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Abstract. This study investigates the steady-state Darcy-Brinkman

flow within a thin, saturated porous domain, focusing on the effects

of viscous dissipation and non-homogeneous boundary condition for

the temperature. Employing asymptotic techniques with respect

to the domain’s thickness, we rigorously derive the simplified cou-

pled model describing the fluid flow. The mathematical analysis

is based on deriving the sharp a priori estimates and proving the

compactness results of the rescaled functions. The resulting limit

model incorporates contributions of viscous dissipation and thermal

boundary conditions and thus could prove useful in the engineering

applications involving porous media.
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1 Introduction

The Darcy-Brinkman model [4] serves as a main framework for analyzing fluid
flow through porous media, particularly when accounting for both Darcy re-
sistance and viscous shear effects. This model extends Darcy’s law [7] by in-
corporating a viscous term, thereby enabling the study of flows in media with
moderate to high permeability where shear effects are non-negligible. The us-
age of the Brinkman’s extension of the Darcy law has been justified in numerous
works, see e.g., [2, 15,18,22].
In thin-domain geometries where one dimension is significantly smaller than
the others, the flow behavior exhibits unique characteristics due to the pro-
nounced influence of boundary layers and the confinement of the flow. We
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refer the reader to monograph [19] and the references therein. Such configu-
rations naturally appear in engineering applications like microfluidic devices
and lubrication systems (see e.g. [23,24]). The analysis of non-isothermal flow
in these domains necessitates careful consideration of the interplay between
viscous forces and thermal effects, see e.g. [3, 17,21].

Viscous dissipation, the process by which mechanical energy is converted
into thermal energy due to viscous forces, frequently plays an important role
in the thermal analysis of fluid flows. In porous media, this effect can lead
to significant temperature elevations, especially under conditions of high flow
velocities or low thermal conductivity. Many practical applications exhibit this
phenomenon, starting from geological processes (petroleum reserves, geother-
mal reservoirs) to industrial applications (catalytic reactors, porous journal
bearings). Studies have shown that viscous dissipation can substantially alter
temperature distributions, and we refer to [16] for the overview of the obtained
results.

The aim of the present paper is to analyze the Darcy-Brinkman system
given by {

2µeffdiv(D[u])−
µ

K
u = ∇p− f ,

div(u) = 0,
(1.1)

in a three-dimensional thin domain

Ωε = {x = (x′, x3) ∈ R2 × R : x′ ∈ ω, 0 < x3 < εh
(
x′
)
} , 0 < ε≪ 1.

Here u = (u1, u2, u3) is the filter velocity, p is the pressure, f = (f1, f2, f3) is the
momentum source term, µ is the dynamic viscosity coefficient, µeff denotes the
effective viscosity of the Brinkman term, while K stands for the permeability
of the porous medium.

To obtain the thermodynamic closure of the Darcy-Brinkman model, we
couple (1.1) with the heat equation

−k∆T = Φ(u, µ, µeff ,K) .

Here T is the temperature, k is the thermal conductivity, whereas the viscous
dissipation function Φ is defined by

Φ(u, µ, µeff ,K) =
µ

K
|u|2 + 2µeff |D[u]|2. (1.2)

The formula (1.2), proposed by Al-Hadhrami et al. [1], ensures the correct
asymptotic behavior for a wide range of permeability values K and, thus, has
been widely accepted when the Brinkman second-order term appears in (1.1)1.
The first term in (1.2) results from the internal heating needed to extrude the
fluid through the porous medium (Darcy dissipation), while the second term
comes from the frictional heating due to dissipation.

The analytical investigations of the viscous dissipation effects in porous
media flow are rather sparse throughout the literature. One can mostly find
the analysis for 2D channel flows with only Darcy dissipation appearing in (1.2)
(K → 0), see e.g., [12,13,14]. A rigorous derivation of an asymptotic model for
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a 3D thin domain involving viscous dissipation term (1.2) has been provided
in [20]. The approach is based on the multiscale expansion technique and the
abstract result from [6] derived for the purpose of the thin-film flow through a
domain with no porous structure inside.

In the above mentioned works, a simple zero boundary condition for the
temperature has been imposed on the domain boundary. However, from the
point of view of the applications, it is natural to allow the variations of the
heat flux along the boundary. This leads to the presence of a non-homogeneous
boundary condition for the temperature further complicating the analysis. In
fact, such condition force us to change the modeling technique in order to
capture the resulting thermal gradients and their impact on the overall flow.
Following the approach from [5], the key idea is to the derive the sharp a priori
estimates using the decomposition of the pressure (see Section 3) and prove the
compactness results for the rescaled functions (see Section 4). Consequently,
we are in position to pass to the limit in the non-linear term on the right-hand
side of the temperature equation, previously ensuring the strong convergence of
the velocity. As a main result formulated in Theorem 1, we obtain the homoge-
nized model maintaining at the limit both the effects of viscous dissipation and
thermal boundary condition and that represents our main contribution. By
rigorously deriving a mathematical model that captures these complexities, we
provide insights into the thermal and flow behaviors in such systems, hopefully
contributing to the known engineering practice involving porous media.

2 Preliminaries and setting of the problem

As indicated in the Introduction, we consider a thin domain defined by

Ωε = {x = (x′, x3) ∈ R2 × R : x′ ∈ ω, 0 < x3 < hε(x
′)},

where the bottom of the fluid domain ω ⊂ R2 has a Lipschitz boundary. The
small parameter of the problem is ε and hε(x

′) = εh
(
x′
)
represents the real

gap between the two surfaces. h is a W 1,∞ function such that
0 < hmin ≤ h(x′) < hmax for all (x′, 0) ∈ ω.

The bottom, top and lateral boundaries of Ωε are respectively given by

Γ0 =
{
x ∈ R3 : x′ ∈ ω, x3 = 0

}
, Γ ε

1 =
{
x ∈ R3 : x′ ∈ ω, x3 = hε(x

′)
}
,

Γ ε
ℓ =∂Ωε \ (Γ0 ∪ Γ ε

1 ).

We define the rescaled sets, after a dilatation of the vertical variable, as

Ω ={z ∈ R3 : z′ ∈ ω, 0 < z3 < h(z′)}, Γ1 =
{
z ∈ R3 : z′ ∈ ω, z3 = h(z′)

}
,

Γℓ =∂Ω \ (Γ0 ∪ Γ1).

We denote by C a generic constant which can change from line to line.
In the sequel, we introduce the following notation. Let us consider a vector
function v = (v′, v3) with v′ = (v1, v2) defined in Ωε. We have denoted by
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D : R3 → R3
sym the symmetric part of the velocity gradient, that is

D[v] =


∂x1

v1
1
2 (∂x1

v2 + ∂x2
v1)

1
2 (∂x3

v1 + ∂x1
v3)

1
2 (∂x1

v2 + ∂x2
v1) ∂x2

v2
1
2 (∂x3

v2 + ∂x2
v3)

1
2 (∂x3

v1 + ∂x1
v3)

1
2 (∂x3

v2 + ∂x2
v3) ∂x3

v3

 .

