we consider and study a special difference
scheme on a piecewise-uniform grid of Shishkin’s grid type.

3 The notation D(i.j) (L(i.j), m(i.j), M(i.j), Dh(i.j))) means that these sets (operators,
constants, grids) were introduced in formula (i.j).
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5.1 Construction of a special difference scheme

On the set D we introduce a special grid

Dh = Ds
h, (5.1a)

here Ds
h is a special piecewise-uniform grid condensing in a neighbourhood of

the boundary Γ , i.e., in the boundary layer region.
When constructing the grid Ds

h, we divide the segment [0, d] into two parts
[0, σ] and [σ, d], and, on each of them, we construct uniform meshes with the
same number of intervals equal to 2−1N ; N is assumed to be even. The value
σ (transition point) is defined by the relation

σ = σ(ε,N) = min [m−1 ε lnN, 2−1 d ], m = m(3.5). (5.1b)

Thus, the mesh-sizes in the grid Ds
h are defined as follows:

h1 = 2σN−1 for x ∈ [0, σ]; h2 = 2 (d− σ)N−1 for x ∈ [σ, d]. (5.1c)

For not too small ε, namely, under the condition

ε ≥ 2−1m(5.1) d ln−1 N,

the piecewise-uniform grid Ds
h (5.1) becomes uniform.

We call the standard difference scheme (4.2) on the special piecewise-uni-
form grid (5.1) (the scheme (4.2), (5.1)) a special difference scheme.

5.2 On convergence of the special difference scheme

For the solution of the constructed special difference scheme (4.2), (5.1), taking
into account a priori estimates (3.5), and using the grid maximum principle,
we obtain the estimate

|u(x)− z(x)| ≤M N−1 lnN, x ∈ Dh (5.1). (5.2)

Thus, the special difference scheme (4.2), (5.1), i.e., a standard scheme on
a piecewise-uniform grid of Shishkin’s grid type, converges ε-uniformly in the
maximum norm with first-order accuracy up to a logarithmic factor, and it is
a robust scheme.

The following theorem holds

Theorem 4. Let for the solution of Cauchy problem (2.2), (2.1), the a priori
estimates (3.5) are valid. Then the solution of difference scheme (4.2), (5.1)
converges ε-uniformly in the maximum norm with the estimate (5.2).

6 Numerical study of difference schemes for a model
Cauchy problem

We are interested in the behavior of errors in the grid solutions of the Cauchy
problem (2.2), (2.1) for a linearly singularly perturbed ordinary differential

Math. Model. Anal., 23(4):527–537, 2018.
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equation depending on the number of grid nodes and the parameter ε. For
this, we investigate the solutions of the standard difference scheme (4.2) on the
uniform grid (4.4), and also on the special piecewise-uniform grid (5.1).

The solution of difference scheme (4.2) on arbitrary grid (4.1) is written out
in the recurrent form:{ ε a

hi−1
+ b
}
z(xi) =

ε a

hi−1
z(xi−1) + f(xi), hi−1 = xi − xi−1, 0 < i ≤ N ;

z(xi) = ϕ, i = 0. xi, xi−1 ∈ Dh. (6.1a)

For computations, it is convenient to represent this solution in the form,
resolved with respect to z(xi)

z(xi) =
ε a

ε a+ b hi−1
z(xi−1) + f(xi)

hi−1
ε a+ b hi−1

, 0 < i ≤ N ;

z(xi) = ϕ, i = 0. xi, xi−1 ∈ Dh. (6.1b)

For the Cauchy model problem, we consider the simplest case when for
differential equation (2.2) and the corresponding grid equation (4.2), as well as
the calculated formula (6.1b), the following condition is satisfied:

a = b = 1, f(x) = 1, x ∈ D; ϕ = 0. (6.2)

In this case, the exact solution of the differential problem is written out in the
following explicit form: uε(x) = 1− e− x/ε, x ∈ D.

Numerical experiments are performed using techniques similar to that in
[1, 2]. We investigate the behavior of quantities

E(ε, N) = max
Dh

|uε(x)− zε(x)|, x = xi, xi ∈ Dh,

E(N) = max
ε

E(ε, N)

depending on values of the parameter ε, ε = 20 ÷ 2−14, for N = 22 ÷ 212.
Here zε(x) is the solution of difference scheme (4.2), (6.2) on the arbitrary grid
Dh (4.1) with number of intervals equal to N , and uε(x) is the exact solution
in nodes x of the corresponding grid. The quantity E(ε, N) is the maximum
pointwise error as a function of ε and N . The quantity E(N) is the maximum
value with respect to ε from E(ε, N).

In numerical experiments, we use as an arbitrary grid either the uniform
grid (4.4), or the special piecewise-uniform grid (5.1): the maximum point-wise
errors E(ε, N) and E(N) in the solutions of the standard scheme (4.2) on the
uniform grid (4.4) and on the special piecewise-uniform grid (5.1) are given in
Tables 1 and 2, respectively.