Moreover, for ṽ = (ṽ′, ṽ3) a vector function and φ̃ a scalar function, both
defined in Ω, obtained from v and φ after a dilatation in the vertical variable,
respectively, we will use the following operators

∆εṽ = ∆x′ ṽ + ε−2∂2z3 ṽ, ∆εφ̃ = ∆x′ φ̃+ ε−2∂2z3 φ̃,

(Dεṽ)ij = ∂xj ṽi, i = 1, 2, 3, j = 1, 2, (Dεṽ)i3 = ε−1∂z3 ṽi, i = 1, 2, 3,

∇εφ̃ = (∇x′ φ̃, ε−1∂z3 φ̃)
t, divε(ṽ) = divx′(ṽ′) + ε−1∂z3 ṽ3.

Moreover, we define Dε[ṽ] = Dx′ [ṽ] + ε−1∂z3 [ṽ] as follows

Dε[ṽ] =


∂x1 ṽ1

1
2 (∂x1

ṽ2 + ∂x2
ṽ1)

1
2 (∂x1

ṽ3 + ε−1∂z3 ṽ1)
1
2 (∂x1

ṽ2 + ∂x2
ṽ1) ∂x2

ṽ2
1
2 (∂x2

ṽ3 + ε−1∂z3 ṽ2)
1
2 (∂x1

ṽ3 + ε−1∂z3 ṽ1)
1
2 (∂x2

ṽ3 + ε−1∂z3 ṽ2) ε−1∂z3 ṽ3

,
where Dx′ [ṽ] and ∂z3 [ṽ] are respectively defined by

Dx′ [v] =


∂x1

v1
1
2 (∂x1

v2 + ∂x2
v1)

1
2∂x1

v3
1
2 (∂x1

v2 + ∂x2
v1) ∂x2

v2
1
2∂x2

v3
1
2∂x1

v3
1
2∂x2

v3 0

 ,

∂z3 [v] =

 0 0 1
2∂z3v1

0 0 1
2∂z3v2

1
2∂z3v1

1
2∂z3v2 ∂z3v3

 .

(2.1)

We also define the following operators applied to v′:

Dx′ [v′] =

 ∂x1
v1

1
2 (∂x1

v2 + ∂x2
v1) 0

1
2 (∂x1

v2 + ∂x2
v1) ∂x2

v2 0
0 0 0

 ,

∂z3 [v
′] =

 0 0 1
2∂z3v1

0 0 1
2∂z3v2

1
2∂z3v1

1
2∂z3v2 0

 .

(2.2)

2.1 Setting of the problem

As explained in the Introduction, we assume that the fluid flow is governed
by the Darcy-Brinkman system coupled with the heat equation containing the
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viscous dissipation term, namely:
−2µeff div(D[uε]) +

µ

Kε
uε +∇pε = fε in Ωε,

div(uε) = 0 in Ωε,

−k∆T ε =
µ

Kε
|uε|2 + 2µeff |D[uε]|2 in Ωε.

(2.3)

Here, the superscript ε is added to stress the dependence of the solution on the
small parameter. We impose the standard no-slip boundary condition for the
velocity, and allow the heat flux across the bottom of the fluid domain. In view
of that, the system (2.3) is endowed with the following boundary conditions:

uε =0, T ε = 0 on Γ ε
1 ∪ Γ ε

ℓ , (2.4)

uε =0, k
∂T ε

∂n
= bε on Γ0. (2.5)

In addition, we make the following assumptions on the given data:

– We assume the following scaling of the parameter Kε with respect to the
small parameter ε (see [20]):

Kε = ε2K, with K ∈ R.

– We assume that the external source functions are independent of the
variable x3 and take the following scaling (see [3, 21]):

fε = ε−2(f ′(x′), 0), with f ′ ∈ L2(ω)2.

– We assume the following scaling of the function bε with respect to the
small parameter ε (see [3]):

bε = ε−1b with b = O(1). (2.6)

Remark 1. Imposing non-homogeneous Neumann boundary condition (2.5)2 is
physically relevant as it is directly motivated by the practical applications,
where the heat flux across the boundary naturally appears. Engineering appli-
cations cover a large number of devices such as heat exchangers, chemical re-
actors, particle separators in the mineral processing industry (see e.g., [11]),
etc. Based on the results from [3], one should expect that the magnitude of
the right-hand side function bε plays an important with regards to the effective
behavior of the flow. Choosing the scaling for bε as in (2.6) preserves the effects
of the heat exchange in the limit model, as explained in Section 4 (Remark 3).
Finally, it should be emphasized that the presented framework could be ex-
tended to a setting where the thermal boundary condition (2.5)2 is described
by the Robin boundary condition coming from the Newton cooling law (see
e.g., [17]).
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We consider the following functional framework on Ωε, where 1 < r < +∞
with 1/r + 1/r∗ = 1:

W 1,r
Γ ε
1 ∪Γ ε

ℓ
(Ωε) = {ψ ∈W 1,r(Ωε) : ψ = 0 on Γ ε

1 ∪ Γ ε
ℓ },

Lr
0(Ω

ε) =
{
ψ ∈ Lr′(Ωε) :

∫
Ωε

ψ dx = 0
}
.

The weak formulation associated to (2.3)–(2.5) is obtained by multiplying (2.3)1
by v ∈ H1

0 (Ω
ε)3, (2.3)2 by ψ ∈ H1

0 (Ω
ε) and (2.3)3 by ζ ∈ W 1,q∗

Γ ε
1 ∪Γ ε

ℓ
, q∗ =

q/(q−1) with q ∈ (1, 3/2), respectively, and formally integrating these identities
over Ωε to get the following variational form:
Find uε ∈ H1

0 (Ω
ε)3, pε ∈ L2

0(Ω
ε) and T ε ∈ W 1,q

Γ ε
1 ∪Γ ε

ℓ
(Ωε), with q ∈ (1, 3/2),

such that

2µeff

∫
Ωε

D[uε] : D[v] dx+
µ

K
ε−2

∫
Ωε

uε · v dx−
∫
Ωε

pε div(v) dx

= ε−2

∫
Ωε

f ′ · v′ dx,∫
Ωε

uε · ∇ψ dx = 0,

k

∫
Ωε

∇T ε · ∇ζ dx =
µ

K
ε−2

∫
Ωε

|uε|2ζ dx+ 2µeff

∫
Ωε

|D[uε]|2ζ dx

+

∫
Γ0

ε−1b ζ dσ,

(2.7)

for every v ∈ H1
0 (Ω

ε)3, ψ ∈ H1
0 (Ω

ε) and ζ ∈W 1,q∗

Γ ε
1 ∪Γ ε

ℓ
(Ωε).

We observe that q∗ = 1/(q− 1) > 3, following [10], by Sobolev inequalities,
ζ ∈ L∞(Ωε) and the right-hand side of (2.7)3 make sense.

The well-posedness of the described problem (2.3)–(2.5) can be established
by adapting the proof from [3, Theorem 1] and [8, Chapitre 2, Théorème 2.2]
(see also [6, Theorem 2.4] ). Thus, based on these references, the system
(2.3)–(2.5) admits at least one solution (uε, pε, T ε) ∈ H1

0 (Ω
ε)3 × L2

0(Ω
ε) ×

W 1,q
Γ ε
1 ∪Γ ε

ℓ
(Ωε) with q ∈ (1, 3/2). We remark that the proof of well-posedness of

(2.3)–(2.5) follows from [3, Theorem 1] (and also in [8, Chapitre 2, Théorème
2.2]) by changing the Tresca boundary condition on ω for no-slip condition,
which is now simpler. Concerning [6, Theorem 2.4], the adaptation is to change
the non-homogeneous Dirichlet boundary condition on the bottom for the no-
slip condition.

In view of that, our goal in the present paper is to rigorously derive the
effective model describing the asymptotic behavior of the process governed by
(2.3)–(2.6). To accomplish that, we use the dilatation in the variable x3 given
by

z3 = x3/ε , (2.8)

in order to have the functions defined in the open set independent of ε, denoted
by Ω, and on the rescaled boundaries Γ1 and Γℓ. Consequently, the system (2.3)
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becomes: 
−2µeffdivε(Dε[ũ

ε]) +
µ

K
ε−2ũε +∇εp̃

ε = fε in Ω,

divε(ũ
ε) = 0 in Ω,

−k∆εT̃
ε =

µ

K
ε−2|ũε|2 + 2µeff |Dε[ũ

ε]|2 in Ω,

(2.9)

and the following boundary conditions:

ũε =0, T̃ ε = 0 on Γ1 ∪ Γℓ,

ũε =0, k∇εT̃
ε · n = ε−1b on Γ0. (2.10)

The unknown functions in the above system are given by ũε(x′, z3) = uε(x′, εz3),

p̃ε(x′, z3) = pε(x′, εz3) and T̃ ε(x′, z3) = T ε(x′, εz3) for a.e. (x′, z3) ∈ Ω. The
weak variational formulation of (2.9)–(2.10) now reads:

Find ũε ∈ H1
0 (Ω)3, p̃ε ∈ L2

0(Ω) and T̃ ε ∈W 1,q
Γ1

(Ω) with q ∈ (1, 3/2), such that

2µeff

∫
Ω

Dε[ũ
ε] : Dε[ṽ] dx

′dz3 +
µ

K
ε−2

∫
Ω

ũε · ṽ dx′z3

−
∫
Ω
p̃ε divε(ṽ) dx

′dz3 =

∫
Ω

ε−2f ′ · ṽ′ dx′dz3,∫
Ω

ũε · ∇εψ̃ dx
′dz3 = 0,

ε2
∫
Ω

k∇εT̃
ε · ∇εζ̃ dx

′dz3 =
µ

K

∫
Ω

|ũε|2ζ̃ dx′dz3

+2µeffε
2
∫
Ω
|Dε[ũ

ε]|2ζ̃ dx′dz3 +
∫
ω
b ζ̃ dx′,

(2.11)

where ṽ, ψ̃ and ζ̃ are obtained respectively from v, ψ and ζ given in (2.7) by
using the change of variable (2.8). Here, the spaces are the following

W 1,r
Γ1∪Γℓ

(Ω) ={ψ̃ ∈W 1,r(Ω) : ψ = 0 on Γ1 ∪ Γℓ},

Lr
0(Ω) =

{
ψ ∈ Lr′(Ω) :

∫
Ω

ψ̃ dx′dz3 = 0
}
.

Now, we aim to describe the asymptotic behavior of this new sequences ũε, p̃ε

and T̃ ε, as ε tends to zero.

3 A priori estimates

3.1 Estimates for velocity and temperature

To derive the desired estimates, let us recall a well-known technical result (see,
e.g., [3]).

Lemma 1 [Poincaré’s and Korn’s inequalities]. For all v∈W 1,r
0 (Ωε)3 and

ψ ∈W 1,r
Γ ε
1 ∪Γ ε

ℓ
(Ωε), 1 < r < +∞, there hold the following inequalities

∥v∥Lr(Ωε)3 ≤C1ε ∥Dv∥Lr(Ωε)3×3 , ∥Dv∥Lr(Ωε)3×3 ≤ C2

∥∥D[v]∥∥
Lr(Ωε)3×3 ,

∥ψ∥Lr(Ωε) ≤C1ε ∥∇ψ∥Lr(Ωε)3 ,
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where C1 and C2 do not depend on ε. Moreover, for all ṽ ∈ W 1,r
0 (Ω)3 and

ψ̃ ∈ W 1,r
Γ1∪Γℓ

(Ω), 1 < r < +∞, obtained from v and ψ from the change of
variable (2.8), there hold the following inequalities

∥ṽ∥Lr(Ω)3 ≤C1ε ∥Dεṽ∥Lr(Ω)3×3 , ∥Dεṽ∥Lr(Ω)3×3 ≤ C2

∥∥Dε[ṽ]
∥∥
Lr(Ω)3×3 , (3.1)∥∥∥ψ̃∥∥∥

Lr(Ω)
≤C1ε

∥∥∥∇εψ̃
∥∥∥
Lr(Ω)3

. (3.2)

Next, we give the a priori estimates for velocity and temperature.

Proposition 1 [Estimates for velocity and temperature]. Assume q ∈
(1, 3/2) and let (ũε, T̃ ε) be a solution of the dilated problem (2.9)–(2.10). Then,
there hold the following estimates

∥ũε∥L2(Ω)3 ≤ C, ∥Dεũ
ε∥L2(Ω)3×3 ≤ Cε−1,

∥∥Dε[ũε]
∥∥
L2(Ω)3×3 ≤ Cε−1,(3.3)∥∥∥T̃ ε

∥∥∥
Lq(Ω)

≤ C,
∥∥∥∇εT̃

ε
∥∥∥
Lq(Ω)3

≤ Cε−1. (3.4)

Remark 2. From the estimates given in Proposition 1, we also have the following
estimates for uε

∥uε∥L2(Ωε)3 ≤ Cε
1
2 , ∥Duε∥L2(Ωε)3×3 ≤ Cε−

1
2 ,
∥∥D[uε]

∥∥
L2(Ωε)3×3 ≤ Cε−

1
2 ,

which will be useful to derive estimates for pressure.

Proof. [Proof of Proposition 1] We divide the proof in two steps. In the first
step we deduce estimates for velocity (3.3) and in the second step we derive
estimates for temperature (3.4).