From the Table 1, one can see that the error E(ε,N) in the grid solution
z(x) of the standard scheme on the uniform grid decreases with increasing N
only under the condition N � ε−1, ε ∈ (0, 1], (that is, above the selected in
bold diagonal). Thus, the solution z(x) of the standard difference scheme on
the uniform grid converges to the exact solution u(x) only for fixed values of
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Table 1. Maximum point-wise errors E(ε, N) and E(N) in the solution of the standard
scheme (4.2) on the uniform grid (4.4)

ε \N 4 16 64 256 1024 4096

1 4.172e−2 1.121e−2 2.855e−3 7.173e−4 1.796e−4 4.490e−5
2−2 1.321e−1 4.172e−2 1.121e−2 2.855e−3 7.173e−4 1.796e−4
2−4 1.817e−1 1.321e−1 4.172e−2 1.121e−2 2.855e−3 7.173e−4
2−6 5.882e−2 1.817e−1 1.321e−1 4.172e−2 1.121e−2 2.855e−3
2−8 11.538e−2 5.882e−2 1.817e−1 1.321e−1 4.172e−2 1.121e−2
2−10 3.891e−3 1.538e−2 5.882e−2 1.817e−1 1.321e−1 4.172e−2
2−12 9.756e−4 3.891e−3 1.538e−2 5.882e−2 1.817e−1 1.321e−1
2−14 2.441e−4 9.756e−4 3.891e−3 1.538e−2 5.882e−2 1.817e−1

E(N) 1.817e−1 1.817e−1 1.817e−1 1.817e−1 1.817e−1 1.817e−1

Table 2. Maximum point-wise errors E(ε, N) and E(N) in the solution of the standard
scheme (4.2) on the special piecewise-uniform grid (5.1)

ε \N 4 16 64 256 1024 4096

1 4.172e−2 1.121e−2 2.855e−3 7.173e−4 1.796e−4 4.490e−5
2−2 1.321e−1 4.172e−2 1.121e−2 2.855e−3 7.173e−4 1.796e−4
2−4 1.691e−1 9.883e−2 4.172e−2 1.121e−2 2.855e−3 7.173e−4
2−6 1.691e−1 9.883e−2 4.329e−2 1.539e−2 4.925e−3 1.489e−3
2−8 1.691e−1 9.883e−2 4.329e−2 1.539e−2 4.925e−3 1.489e−3
. . . . . . . . . . . . . . . . . . . . .
2−18 1.691e−1 9.883e−2 4.329e−2 1.539e−2 4.925e−3 1.489e−3

E(N) 1.691e−1 9.883e−2 4.329e−2 1.539e−2 4.925e−3 1.489e−3

the parameter ε and it does not converge ε-uniformly (see E(N) in the last
row).

From the Table 2 it is seen that the error E(ε,N) in the grid solution z(x)
of the special difference scheme decreases with increasing N for each value of
the parameter ε; moreover, the value of this error does not change for ε from
2−6 to 2−18 for each N , that is, the error is independent of the parameter ε
(this error is “set”). Thus, the solution z(x) of the special difference scheme,
that is, the standard scheme on the piecewise-uniform grid, converges to the
exact solution u(x) ε-uniformly (see E(N) in the last row).

Figure 1 shows the exact solution of the differential problem and the nu-
merical solution of the standard difference scheme with “zoom” in the domain
by x from 0.0 to 0.25.

Figure 2 shows the exact solution of the differential problem and the nu-
merical solution of the special difference scheme with “zoom” in the domain by
x from 0.0 to 0.06.

Math. Model. Anal., 23(4):527–537, 2018.
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7 Conclusions

Grid approximation of the Cauchy problem on the interval D = {0 ≤ x ≤ d}
have been considered for a linear singularly perturbed ordinary first-order dif-
ferential equation.

For the Cauchy problem under study, the following results are obtained:

• A priori estimates of the solution and its regular and singular compo-
nents are obtained (see the statement of Theorem 2 in Section 3).

• It is shown that the use of classical difference schemes, i.e., standard
difference schemes on uniform grids leads to the errors of the grid solutions
of order O(1) (see the statement of Theorem 3 in Section 4).

• Taking into account the behaviour of the singular component in the
solution, a special piecewise-uniform grid of Shishkin’s grid type is con-
structed that condenses in a neighbourhood of the boundary layer.

• Using the a priori estimates, it is proved that the special difference
scheme on the piecewise-uniform Shishkin’s grid, converges ε-uniformly
in the maximum norm at the rate O (N−1 lnN) (see the statement of
Theorem 4 in Section 5), i.e., it is a robust grid, while the classical dif-
ference scheme does not converge ε-uniformly and it converges only for
fixed values of the parameter ε.
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• Numerical study of standard difference schemes on uniform and piecewise-
uniform grids is performed for a model Cauchy problem. The results of
numerical experiments are in agreement with the theoretical ones.
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