Step 1. Velocity estimates. Taking ṽ = ũε as test function in (2.11)1, we
obtain

2µeff

∫
Ω

|Dε[ũε]|2dx′dz3 +
µ

K
ε−2

∫
Ω

|ũε|2dx′dz3 =

∫
Ω

ε−2f ′ · ũ′
ε dx

′dz3,

where we have used that
∫
Ω
p̃ε divε(ũε) = 0, because divε(ũε) = 0 in Ω̃ε.

Using the Cauchy-Schwarz inequality, f ′ ∈ L2(ω)2 and the Poincaré and Korn
inequalities (3.1), we get∣∣∣∣∫

Ω

ε−2f ′ · ũε dx

∣∣∣∣ ≤ h
1
2
maxε

−2
∥∥f ′∥∥

L2(ω)2
∥ũε∥L2(Ω)3

≤h
1
2
maxC1ε

−1 ∥Dεũε∥L2(Ω)3×3 ≤ h
1
2
maxC1C2ε

−1
∥∥Dε[ũε]

∥∥
L2(Ω)3×3 ,

which leads to

µeff

∥∥Dε[ũε]
∥∥2
L2(Ω)3×3 +

µ

K
ε−2 ∥ũε∥2L2(Ω)3 ≤ h

1
2
maxC1C2ε

−1
∥∥Dε[ũε]

∥∥
L2(Ω)3×3 .

(3.5)
On the one hand, this implies that∥∥Dε[ũε]

∥∥
L2(Ω)3×3 ≤ Cε−1, (3.6)
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and so, again from the Poincaré and Korn inequalities (3.1), we deduce

∥Dεũε∥L2(Ω)3×3 ≤ Cε−1, ∥ũε∥L2(Ω)3 ≤ C.

On the other hand, using (3.6) into (3.5), we also obtain

µ

K
ε−2 ∥ũε∥2L2(Ω)3 ≤ h

1
2
maxC1C2ε

−2,

which also gives ∥ũε∥L2(Ω)3 ≤ C. This completes the velocity estimates.

Step 2. Temperature estimates. We follow [8, Lemme 2.4.2] in the case r = 2

and [3, Theorem 2] in the case r = 2 and b̂ ≡ 0, with some modifications. We
define φ : R → R by

φ(t) = ξ sign(t)

∫ |t|

0

dτ

(1 + τ)ξ+1
dτ = sign(t)

[
1− 1

(1 + |t|)ξ

]
,

with ξ > 0. Then, it holds that φ′(t) = ξ
(1+|t|)ξ+1 .

We take ζ̃ = φ(εT̃ ε) as test function in (2.11)3. Then, taking into account that∫
Ω

k∇ε(ε
2T̃ ε) · ∇εζ̃ dx

′dz3 =

∫
Ω

ξk
|∇ε(εT̃

ε)|2

(1 + |εT̃ ε|)ξ+1
dx′dz3,

we get that (2.11)3 is rewritten as follows∫
Ω

|∇ε(εT̃
ε)|2

(1 + |εT̃ ε|)ξ+1
dx′dz3 ≤ µ

Kkξ

∫
Ω

|ũε|2 dx′dz3 +
2µeff

kξ
ε2
∫
Ω

|Dε[ũ
ε]|2 dx′dz3

+
1

kξ

∫
ω

|b| dx′.

By using estimates (3.3), we get∣∣∣∣ µ

Kkξ

∫
Ω

|ũε|2 dx′dz3
∣∣∣∣ ≤ C ∥ũε∥2L2(Ω)3 ≤ C,∣∣∣∣2µeff

kξ
ε2
∫
Ω

|Dε[ũ
ε]|2 dx′dz3

∣∣∣∣ ≤ Cε2
∥∥Dε[ũ

ε]
∥∥2
L2(Ω)3

≤ C,

∣∣∣∣ 1kξ
∫
ω

b dx′
∣∣∣∣≤C,

and then, we deduce ∫
Ω

|∇ε(εT̃
ε)|2

(1 + |εT̃ ε|)ξ+1
dx′dz3 ≤ C. (3.7)

Using Hölder’s inequality with the exponents 2/q and 2/(2−q), for q ∈ (1, 3/2),
we obtain∫

Ω

|∇ε(εT̃
ε)|qdx′dz3 =

∫
Ω

|∇ε(εT̃
ε)|q (1 + |εT̃ ε|)(ξ+1) q

2

(1 + |εT̃ ε|)(ξ+1) q
2

dx′dz3

≤

(∫
Ω

|∇ε(εT̃
ε)|2

(1 + |εT̃ ε|)ξ+1
dx′dz3

) q
2 (∫

Ω

(1 + |εT̃ ε|)(ξ+1) q
2−q dx′dz3

) 2−q
2

.
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Now, we choose ξ such that (ξ + 1)q/(2 − q) ≤ q⋆ = 3q/(3 − q), that is ξ ≤
(3− 2q)/(3− q). Using (3.7), we get

∫
Ω
|∇ε(εT̃

ε)|qdx′dz ≤ C
(∫

Ω
(1 + |εT̃ ε|)q⋆dx′dz3

) 2−q
2

≤ C2
(q⋆−1)(2−q)

2

(
|Ω|

2−q
2 +

(∫
Ω
|εT̃ ε|q⋆dx′dz3

) 2−q
2

)
.

(3.8)

To obtain the estimate for ∇ε(εT̃
ε) in Lq(Ω)3, it remains to estimate εT̃ ε in

Lq⋆(Ω). Thus, using the Poincaré-Sobolev inequality and (3.8), there exists a
constant C⋆ > 0 independent of ε such that(∫

Ω
|εT̃ ε|q⋆dx′dz3

)1/q⋆
≤ C⋆

∥∥∥∇x′,z3(εT̃
ε)
∥∥∥
Lq(Ω)3

≤ C⋆

∥∥∥∇ε(εT̃
ε)
∥∥∥
Lq(Ω)3

≤ C⋆2
(q⋆−1)(2−q)

2q

(
|Ω|

2−q
2q +

(∫
Ω
|εT̃ ε|q⋆dx′dz3

) 2−q
2q

)
.

(3.9)
On the other hand, for all a > 0, c1 > 0, c2 > 0 and 0 < s < t, the following
implication holds

If at ≤ c1 + c2a
s then a ≤ max{1, (c1 + c2)

1/(t−s)}.

Hence, taking in (3.9) the following choices for a, c1, c2, s, t:

a =

∫
Ω̃ε

|εT̃ ε|q
⋆

dx′dz3, c1 = C⋆2
(q⋆−1)(2−q)

2q |Ω|
2−q
2q , c2 = C⋆2

(q⋆−1)(2−q)
2q ,

t =
1

q⋆
, s =

2− q

2q
,

1

t− s
= 6,

we deduce that the integral term on the right-hand side of (3.9) satisfies∫
Ω

|εT̃ ε|q
⋆

dx′dz3 ≤ Aε = max {1, β} , β =
(
C⋆2

(q⋆−1)(2−q)
2q

(
|Ω|

2−q
2q + 1

))6
.

Then, it holds
(∫

Ω
|εT̃ ε|q⋆dx′dz3

) 2−q
2 ≤ max{1, β

2−q
2 }, so, from (3.8), we have∫

Ω

|∇ε(εT̃
ε)|q dx′dz3 ≤ C,

which gives (3.4)2. By the Poincaré inequality (3.2), we deduce (3.4)1 and so,
the proof is finished. ⊓⊔

3.2 Estimates for pressure

Let us first give a more accurate estimate for pressure pε. For this, we need
to recall a version of the decomposition result for pε whose proof can be found
in [5].
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Proposition 2. The following decomposition for pε ∈ L2
0(Ω

ε) holds

pε = pε0 + pε1, (3.10)

where pε0 ∈ H1(T 2), which is independent of x3, and p
ε
1 ∈ L2(Ωε). Moreover,

the following estimates hold

ε
3
2 ∥pε0∥H1(ω) + ∥pε1∥L2(Ωε) ≤ C ∥∇pε∥H−1(Ωε)3 ,

that is

∥pε0∥H1(ω) ≤ Cε−
3
2 ∥∇pε∥H−1(Ωε)3 , ∥pε1∥L2(Ωε) ≤ C ∥∇pε∥H−1(Ωε)3 . (3.11)

Proof. This result follows from [5, Corollary 3.4] by assuming

Ωε = ω × (εϑ), ∀ε > 0,

with ω ⊂ R2, ϑ ⊂ R connected Lipschitz open sets and exponent q = 2, see [5,
Remark 3.1]. In the present case, ϑ = (0, h(x′)) with h ∈ W 1,∞ as we set in
Section 2. Thus, Ωε satisfies the abstract conditions (3.3)–(3.5) given in [5],
and so, [5, Corollary 3.4] can be applied. ⊓⊔

We denote by p̃ε1 the rescaled function associated with p1ε defined by p̃ε1(x
′, z3)

= pε1(x
′, εz3) for a.e. (x′, z3) ∈ Ω. As a consequence, we have the following

result:

Corollary 1. The pressures pε0, p
ε
1 and p̃ε1 satisfy the following estimates

∥pε0∥H1(ω) ≤ Cε−2, ∥pε1∥L2(Ωε) ≤ Cε−
1
2 , ∥p̃ε1∥L2(Ω) ≤ Cε−1. (3.12)

Proof. In view of (3.11), to derive (3.12) we just need to obtain the estimate
for ∇pε given by

∥∇pε∥H−1(Ωε)3 ≤ Cε−
1
2 . (3.13)

To do this, we consider v ∈ H1
0 (Ω

ε)3, and taking into account the variational
formulation (2.7)1, we get

⟨∇pε,v⟩=−2µeff

∫
Ωε

D[uε] : D[v] dx−
µ

K
ε−2

∫
Ωε

uε ·v dx+
∫
Ωε

ε−2f ′ ·v′ dx. (3.14)

where ⟨·, ·⟩ denotes the duality product between H−1(Ωε)3 and H1
0 (Ω

ε)3. Esti-
mating the terms on the right-hand side of (3.14) using Lemma 1 and Remark 2,
we get∣∣∣2µeff

∫
Ωε D[uε] : D[v] dx

∣∣∣ ≤ C
∥∥D[uε]

∥∥
L2(Ωε)3×3 ∥Dv∥L2(Ωε)3×3

≤ Cε−
1
2 ∥v∥H1

0 (Ω
ε)3 ,∣∣∣ µK ε−2

∫
Ωε u

ε · v dx
∣∣∣ ≤ Cε−2 ∥uε∥L2(Ωε)3

∥v∥L2(Ωε)3

≤ C ∥Duε∥L2(Ωε)3×3 ∥Dv∥L2(Ωε)3×3

≤ Cε−
1
2 ∥v∥H1

0 (Ω
ε)3 ,∣∣∣∫Ωε ε

−2f ′ · v′ dx
∣∣∣ ≤ Cε−

1
2 ∥Dv∥L2(Ωε)3×3 ≤ Cε−

1
2 ∥v∥H1

0 (Ω
ε)3 ,
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which together with (3.14) gives∣∣⟨∇pε,v⟩∣∣ ≤ Cε−
1
2 ∥v∥H1

0 (Ω
ε)3 , ∀v ∈ H1

0 (Ω
ε)3.

This gives the desired estimate (3.13), completing the proof. ⊓⊔

4 Convergence results and limit problem

For 1 < r < +∞, let us introduce the following sets:

V r
z3 =

{
v ∈ Lr(Ω) : ∂z3vi ∈ Lr(Ω)

}
, V r

z3,Θ =
{
v ∈ V r

z3(Ω) : v = 0 on Θ
}
.

Proposition 3 [Compactness results for rescaled functions]. For a sub-
sequence of ε still denoted by ε, we have the following convergence results:

� There exists ũ⋆ = (ũ⋆1, ũ
⋆
2) ∈ (V 2

z3,Γ0∪Γ1
)2, such that

ũεi ⇀ ũ⋆i in V 2
z3,Γ0∪Γ1

, i = 1, 2, (4.1)

ũε3 ⇀ 0 in L2(Ω), (4.2)

ε∂xj
ũεi ⇀ 0 in L2(Ω), i, j = 1, 2, (4.3)

divx′

(∫ h(x′)

0
ũ⋆(z) dz3

)
= 0 in ω, (4.4)(∫ h(x′)

0
ũ⋆(z) dz3

)
· n = 0 on ∂ω. (4.5)

� There exists a function p̃ ∈ L2
0(ω) ∩H1(ω), independent of z3, such that

ε2pε0 ⇀ p̃⋆ in H1(ω). (4.6)

� There exists T̃ ⋆ ∈ V q
z3,Γ1

such that

T̃ ε ⇀ T̃ ⋆ in V q
z3,Γ1

. (4.7)

ε∂xi
T̃ ε ⇀ 0 in Lq(Ω), i = 1, 2. (4.8)

Proof. We start by proving the convergence for the velocity ũε, which is
classical. From estimates (3.3), we deduce that there exists ũ = (ũ∗, ũ⋆3) ∈
(V 2

z3,Γ0∪Γ1
)3, with ũ = 0 on Γ0 ∪ Γ1, such that

ũε ⇀ ũ in (V 2
z3,Γ0∪Γ1

)3. (4.9)

From (4.9), we also have that

divx′(ũε)′ ⇀ divx′(ũ⋆) in H1(0, 1;H−1(ω)),

which implies (4.3). Then, by using divε(ũ
ε) = 0 in Ω, we deduce that ε−1∂z3 ũ

ε
3

is bounded in L2(0, T ;H−1(ω)). Using then that ũε3 = 0 on Γ1, we deduce that
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ε−1ũε3 is bounded in H1(0, 1;H−1(ω)), and therefore, together with (4.9), we
deduce that ũε3 tends to ũ⋆3 ≡ 0. This completes the proof of (4.1) and (4.2).

Next, by taking ψ̃ ∈ D(ω) in (2.11)2, we deduce∫
Ω

(ũε)′∇x′ ψ̃(x′) dx′dz3 = 0,

and passing to the limit by using (4.1), we deduce (4.4)–(4.5).
Convergences and free-divergence condition given in this proposition are

obtained directly from the estimates given in Proposition 1 for velocity and
temperature, see for instance [3, Theorem 3].

Concerning the pressure, from estimates of pε0 given in (3.12)1, we get the
convergence (4.6). Since p̃ε has mean value zero, from the decomposition of
the pressure, we have

0 =

∫
Ω

p̃ε dx′dz3 = h(x′)

∫
ω

pε0(x
′) dx′ +

∫
Ω

p̃ε1 dx
′dz3.

Taking into account the convergence of ε2pε0 to p̃⋆ given in (4.6) and that∣∣∣∣∫
Ω

ε2p̃ε1 dx
′dz3

∣∣∣∣ ≤ Cε→ 0, (4.10)

we get h(x′)
∫
ω
p̃⋆ dx′ = 0, and so, by the assumptions of h(x′), p̃ has null mean

value in ω.
Finally, convergences (4.7)–(4.8) are obtained from estimates (3.4) with si-

milar arguments of the proof as for the velocity convergences given above. ⊓⊔

Next, by using previous convergences, we derive the limit coupled model.

Theorem 1 [Limit model]. The limit functions ũ⋆, p̃⋆, T̃ ⋆ given in Proposi-
tion 3 satisfy

−µeff∂
2
z3 ũ

⋆ + µ
K û⋆ = f ′(x′)−∇x′ p̃⋆(x′) in Ω,

divx′

(∫ h(x′)

0
û⋆ dz3

)
= 0 in Ω,

−k∂2z3 T̂
⋆ = µ

K |ũ⋆|2 + µeff |∂z3 ũ⋆|2 in Ω,
ũ⋆ = 0 on Γ0 ∪ Γ1,

T̃ ⋆ = 0 on Γ1,

−k∂z3 T̃ ⋆ = b on Γ0.

(4.11)

Proof. We divide the proof in four steps. In the first step, we pass to the limit
in the equation of velocity and, in the second and third ones, we obtain strong
convergence of velocity. Finally, in the fourth step, we pass to the limit in the
equation of temperature.

Step 1. To prove (4.11)1, according to Proposition 3, we consider (2.11)1
with ṽ replaced by ṽε = (ε2ṽ′, 0) ∈ D(Ω)3. This gives the following variational
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formulation:

2µeff

∫
Ω

ε2Dε[ũ
ε] : Dε[ṽ

′] dx′dz3+
µ

K

∫
Ω

ũε · ṽ′ dx′z3

−
∫
Ω

ε2p̃ε divx′(ṽ′) dx′dz3 =

∫
Ω

f ′ · ṽ′ dx′dz3. (4.12)

Below, let us pass to the limit when ε tends to zero in each term of (4.12):

� First term on the left-hand side of (4.12). From the convergence (4.3),
taking into account definitions (2.1)–(2.2), and since Dε[ũ

ε] : Dε[ṽ
′] =

Dε[(ũ
ε)′] : Dε[ṽ

′], we get

2µeff

∫
Ω

ε2Dε[ũ
ε] : Dε[ṽ

′] dx′dz3

= 2µeff

∫
Ω

ε2Dx′ [(ũε)′] : Dx′ [ṽ′] dx′dz3+2µeff

∫
Ω

∂z3 [(ũ
ε)′] : ∂z3 [ṽ

′] dx′dz3

= 2µeff

∫
Ω

∂z3 [ũ
⋆] : ∂z3 [ṽ

′] dx′dz3 +Oε.

� Second term on the left-hand side of (4.12). From the convergence (4.1),
we get

µ

K

∫
Ω

ũε · ṽ′ dx′z3 =
µ

K

∫
Ω

ũ⋆ · ṽ′ dx′z3 +Oε.

� Third term on the left-hand side of (4.12). From the decomposition of
the pressure (3.10), convergence (4.6) and (4.10), we have∫

Ω

ε2p̃ε divx′(ṽ′) dx′dz3

=

∫
Ω

ε2pε0(x
′) divx′(ṽ′) dx′dz3 +

∫
Ω

ε2p̃ε1 divx′(ṽ′) dx′dz3

=

∫
Ω

p̃⋆(x′) divx′(ṽ′) dx′dz3 +Oε.

Therefore, passing to the limit in (4.12) as ε → 0, by previous convergences,
we deduce the following limit variational formulation

2µeff

∫
Ω

∂z3 [ũ
⋆] : ∂z3 [ṽ

′] dx′dz3 +
µ

K

∫
Ω

ũ⋆ · ṽ′ dx′z3

−
∫
Ω

p̃⋆(x′) divx′(ṽ′) dx′dz3 =

∫
Ω

f ′ · ṽ′ dx′dz3,
(4.13)

which, by density, holds for every ṽ′ ∈ H1
Γ0∪Γ1

. Taking into account that

∂z3 [ũ
⋆] : ∂z3 [v

′] =
1

2
∂z3 ũ

⋆ · ∂z3 v̂′, (4.14)

then (4.13) is equivalent to (4.11)1,4.
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186 I. Pažanin and F.J. Suárez-Grau

Step 2. We prove the following property

lim
ε→0

(
µ

K

∫
Ω

|ũε|2 dx′dz3 + 2µeffε
2

∫
Ω

|Dε[ũ
ε]|2dx′dz3

)
=

µ

K

∫
Ω

|ũ⋆|2 dx′dz3 + 2µeff

∫
Ω

|∂z3 [ũ⋆]|2dx′dz3.
(4.15)

To prove this, we take ũε as test function in (2.11)1. Taking into account that
the pressure term vanish because divε(ũ

ε) = 0 in Ω, passing to the limit in the
right-hand side of (2.11)1, we deduce

lim
ε→0

(
µ

K

∫
Ω

|ũε|2 dx′dz3 + 2µeffε
2

∫
Ω

|Dε[ũ
ε]|2dx′dz3

)
=

∫
Ω

f ′·ũ⋆ dx′dz3. (4.16)

Now, we take ũ⋆ as test function in (4.13). Taking into account that p̃⋆ does

not depend on z3 and the divergence condition divx′(
∫ h(x′)

0
ũ⋆dz3) = 0 in ω,

we have

2µeff

∫
Ω

|∂z3 [ũ⋆]|2 dx′dz3 +
µ

K

∫
Ω

|ũ⋆|2 dx′z3 =

∫
Ω

f ′ · ũ⋆ dx′dz3.

This together with (4.16), implies (4.15).

Step 3. We prove strong convergences

ũε → (ũ⋆, 0) in L2(Ω)3, εDε[ũ
ε] → ∂z3 [ũ

⋆] in L2(Ω)3×3. (4.17)

To prove (4.17), it is enough to prove

Eε := 2µeff

∫
Ω

|εDε[ũ
ε]− ∂z3 [ũ

⋆]|2dx′dz3 +
µ

k

∫
Ω

|ũε − (ũ⋆, 0)|2 dx′dz3

tends to zero. Developing the expression of Eε, we have

Eε =2µeff

∫
Ω

|εDε[ũ
ε]|2dx′dz3 + 2µeff

∫
Ω

|∂z3 [ũ⋆]|2dx′dz3

− 4µeff

∫
Ω

εDε[ũ
ε] : ∂z3 [ũ

⋆]dx′dz3

+
µ

k

∫
Ω

|ũε|2dx′dz3 +
µ

k

∫
Ω

|ũ⋆|2 dx′dz3 − 2
µ

k

∫
Ω

(ũε)′ · ũ⋆ dx′dz3.

By using property (4.15) and convergences (4.1)–(4.3), we easily deduce Eε→0.

Step 4. To prove (4.11)3, we consider (2.11)3 with ζ̃ = ψ̃(x′)ϕ̃(z3) with

ψ̃ ∈ D(ω) and ϕ̃ ∈ C∞([0, 1]) with ϕ̃ = 0 on Γ1. We pass to the limit in every
term:

ε2
∫
Ω

k∇εT̃
ε · ∇εζ̃ dx

′dz3 =
µ

K

∫
Ω

|ũε|2ζ̃ dx′dz3 + 2µeffε
2

∫
Ω

|Dε[ũ
ε]|2ζ̃ dx′dz3

+

∫
ω

b ζ̃ dx′. (4.18)
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� First and second terms in the left-hand side of (4.18). By using conver-
gences (4.7) and (4.8), we get

ε2
∫
Ω

k∇εT̃
ε · ∇εζ̃ dx

′dz3

= ε2
∫
Ω

k∇x′ T̃ ε · ∇x′ ψ̃(x′) ϕ̃(z3) dx
′dz3+

∫
Ω

k∂z3 T̃
ε ∂z3 ϕ̃(z3) ψ̃(x

′) dx′dz3

=

∫
Ω

k∂z3 T̃
⋆ ∂z3 ζ̃ dx

′dz3 +Oε.

� First term in the right-hand side of (4.18). From the strong convergence
(4.17), we deduce

µ

K

∫
Ω

|ũε|2ζ̃ dx′dz3 =
µ

K

∫
Ω

|ũ⋆|2ζ̃ dx′dz3 +Oε.

� Second term in the right-hand side of (4.18). From the strong convergence
(4.17), we deduce

2µeffε
2

∫
Ω

|Dε[ũ
ε]|2ζ̃ dx′dz3 = 2µeff

∫
Ω

|εDε[ũ
ε]|2ζ̃ dx′dz3

= 2µeff

∫
Ω

|∂z3 [ũ⋆]|2ζ̃ dx′dz3 +Oε.

Therefore, passing to the limit in (4.18) as ε → 0, by previous convergences,
we deduce the following limit variational formulation∫

Ω

k∂z3 T̃
⋆ ∂z3 ζ̃ dx

′dz3

=
µ

K

∫
Ω

|ũ⋆|2ζ̃ dx′dz3 + 2µeff

∫
Ω

|∂z3 [ũ⋆]|2ζ̃ dx′dz3 +
∫
ω

b ζ̃ dx′,

which by density holds for ever ζ̃ ∈ V q
z3,Γ1

, and so, by taking into account
(4.14), it is equivalent to (4.11)3,5,6. ⊓⊔

Remark 3. We observe that if we consider the scaling for bε of order smaller
than O(ε−1) in (2.6), then, we derive thermal homogeneous boundary condition

∂z3 T̃
∗ = 0 on Γ0 in (4.11).

Finally, by solving the limit model obtained in Theorem 1, we derive the ex-
pressions for ũ⋆, p̃⋆ and T̃ ⋆.

Corollary 2. We have the following expressions for ũ⋆, p̃⋆ and T̃ ⋆:

� Velocity ũ⋆ ∈ V 2
z3,Γ0∪Γ1

is given by

ũ⋆(x′, z3) =
K

µ

(
A⋆

1(x
′)eMz3 +A⋆

2(x
′)e−Mz3 + 1

)
(f ′(x′)−∇x′ p̃⋆(x′)),

(4.19)

where M =
√

µ
Kµeff

and

A∗
1(x

′) = − 1− e−Mh(x′)

eMh(x′) − e−Mh(x′)
, A∗

2(x
′) =

1− eMh(x′)

eMh(x′) − e−Mh(x′)
. (4.20)
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� Pressure p⋆ ∈ L2
0(ω) ∩ H1(ω) is the unique solution of the Reynolds

equation:

divx′

(
K

µ

(
2

M

eMh(x′)−e−Mh(x′)−2

eMh(x′)−e−Mh(x′)
−h(x′)

)
(∇x′ p̃⋆ − f ′)

)
=0 (4.21)

in ω, with the following boundary condition on ∂ω(
K

µ

(
2

M

eMh(x′) − e−Mh(x′) − 2

eMh(x′) − e−Mh(x′)
− h(x′)

)
(∇x′ p̃⋆ − f ′)

)
· n = 0.

� The temperature T̃ ⋆ ∈ V q
z3,Γ1

is given by

T̃ ⋆(x′, z3) = −K

kµ

(
V ⋆
1 (x

′, z3)− V ⋆
1 (x

′, h(x′))
)
|f ′(x′)−∇x′ p̃⋆(x′)|2

−µeffK
2M2

kµ2

(
V ⋆
2 (x

′, z3)− V ⋆
2 (x

′, h(x′))
)
|f ′(x′)−∇x′ p̃⋆(x′)|2

− b

k
(z3 − h(x′))|f ′(x′)−∇x′ p̃⋆(x′)|2,

(4.22)
with

V ⋆
1 (x

′, z3) =
1

4M2

(
A⋆

1(x
′)2
(
e2Mz3 − 1

)
+A⋆

2(x
′)2
(
e−2Mz3 − 1

))
+

2

M2

(
A⋆

1(x
′)(eMz3 − 1) +A⋆

2(x
′)(eMz3 − 1)

)
+

(
1

2
+A⋆

1(x
′)A⋆

2(x
′)

)
z23 − 1

2M

(
A⋆

1(x
′)2 −A⋆

2(x
′)2
)
z3

− 2

M
(A⋆

1(x
′)−A⋆

2(x
′))z3, (4.23)

V ⋆
2 (x

′, z3) =
1

2

(
(A⋆

1)
2
(
e2Mh(x′) − e2Mz3

)
− (A⋆

2)
2
(
e−2Mh(x′) − e−2Mz3

))
+A⋆

1A
⋆
2(h(x

′)− z3)
2. (4.24)

Proof. Expression for ũ⋆ is the solution of{
−µeff∂

2
z3 ũ

⋆ +
µ

K
û⋆ = f ′(x′)−∇x′ p̃⋆(x′) in Ω,

ũ⋆ = 0 on Γ0 ∪ Γ1,

which is a second-order linear differential equation with respect to the variable
z3 with homogeneous boundary conditions. The computations to derive (4.19)–
(4.20) can be found in [20, Equations (3.3)–(3.6)], so we omit it.

According to the expression of ũ⋆ and divergence condition (4.11)2, after

computing
∫ h(x′)

0
ũ⋆ dz3 and according to the expressions of A⋆

1(x
′) and A⋆

2(x
′),

we deduce that p⋆ is the unique solution of (4.21).
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The temperature is solution of Equation (4.11)3,5,6 given by
∂2z3 T̂

⋆ = − µ

Kk
|ũ⋆|2 − µeff

k
|∂z3 ũ⋆|2 in Ω,

T̃ ⋆ = 0 on Γ1,

∂z3 T̃
⋆ = − b

k on Γ0,

which is a second-order linear differential equation with respect to z3 with
Robin conditions. The solution is given by

T̃ ⋆(x′, z3) =− µ

Kk

∫ z3

0

∫ τ

0

|ũ⋆|2 ds dτ − µeff

k

∫ z3

0

∫ τ

0

|∂z3 ũ⋆|2ds dξ

+B1(x
′)z3 +B2(x

′),

with B1(x
′) = − b

k and

B2(x
′) =

bh(x′)

k
+

µ

Kk

∫ h(x′)

0

∫ τ

0

|ũ⋆|2 ds dτ + µeff

k

∫ h(x′)

0

∫ τ

0

|∂z3 ũ⋆|2ds dτ.

Let us compute
∫ z3
0

∫ τ

0
|ũ⋆|2 ds dτ . We observe that∫ τ

0

(
A⋆

1(x
′)eMs +A⋆

2(x
′)e−Ms + 1

)2
ds

=
1

2M

(
(A⋆

1)
2e2Mτ − (A⋆

2)
2e−2Mτ

)
+ (1 + 2A⋆

1A
⋆
2) τ

+
2

M

(
A⋆

1e
Mτ −A⋆

2e
−Mτ

)
− 1

2M

(
(A⋆

1)
2 − (A⋆

2)
2
)
− 2

M
(A⋆

1 −A⋆
2)

and so, V ⋆
1 (x

′, z3) =
∫ z3
0

∫ τ

0

(
A⋆

1(x
′)eMs +A⋆

2(x
′)e−Ms + 1

)2
ds dτ is given by

(4.23). This implies that∫ h(x′)

z3

∫ τ

0

|ũ⋆|2 ds dτ =
K2

µ2
V ⋆
1 (x

′, y3)|f ′(x′)−∇x′ p̃⋆(x′)|2.

Finally, let us compute
∫ z3
0

∫ τ

0
|∂z3 ũ⋆|2 ds dτ . We observe that

∂z3u
⋆(x′, z3) =

KM

µ

(
A⋆

1(x
′)eMz3 +A⋆

2(x
′)e−Mz3

)
(f ′(x′)−∇x′p⋆),

and, according to previous computations, we deduce∫ h(x′)

z3

∫ τ

0

|∂z3u⋆|2 dsdτ =
K2M2

µ2
V ⋆
2 (x

′)|f ′(x′)−∇x′p⋆|2,

with V ⋆
2 (x

′, z3) =
∫ h(x′)

z3

∫ τ

0

(
A⋆

1(x
′)eMs +A⋆

2(x
′)e−Ms

)2
ds dτ given by (4.24).

From the above computations, we get (4.22). ⊓⊔
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5 Concluding remarks

This study deals with the limit analysis of steady-state Darcy-Brinkman in
a thin domain with a one-way coupling via a steady-state heat equation with
particular focus on viscous dissipation. Using asymptotic methods with respect
to the domain thickness, we propose a simplified model that accounts for both
mechanical and thermal effects. The main obstacle is the nonlinear coupling via
the viscous dissipation, which necessitates strong convergence for the velocity
field and its derivatives. It should be emphasized that the effective model has
been rigorously justified by proving the convergence results and can be used as
an useful check for numerical simulations.

We remark that we can consider the Darcy-Lapwood-Brinkman equation
which takes into account the viscous shear and inertia effects by incorporating
the convective inertial term ρ

ϕ2 (u
ε · ∇)uε in (2.3)1, where ρ is the fluid density

and ϕ is the porosity. Namely, it reads −2µeff div(D[uε]) +
µ

Kε
uε +∇pε = fε +

ρ

ϕ2
(uε · ∇)uε,

div(uε) = 0.
(5.1)

The corresponding thermodynamic closure of the problem (5.1) is obtained by
considering the heat equation

−k∆T ε = (uε · ∇)T ε +
µ

Kε
|uε|2 + 2µeff |D[uε]|2, (5.2)

where we have introduced the convective term (uε · ∇)T ε in (2.3)3 as well.
We remark that, at main order, due to the a priori estimates in thin domain,
the convective terms would vanish, and to take into account them a further
asymptotic development (lower order terms) is necessary. We believe that the
analysis presented here can be extended to study the problem (5.1)–(5.2) and
this will be the subject of our future work.

We also remark that other boundary conditions could be considered. For
example, following [3], we can consider the following boundary conditions for
velocity. Consider g = (g1, g2, g3) such that∫

∂Ωε

g · n dσ = 0,

such that

� No-slip condition: uε = g = 0 on Γ ε
1 .

� The velocity is known and parallel to the ω-plane: uε = g = 0 with
g3 = 0 on Γ ε

ℓ .

� There is a no flux condition across ω so that uε3 = g3 = 0. The tangential
velocity on ω is unknown and satisfies the Tresca friction law with a
friction coefficient kε:

|σε
t | < kε ⇒ uεt = s

|σε
t | = kε ⇒ ∃λ ≥ 0 such that uεt = s− λσε

t

}
on ω.
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We believe that our study can be adapted to the case of a flow of a non-
Newtonian fluid through a thin three-dimensional domain given by the follow-
ing system 

−2µeff div(|D[uε]|r−2D[uε]) +∇pε = fε,
div(uε) = 0,

−k∆T ε = 2µeff |D[uε]|r,
(5.3)

with boundary conditions (2.4)–(2.5). Also, the µ
Kε

uε in (2.3)1 could be re-
placed in the non-Newtonian setting by a drag force function in the spirit of [9],
that is, a function G : R3 → R3 continuous, strictly monotone, satisfying an
homogeneity condition G(λξ) = |λ|r−2λG(ξ), λ ∈ R, and the following condi-
tion

m|ξ|r−1 ≤ |G(ξ)| ≤M |ξ|r−1,

for some constants m,M > 0. Including this term in (5.3)1 and the corre-
sponding one in the viscous dissipation Φ in (5.3)3, we would consider the
generalization of the present study to the non-Newtonian setting, which will
be a subject of our future work.
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